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PREFACE. 

It  has  been  made  a  matter  of  surprise,  that  considering  the 

great  capabilities  of  many  individuals  in  these  countries,  so  few 
are  conversant  with  the  contents  of  a  work  of  such  acknowledged 

eminence,  as  the  Celestial  Mechanics.  Without  adverting  to 

other  causes,  it  may  be  safely  asserted,  that  the  chief  obstacle 

to  a  more  general  knowledge  of  the  work,  arises  from  the  sum- 
mary manner  in  which  the  Author  passes  over  the  intermediate 

steps  in  several  of  his  most  interesting  investigations.  To  re- 
move this  obstacle,  is  the  design  of  the  present  treatise, 

in  which  the  translator  endeavours  to  elucidate  every  diffi- 

culty in  the  text,  and  to  expand  the  different  operations 
which  are  taken  for  granted.  He  has  not  attempted  to 

follow  the  principles  into  all  their  details;  but  he  has  occasionally 
adverted  to  some  useful  applications  of  them,  which  occur  in 
different  Authors.  He  is  aware  that  those  conversant  with  such 

subjects  will  find  much  observation  that  may  be  dispensed  with  ; 

but  when  it  is  considered  that  his  object  was  to  render  this  work 

accessible  to  the  general  class  of  readers,  he  trusts  that  he  will 

not  be  deemed  unnecessarily  diffiise,  if  he  has  insisted  longer  on 

some  points  than  the  experienced  reader  may  think  neces- 

sary. As  many  of  the  propositions  which  Newton  announced  se- 
parately are  so  many  different  results,  which  are  all  comprised 
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under  the  same  general  law  analytically  investigated,  he 

has  also  taken  occasion  to  notice,  in  the  notes,  those  propo- 

sitions of  Newton,  which  are  embraced  in  the  general  analysis 
of  the  text,  which  he  was  induced  to  do,  in  order  to  show 

the  great  superiority  of  the  analytic  mode  of  investigating 

problems.  The  Work  will  be  divided  into  five  parts, 

which  will  be  published  in  separate  volumes.  The  first  volume 

contains  the  first  book,  which  treats  of  the  general  prin- 

ciples of  the  equilibrium  and  motion  of  bodies.  The  number 

of  notes  which  was  necessary  for  the  elucidation  of  these  prin- 

ciples is  much  greater  than  will  be  required  in  any  of  the 

subsequent  volumes.  The  second  volume  will  contain  the  second 

and  third  books  of  the  original ;  the  third  volume,  the  fourth 

and  fifth  books ;  the  fourth  volume  will  contain  the  sixth, 

seventh,  and  eighth  books  ;  and  the  last  volume  will  contain 

the  ninth  and  tenth  books,  together  with  the  supplement  to 
the  tenth  book. 

Trin.  Coll. 

April,  18S2, 
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A  TREATISE 

OB 

CELESTIAL  MECHANICS, 

&c.  &c, 

JN  EWTON  published,  towards  the  close  of  the  seventeenth  century,  the 
discovery  of  universal  gravitation.     Since  that  period.  Philosophers  have 
reduced  all  the  known  phenomena   of  the  system  of  the  world  to  this 

great  law  of  nature,  and  have  thus  succeeded  in  giving  to  the  theories  and 
astronomical  tables  a  precision  which  could  never  have  been  anticipated. 

I  propose  in  this  present  treatise  to   exhibit  in  one  point  of  view,  these 

theories    which     are    scattered    through    a  great   number  of    works, 

of    which    the      whole    comprising    the    results   of    universal     gravi- 
tation,    on    the   equilibrium   and     motion    of   the  bodies  both      solid 

and  fluid,  composing  the   solar  and  similar  systems,  constitutes    The 

Celestial  Mechanics.       Astronomy,   considered    in  the   most  general 

manner,   is  a  great  problem  of    Mechanics,   of   which  the   arbitrary 

quantities  are  the  elements  of  the  motions  of  the  heavenly  bodies  j  its 

solution  depends,  at  the  same  time,  on  the  precision  of  the  observations, 

and  on   the  perfection  of  analysis  ;  and  it  is  of  the  last  importance  to 

banish  all  empiricism,  and  to   reduce  it,   so  that  it  may  borrow  nothing 
from  observation,  but  the  indispensable  data.     The  object  of  this  work, 

is,  as  far  as  it  is  in  my  power,  to  accomplish  this  interesting  end.       I 

trust   that,    in  consideration   of  the  difficulties  and  importance  of  the 
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subject,  Philosophers  and  Mathematicians  will  receive  it  with  indulgence, 
and  that  they  will  find  the  results  sufficiently  simple  to  be  employed 

in  their  investigations.  It  will  be  divided  into  two  parts.  In  the  first, 
I  will  give  the  methods,  and  formulas,  for  determining  the  motions  of 

the  centres  of  gravity  of  the  heavenly  bodies,  their  figures,  the  oscillations 
of  the  fluids  which  are  spread  over  them,  and  their  motions  about  their 

proper  centres  of  gravity.  In  the  second  part,  I  will  apply  the  formulse 
which  have  been  found  in  the  first,  to  the  planets,  the  satellites  and  the 

comets  -,  and  I  will  conclude  with  a  discussion  of  several  questions 
relative  to  the  system  of  the  world,  and  by  a  historical  notice  of  the 
labours  of  Mathematicians  on  this  subject.  I  will  adopt  the  decimal 

division  of  the  quadrant,  and  of  the  day,  and  I  will  refer  the  linear 
measures,  to  the  length  of  the  metre,  determined  by  the  arc  of  the  ter- 

restrial  meridian  comprised  between  Dunkirk  and  Barcelona. 
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105,         for  Sg,  read  Sp ;  20,  after  each,  rwrf  other. 
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dz  ^dxj j.dt 

dx 
nao        A     ̂     du.+dtv.dt         ,    du  +  dv.i 
233,       4,/or-:2_]Z   ^  read -^   

234,  2,  multiply  the  first  member  by  t?t,  line  11,  prefix  —  toc?i,and/)r — V  read —  P'.dt. 

235,  17, /or  kread^. k 

236,  17,  /)r  Jr,  rend  S^  and  for  homogenous,  read  homogeneous. 
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PART  I.— BOOK  I. 

In  this  book,  the  general  principles  of  the  equilibrium  and  motion 
of  bodies  are  established,  and  those  problems  in  Mechanics  are  solved, 

the  solution  of  which  is  indispensable  in  the  theoiy  of  the  system  of 
^le  world. 

CHAPTER  I. 

Of  the  equilibrium  and   of  the  composition  of  forces   which 

act  on  a  material  point. 

1.  A  body  appears  to  us  to  move,  when  it  changes  its  situation 
with  respect  to  a  system  of  bodies  which  we  suppose  to  be  at  rest; 
but  as  all  bodies,  even  those  which  seem  to  us  to  be  in  a  state  of  the 
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most  absolute  rest,  may  be  in  motion ;  we,  in  imagination,  refer  the 

position  of  bodies  to  a  space  which  is  supposed  to  be  boundless,  im- 

moveable, and  penetrable  to  matter ;  and  when  they  answer  succes- 

sively to  diflPerent  parts  of  this  real  or  ideal  space,  we  conceive  them  to 
be  in  motion. 

The  nature  of  that  singular  modification,  in  consequence  of  which  a 

body  is  transferred  from  one  place  to  another  is,  and  always  will  be,  un- 
known :  we  have  designated  it  by  the  name  force  ;  but  we  can  only 

detennine  its  effects  and  the  laws  of  its  action.  The  effect  of  a  force 

acting  on  a  material  point,  is,  if  no  obstacle  opposes,  to  put  it  in  mo- 
tion ;  the  direction  of  tlie  force  is  the  right  line  which  it  tends  to  make 

the  point  describe.  It  is  evident  that  when  two  forces  act  in  the 

same  direction,  their  effect  to  move  the  point  is  the  sum  of  the  two 

forces,  and  that  when  they  act  in  opposite  directions,  the  point  is 

moved  by  a  force  represented  by  their  difference.  If  their  directions 

form  an  angle  with  each  other,  a  force  results,  the  direction  of  which 

is  intermediate  between  the  directions  of  the  composing  forces.  Let 

us  investigate  this  resultant  and  its  direction. 

For  this  purpose,  let  us  consider  two  forces  :c  and  J/  acting  at  the 

same  time  on  the  material  point  AI,  and  forming  a  right  angle  with 

each  other.  Let  z  represent  their  resultant,  and  0  the  angle  which  it 

makes  witli  the  direction  of  the  force  x  ;  the  two  forces  ̂   and  1/ 

being  given,  the  angle  6  will  be  determined,  and  also  the  resultant  z, 

so  that  there  exists  between  these  three  quantities  j:,  t/,  z,  a  relation 

which  it  is  required  to  ascertain. 

Let  us  suppose  at  first  the  forces  x  and  1/  infinitely  small,  and  equal 

to  the  differentials  dJ!  and  dy  ;  let  us  suppose  afterwards  that  a:  becom- 

ing successively  dx,  Q.dx,  Sdx,  &c.  y  becomes  dy,  '2dy,  Sdy,  &c.  it  is 
evident  that  the  angle  9  will  always  remain  the  same,  and  that  the 

resultant  a;  will  becone  successively  rf^,  2dz,^3dz,  &c. ;  thus  in  the 

successive  incremen's  of  tlie  three  forces  x,  y,  and  z,  the  ratio  ol  x 

to  «  will  be  constat, ^  and  can  be  expressed  by  a  function  of  fl  which 

we  will  desig!iate  by  ̂ (6) ;    therefore   we  shall  have  x  =  z  9(9),  in 
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which  equation  x  may  be  changed  into  y,  provided  that  in  like  manner 

the  angle  0  is  changed  into  —   8,   w  being  the  semi-circumference  of 

a  circle  whose  radius  is  equal  to  unity. 

Now,  we  can  consider  the  force  x  as  the  resultant  of  two  forces  'x' 

and  J*,  of  which  the  first  ̂ '"is  in  the  direction  of  the  resultant  z,  the 

second  x'  being  perpendicular  to  this  resultant.  The  force  x  which 
results  from  these  two  new  forces,   forming  the  angle  6  with  the  force 

J?',  and  the  angle—  — 9,  with  the  force  x"  we  shall  have 

therefore  we  can  substitute  these  two  forces,  for  the  force  x.  In  like 

manner  we  can  substitute  for  the  force  y,  two  new  forces  y'  and  y\  of 

which  the  first  is  equal  to  —  and  in  the  direction  of  2;,  and  of  which 

the  second  is  equal  to  li  and  perpendicular  to  z,  thus  we  shall  have  in 

place  of  the  two  forces  x  and  y  the  four  following, 

x*    y"^    xy    xy 
z     z      z       z 

the  two  last  acting  in  opposite  directions,  destroy  each  other  ;  the  two 

first  acting  in  the  same  direction,  when  added  together  constitute  the 
resultant  z ;    we  shall  have  therefore 

x»+3/»  — jt. 

from  which  it  follows  that  the  resultant  of  the  two  forces  x  and  y  n 

represented  in  quantity  by  the  diagonal,  of  a  rectangle,   of  which  the 
sides  represent  the  new  forces. 

Let  us  now  proceed  to  determine  the  angle  6.     If  the  force  x  is B2 
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increased  by  its  differential,  without  altering  the  force  y,*  this  angle 
will  be  diminished  by  the  indefinitely  small  quantity  J9,  but  it  is  pos- 

sible to  suppose  the  force  dx  resolved  into  two,  one  dx'  in  the  direc- 

tion of  s,  the  other  dx''  perpendicular  to  z;  the  point  Mwill  then  be 
acted  on  by  the  forces  z  +  dx'  and  dx'  perpendicular  to  each  other, 
and  the  resultant  of  those  two  forces,  which  we  represent  by  z\  will 

make  with  dx"  the  angle  ~  — rffl ;  therefore  by  what  precedes  we  shall 

have  dx"  =  z'.  f^— — d&j,   consequently  the  function    (pfZ   d^'\ 
is  indefinitely  small,  and  of  the  form  —  Kd^ ;  K  being   a   constant 
quantity   independent   of  the  angle    6 ;    therefore  we    have 

dx" 
   =1  —  Kd^ ;    z'  differing  by  an  indefinitely  small  quantity  from  z ; 

moreover  as  dx"  forms  an  angle  with  dx  equal  to  — —  0  we  have 

dx"  =  dx  <p(   9  j  =  1/.  dx  ; 

therefore 

rf6  = 

— ydx 

Kz* 

*  Since  the  direction  of  the  resultant  depends  on  the  relation  which  exists  between 
composing  forces,  if  one  force  be  increased,  while  the  other  remains  unaltered,  the  angle 

contained  between  the  direction  of  the  increased  force  and  resultant,  will  be  diminished  by 

a  quantity  of  the  same  order  with  that  by  which  the  force  was  increased.  And  when 

the  force  y  receives  the  increase,  the  angle  contained  between  the  resultant  and  this 

increased  force,  will  be  diminished,  therefore  its  complement,  the  angle  i,  will  be  increased 

by  the  same  quantity ;  and  this  is  the  reason  why  the  expressions  for  the  variations  of 

6  corresponding  to  the  respective  variations  of  x  and  y  are  affected  with  contrary  signs. 

If  X  and  y  are  increased  or  diminished  simultaneously,  d6  will  always  vanish  when  dx,  dy 

are  respectively  proportional  to  the  quantities  varied ;  this  follows  immediately  from  th« 

expression  for  di. 
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If  the  force  y  is  varied  by  its  differential  dy,  x  being  supposed  to  be 

constant,  we  shall  have  the  corresponding  variation  of  the  angle  6,  by 

changing  x  into  y,  y  into  x,  and  fl  into  — —9,  in  the  preceding  equa- 

tion ;   which  then  gives 

xdy 

therefore  by  making  x  and  y  to  vary  at  the  same  time,  the  total  va- 

riation of  the  angle  6  will  be      -^    JL   .and  we  shall  have 

xdy—ydx  _  ̂ ^^ 

If  we  substitute  for  x;*  its  value  .r*  +^',  and  then*  integrate  we  shall 
have 

-^  -  tan.  (ii:fi  +  p) 
X 

f  being  a  constant  arbitrary  quantity.     This  equation  being  combined 

with  the  equation  j^'+j/'  =2^  gives 

vT  =  2.  cos.  (iiCS+p) 

*     xd\i — y  dx    ̂   xdv — y  dx         j  /  U  \  du 

1  +^       1  +£_ 
I»  x^ 

,       J—=  u  \       therefore   f—J^!—     {  -  arc  tang.  =  «  )  rzf  K  di  = 

\   X  J  COS.  Kl+( 
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It  is  only  now  required  to  know  the  two  constant  quantities  A"  and  p ; 
but  if  we  suppose  y  to  vanish  we  have  evidently  z  =  a\  and  ̂   =  o, 

therefore  cos.  />  =  1  and  x  -zz  z.  cos.  K^.     If  we  suppose  x  to  vanish, 

then  z  ■=.  y,  and  9  —  —  w ;    cos.  K^  being  then  equal  to  nothing,  K 

*must  be  equal  to  2«4-l,   n  being  an   integral   number;  and  in  this 

case  .r  will  vanish  as  often  as  9  will  be  equal  to     ̂ ^    ;    but  x  being  no- 

thing  we  have  evidently  9  zz  A-ct  ;  therefore  2«+l  zz  1,  or  n  zz  o, 
consequently 

X  =  z.  COS.  9. 

From  which  it  follows  that  the  diagonal  of  a  rectangle  described  on 

the  right  lines  which  represent  the  forces  x  and  y,  represents  not 

only, the  quantity  but  also  the  direction  of  their  reluctant.  Thus  we 

can  substitute  for  any  force  whatever  two  other  forces  which  form  the 

sides  of  a  rectangle,  of  which  that  force  is  the  diagonal ;  and  it  is  easy 

to  infer  from  thence  that  it  is  possible  to  resolve  a  force  into  three 

others,  which  form  the  sides  of  a  rectangular  parallelipiped  of  which 

it  is  the  diagonal. t 

Let  therefore  a  b  and  c  represent  the  three  rectangular  coordi- 

nates of  the  extremity  of  a  right  line,  which  represents  any  force  what- 

ever, and  of  which  the  origin  is  that  of  the  coordinates ;   this  force 

will  be  represented  by  the  function  s/a*-\-h'''  -\-c*,    and  by  resolving  it 

*  In  this  case  K6  is  some  odd  multiple  of  -■—  and  therefore  K  must  be  of  the  form  2n-|- 1 . 

f  Tlie  given  force  being  resolved  into  two,  of  which  one  is  perpendicular  to  a  plane  given 

in  position,  the  other  being  parallel  to  tliis  plane,  if  this  second  partial  force  be  decom- 

posed into  two  others,  parallel  to  two  axes  situated  in  this  plane,  and  perpendicular  to 

each  other ;  it  is  evident  that  the  three  partial  forces  will  be  at  right  angles  to  each  other, 

and  that  the  sum  of  the  squares  of  the  lines  representing  these  forces,  will  be  equal  to 

the  square  of  the  line  representing  the  given  force,  therefore  this  last  force  is  the  diago- 

nal of  a  rectangular  parallulUpiped,  of  which  the  partial  forces  constitute  the  sides. 
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parallel  to  the  axes  of  a  o£  b  and  of  c,  the  partial  forces  will  be  ex 

pressed  respectively  by  these  coordinates. 

Let  a',  b',  &,  be  the  coordinates  of  a  second  force  ;  a-\-a',  b-\-b', 
c+c',  will  be  the  coordinates  of  the  resultant  of  the  two  forces,  and 

will  represent  the  partial  forces  into  which  it  can  be  resolved  parallel 

to  the  three  axes,  from  whence  it  is  easy  to  conclude  that  this  resultant 

is  the  diagonal  of  a  parallelogram,  of  which  the  two  forces  are  the 

sides.* 
In  general  a,  b,   c ;  a',  b>,  C ;  a",  b«,  &' ;  &c.  being  the  coordinates 

of  any  number  of  forces ;  a -{■  a'  ■{■  a"  -^ ,  &c.  b+b'+b''+,  kc.c-\-c'-\-c"-\- 
&c.  will  be  the  coordinates  of  the  resultant ;  the  square  of  which  will 

be  equal  to  the  sum  of  the  squares  of  these  last  coordinates  ;    thus  we 

shall  have  both  the  quantity  and  the  position  of  the  resultant. t 

*  The  coordinates  of  the  extremity  of  this  diagonal  are  evidently  equal  to  n+a',  h-\-b', 
c+c,  therefore  tliis  diagonal  must  be  equal  to  the  resultant  of  the  two  forces.  We  are 

enabled  to  derive  an  expression  for  the  cosine  of  the  angle,  contained  between  the  given 

forces,  in  terms  of  the  cosines  of  the  angles  which  these  forces  make  with  the  coordi- 

nates, for  calling  the  forces  S  and  S',  and  the  angles  which  S  makes  with  the  three  axes, 

A,  A',  A",  and  B,  B\  B",  the  angles  which  S'  makes  with  the  same  axes  we  have 

o=Scos.  A,  b=S  COS.  A,  c=S  cos.  A",a'=-S  cos.B,c'=S  cos.  5',  c' =  S'  cos.  B' ; 

the  square  of  the  line  connecting  the  extremities  of  S  and  S  =  S* — Q,SS.  cos.  il+.S  '  ; 

^  being  the  angle  contained  between  S  and  S,  the  square  of  this  line  is  also  equal  to 

(S  cos.  A—S  cos.  BY  +  {S  cos.  A'—S'  cos.  £')=+  (S  cos.  A'—S  cos.  B')*  ; 

=»  S'  +  S"^— 2  SS'  (cos.  A.  cos.  B  +  cos.  A.  cos.  5'4-cos.  A',  cos.  B",) 

consequently  we  have 

cos.  A  =  cos.  A.  cos.  B  +  cos.  A .  cos.  B  +  cos.  A",  cos.  B', 

therefore  when  the  two  forces  are  perpendicular  to  each  other,  the  second  member  of  this 

equation  is  equal  to  nothing. 

t  Let  S  S'  S",  &c.  represent  the  forces  of  wliich  the  coordinates  are  respectively 

a,  6,  c ;  a,  V ,  c' ;  a",  b",  c",  &c.  then  by  what  precedes  a-\-a',  b-\-b',  c+c',  are  the  co- 

ordinates of  the  resultant  of  S  and  S',  a+a'+a",  b-\-b'-\-b",  c+c'+c',  .are  the  coor- 
dinates of  the  resultant  of  this  last  force,  and  the  force  S"  &c. :  therefore  the  resultant 

f  of  any    number  of  forces   is   the  diagonal   of  a  rectangular  parallelipiped  of  which 
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2.  From  any  point  whatever  of  the  direction  of  a  force  S,  which 

point  we  will  take  for  the  origin  of  this  force,  let  us  draw  a  right  line, 

which  we  will  call  5,  to  the  material  point  M ;  let  x,  y,  z,  be  the  three 
rectangular  coordinates  which  determine  the  position  of  the  point  M, 

and  a,  b,  c,  the  coordinates  of  the  origin  of  the  force ;  we  shall  have 

If  we  resolve  the  force  S  parallel  to  the  axes  of  .«■,  of  i/,  and  of  z, 
the  corresponding  partial  forces  will  be  by  the  preceding  number 

S        r  S         '  S        '  \izJ  ySl/J  WS^ 

the  coordinates  are  equal  respectively  to  the  sum  of  the  coordinates  of  the  composing 
forces, 

V  F»=  (a+a'+a" +&c.y-  +  (6+*'+*"  &c.)*  +  {c+c +c'  +  &c.)'. 

Let  m,n,  p  =  the  angles  which  V  makes  with  the  rectangular  axes 

a4-fl'+o"+  &'C                        h  +  b'  +  b"+&c.  c+c'  +  c"  +  &c. 
COS.  m  =    ̂        y—        cos.  m  =    ̂     ̂ ^JE   cos.  p  =  _L_X,_L — 

•.  •  we  have  both  the  quantity  and  direction  of  the  resultant. 

From  the  preceding  composition  of  forces  it  follows,  that  if  a  polygon  is  constructed, 

of  which  the  sides,  (which  may  be  in  different  planes)  are  respectively  proportional  to 

these  forces,  and  parallel  to  their  directions,  the  last  side  of  this  polygon  represents  the 

resultant  of  all  the  forces  in  quantity  and  in  direction. 

*  S  being  considered  as  a  function  of  x,  y,  and  k,  S«  ̂   (  T~  J  ^''''^  {  s"  J  ^■^'''  ( T~}  ̂^ 

and  when  s  =  V{x-ay+(y-by+(z-c-'     [jj    =  -j-    j^  = '-^  '  jr  =-^ 

    '  &c.  are  evidently  the  expressions  for  the  cosines  of  the  angles  which  s s  s 

makes  with  the  coordinates  x,  y,  and  s,  since 
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■  >;>      -i,  expressing  according  to  the  received  notation Ws  ̂   _    {  is 

tlie  coefficients  of  the  variations  of  Sx,  Sy,  Sz,  in  tlie  variation  of  the 

preceding  expression  of  s. 

If,  in  like  manner,   we  name  s'  the  distance  of  M  from  any  point  iu 
the  direction  of  another  force  iS',  that  point  being  taken   for  the  origin 

of  this  force  ;  S'.  \——l   will  be  this  force  resolved  parallel  to  the  axes I  SxS 

of  .r,  and  just  so  the  rest ;  therefore  the  sum  of  the  forces  S,  S',  S",  kc. 
V 

'■■{  |) = M-^) + s-(t;  ) + *'(t^) + '"■ 

by  iiuiltiplying  these  equations  by  Sx,  3y,  h,  respectively,  and  adding  them  together, 
we  get 

>'■'«= K(^).''+(|>'.+(t:)'-0 

+.S'Y  (l!l)ix+/!^^  3y  ■)-(  ̂ )y  Sz+&c.=Sls-t-.S'?.v'  +  .S'3,v"+  &c.=-Z.S.h. 

Now  since  these  equation  have  phice  whatever  be  the  variations  3x,  Si/;  h,  one  of  then; 

may  exist  while  the  other  two  vanish,  therefore  the  equation  (a)  is  equivalent  to  the  tliree 

Kiuations  which  precede  it.  We  shall  see  liereafter  that  the  introductio)i  of  the  coeffi- 

cient    ( Y^  )  is  of  the  greatest   consequence,   for  from   the   equation  (4)  which  tbllows 

immediately  from  the  equation  (a),  we  deduce  the  equation  (/)  of  No.  li,  which  involves 

the  principle  of  vertual  velocities,  and  this  principle  combined  with  that  of  D'Alembert, 
lias  given  to  Mechanics  all  the  perfection  of  which  it  was  susceptible,  for  by  means  of  it 

tTie  investigation  of  the  motions  of  any  system  of  bodies  is  reduced  to  the  integration 
of  differential  equations.     .See  No.  18. 
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resolved  parallel  to  this  axis  will  be  2.  S.(  —  ),  the  characteristic  2:  of 

(is  \  (  Ss' ) 
Sx  (  Sxi 

Let  F  be  the  resultant  of  all  the  forces  S,  S',  &c.  and  u  the  distance 

of  the  point  M  from  any  point  in  the  direction  of  this  resultant,  which 

is  taken  for  its  origin ;    V.  <   >     will  be   the  expression  of  this  re- 
'    aX    J 

sultant  resolved  parallel  to  the  axis  of  x;  therefore  by  the  precedhig 

number  we  shall  have  V.< — '->    =  H.  S.< (  Sx  )  l 

we  shall  have  in  like  manner 

Ss_ 

\   Sy  ̂   ^  SyS    '  Ws  ̂   ^  cT^  ♦ 

from  which  we  may  obtain,  by  multiplying  these  equations  respectively 

by  to,  Sy,  Sz,  and  adding  them  together 

VJu  =  1.  S.  is; 

As  this  last  equation  has  place  whatever  be  the  variations  Sx,  Sy,  Sz  it  is 

equivalent  to  the  three  preceding.  If  its  second  member  is  an  exact 

variation  of  a  fuction  <p,  we  shall  have  F.  Su  =  S({>,  and  consequently 

Stp 

which  indicates  that  the  sum  of  all  the  forces  resolved  parallel  to  the 

axis  of  ■>■-  is  equal  to  the  partial   difference    )  — ^  i  .  *     This  case  ob- 

*  If  we  mult;ply  h  the  variation  of  any  quantity  by  any  function  of  that  quantity,  such 

^      as  -a — '  ̂ .s™,  &c.  the  product  is  evidently  an  exact  variation,  however  this  is  not  true  of 

every  species  of  function,  for  there  are  some  transcendental  and  exponential  functions. 

such    as        which  are  not  exact  variations. 
log.  .?. 
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tains  generally,  when  the  forces  are  respectively  functions  oF  the  dis- 
tance of  their  origin  from  the  point  M.  In  order  to  have  the  resultant 

of  all  these  forces  resolved  parallel  to  any  right  line  whatever,  we  shall 

take  the  integral  S. /."  S.  is,  and  naming  <p  this  integral,  we  shall  consi- 
der it  as  a  function  of  .v,   and  of  two  right  lines  perpendicular  to  each 

other  and  to  x  ;  the  partial  difference    <  — ^  >      will  be  the  resultant 
I  Sx   ̂  

of  the  forces  S  S'  S",  &c.  resolved  parallel  to  the  right  line  x. 
3.  When  the  point  AI  is  in  equilibrio,  in  consequence  of  the  action 

of  the  forces  which  solicit  it ;  their  resultant  vanishes,  and  the  equa- 
tion (a)  becomes 

O  =  ■£.  S.  Ss     {b) 

which  indicates,  that  in  the  case  of  the  equilibriiun  of  a  point  acted  on 

by  any  number  of  forces,  the  sum  of  the  products  of  each  force  by  the 

element  of  its  direction  is  nothing.* 
c2 

*  Since  the  forces  parallel  to  the  coordinates  .c,  y,  z,  are  independant  of  each  other,  It 

follows  from  the  notes  to  the  preceding  number,  that  M'hen  the  point  M  is  in  equilibrio 

-•  -S   -J  -—  J-     2.    S.  -!  —1  !•    2.  i>.    I  __  I.     are  =  respectively  to  nothing. 

t.  c.  ,S.  cos.  A^S.  COS.  B-^S"  COS.  C+  etc.  =  0 

S.  COS.  A'-\-S'  cbs.  5'+S"  cos.  C'+&c.  =  0. 

a.  COS.  A''-\-&'.  COS.  £"+  S''  COS.  C"  =  0. 

{A,  A',  A"  ;  B,  B',  B",  &c.  are  the  angles  which  the  direction*  of  ,S',  S>,  &c.niake  with 
J-,  y,  z,) ;  these  are  the  equations  of  equilibrium  of  a  system  of  forces  applied  to  a  mate- 

rial point  which  is  entirely  free.     The  independence  which  exists  between  these  equations 

is  ejttremely  advantageous,  it  only  obtains  \\hen  the  forces  are  resoh'ed  paralle!  to  three 

rectangular  coordinates.     2.  S.   )  -z—  >    =0  indicates  that   M  is  at  an   invuriable  dis- 

t  Sx  3 
tance  from  the  plane  of  y,  z ;  in  this  case  the  forces  are  reducible  to  two  rectangular  ones, 
in  the  plane  y,  z. 

When  the  point  M  is  in  equilibrio  any  one  of  the  forces  acting  on  it  is  equal  ami 

contrary  to  the  resultant  of  all  the  remaining  forces,  for  naming  V  the  resultant  of  the 

forces  .S',  S"-)-itc.  and  n,  h,  c,  the  angles  which  it  makes  with  the  coordmates  x,  y,  z,  by 
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If  the  point  M  is  forced  to  be  on  a  curved  surface,  it  will  experi- 

ence a  reaction,  which  we  will  designate  by  R.  This  reaction  is  equal 

and  directly  contrary  to  the  pressure  with  which  the  point  presses  on 

the  surface ;  for  by  conceiving  it  acted  on  by  two  forces  R  and  — R, 

it  is  possible  to  suppose  that  the  force  R  is  destroyed  by  the  reaction 

of  the  surface,  and  that  thus  the  point  presses  the  surface  witli  the 

force  R  ;  but  the  force  of  pressure  of  a  point  on  a  surface  is  perpen- 

dicular to  it,  otherwise  it  might  be  resolved  into  two,  one  perpendicular 

to  the  surface,  which  would  be  destroyed  by  it,  the  other  parallel  to  the 

surface,  in  consequence  of  which  the  point  would  have  no  action  on 

this  surface,  which  is  contrary  to  the  hypothesis ;  consequently  if  r  be 

tlie  perpendicular  drawn  from  the  point  ̂ / to  the  surface,  and  termi- 

nated in  any  point  whate\''er  of  its  direction,  the  force  R  will  be  di- 
rected along  this  perpendicular ;  therefore  it  will  be  necessary  to  add 

R.Sr  to  the  second  member  of  the  equation  (c)  which  thus  becomes 

O  =  Z,  S.  Ss-{-RAr     {c) 

—  R  being  then  the  resultant  of  all  the  forces  .V,  S',  &c.  it  is  perpen- 
dicular to  the  surface. 

If  we  suppose  that  the  arbitrary  variations  Sx,  Sij,  Sz  belong  to  the 

cui'ved  surface  on  which  the  point  is  subjected  to  remain,  we  shall  have 

h-  —  O,  since  r  is  perpendicular  to  the  surface,  therefore  RJr  vanishes 
from  the  preceding  equation,  in  consequence  of  which  the  equation  (b) 

obtains  in  this  case,  provided  that  one  of  the  three  variations  Sx,  St/,  Sx, 

be  eliminated  by  means  of  the  equation  to  the  surface  ;  but  then,  tht- 

what  precedes  we  shall  have  V'.  cos  a  =  S'  cos.  B-\-S"  cos.  C^&c.  /''  cos.  c  =  S' 

COS.  B'-fS".  COS.  C'-\-&c.  and  since  S.  cos.  A+S.  cos.  B+S".  cos.  C-f&c.  zz  0.  We 

have  v.  cos.  a= — 6'.  cos.  A  ;  in  like  manner  it  may  be  shewn  that  f"  cos.  b=  — S.  cos.  B, 
and  v.  COS.  c  =  —  S.  cos.  C ;  if  we  add  together  the  squares  of  these  equations  we 

shall  obtain  F'"=S*,  because  cos.  *a  -f  cos.  *i  -|-  'c  =  1  =  cos.  -4+  cos.  'B  4- 
cos.  *C.-.  we  have  cos.  a  =  —  cos.  A  &c.  •.•  a  =  200' — A,  iu  like  manner  it  follows, 

that  b  =  20O — B,  c  =  200— C,  v  the  forces  S  and  V  are  equal,  and  act  in  opposite 

directions. 
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equation  (b)  which  in  the  general  case  is  equivalent  to  three,  is  only 

equivalent  to  two  distinct  equations,  which  may  be  obtained  by  putting 

the  coefficients  of  the  two  remaining  differentials  separately  equal  to 

nothing.  Let  m  =  0  be  the  equation  of  the  surface,  the  two  equations 

Sr—0,  and  SuzzO  will  have  place  at  the  same  time  ;  this  requires  that  h- 
should  be  equal  to  \Su,  N  being  a  function  of  x,  i/,  and  z.  Naming 

a,  b,  c,  the  coordinates  of  the  origin  of  r  we  shall  have  to  determine  it 

from   which  wc  may   obtaui   -^ —  >    +  <  —  ,     +  {   j      —  I,  and 

consequently 

therefore  by  making 

I 

X  :r R 

^  (-  Sx  ̂       ̂   Sy  ̂       ̂   Sz  ̂ 

the  term  R.Sr  of  the  equation  (c)  will  be  changed  into  xiu,  and  this 

equation  will  become 

0  r:  I.  iS'.  h-irxiii 

in  which  equation  we  ought  to  put  the  coefficients  of  the  variations  Sx,  ii/, 

iz,  separately  equal  to  nothing,  which  gives  three  equations ;  but  on  ac- 

count of  the  indeterminate  quantity  a,  which  they  contain,  they  are  equi- 

valent to  only  two  between  x,  y,  and  a.  Therefore  instead  of  extracting 

from  the  equation  {hi)  one  of  the  variations  Sx,  Sy,  Sz,  by  means  of  the 

differential  equation  of  the  surface,  we  may  add  to  it  this  equation  multi- 

plied by  the  indeterminate  quantity  a,  and  then  consider  the  variations 

Sx,  %,  and  Sz,  as  independant.     This  method,   which  also  results  from 
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the  tlieory  of  elimination  combines  the  advantage  of  simplifying  the 

calculation  with  that  of  indicating  the  force  — R  with  which  the  point 

il/  presses  the  surface.* 

*  When  the  point  M  is  on  a  curved  surface,  then  all  that  is  required  for  its  equilibrium 

is,  that  the  direction  of  the  resultant  of  all  the  forces  which  act  on  it  should  be  perpen- 

dicular to  this  surface,  but  the  intensity  of  this  resultant  is  altogether  undetermined, 

since  the  reaction  is  equal  and  contrary  to  the  pressure  of  the  point  on  the  surface,  by 

adding  to  2.  S.  is  the  quantity  R.  Sr  we  may  consider  the  material  point  as  entirely  tree. 

3r  vanishes  because  the  perpendicular  is  the  shortest  line  which  can  be  drawn  from  a 

given  point  to  the  surface. 

Since  the  same  values  of  x,  y,  and  z,  satisfy  the  equations  2r  =  0  S«  =  0,  it  follows 

from  the  theory  of  equations  that  'N  =    is  a  function  of  .r,  y,  and  z, 

"ill 

this  function 

it  follows  from  the  expression  that  is  given  for  Jr,'  that  the  cosines  of  the  angles  wliit-h  the 

noi-mal  makes  with  the  coordinates  are  equal  respectively  to  iV.  <  "  '  A'.  >  Jf  i  .V.  j  1:  ̂  . iix'       ̂   »y  ̂         ̂ " 

See  notes  to  No.  9. 

\%z   S  \^z    S  \    %z    ) 

then  2.  S.  S.s  -f  y.%u=Ci  will  be  equal  to  X.  ix-\-  Y.  Jy+  2.  5--  + 

and  on  account  of  the  independance  of  the  variables  x,  y,  z,  we  shall  have 

eliminating  a  we  liave  the  following  equations : 

y.  ??i-x.i!i=o,  Z.  ̂JL-X.h  =0. 
3x  ly  Ji  ^~ 
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Let  us  conceive  this  point  to  be  contained  in  a  canal  of  simple  or 

double  curvature ;  the  reaction  of  the  canal  which  we  will  denote  by  k, 

will  be  equal  and  directly  contrary  to  the  pressure  with  which  the  point 

acts  against  the  canal,  the  direction  of  which  is  perpendicular  to  its 

side ;  but  the  curve  formed  by  this  canal,  is  the  intersection  of  two  sur- 

faces of  which  the  equations  express  its  nature,  therefore  we  may  con- 

sider the  force  k  as  the  resultant  of  two  forces  R,  R',  which  express  the 

reactions  of  the  two  surfaces  on  the  point  M ;  since  the  directions  of 

the  three  forces  li,  R',  /.,  being  respectively  perpendicular  to  the  side 

of  the  curve  they  are  in  the  same  plane,  therefore  by  naming  h;  Sr'  the 

elements  of  the  directions  of  the  forces  R,  R',  which  directions  are 

respectively  perpendicular  to  each  surface  ;  we  must  add  to  the  equation 

(A)  the  two  terms  RSr,  R'Sr,  which,  will  change  it  into  the  following : 

Q-^.SSs  +  R.Sr-^R'.h'.     (dj 

These  are  the  equations  of  equilibrium  of  a  material  point  solicited  by  any  number  of  forces 

S,  S,  S',  and  constrained  to  move  on  a  curved  surface :  if  the  position  of  M  on  the  sur- 
face is  not  given,  then  the  two  equations,  resulting  from  the  elimination  of  a,  combined 

with  the  equation  of  the  surface,  m:=0,  are  sufficient  to  determine  the  three  coordinates  of 

the  point.  Wlien  the  forces  and  position  of  the  point  are  given  we  obtain  a  by  means  of 

one  of  the  three  preceding  equations,  from  which  we  can  collect  immediately  the  value  of 

R,  and  consequently  the  pressure ;  the  investigation  of  R  would  be  considerably  abridged 

f  ̂"  1  (  ̂"  I 
by  making  the  axis  of  j-  to  coincide  with  the  normal,  for  then  a.  <  y-  >•  ,  x.-\  |r~  (  '     are 

equal  respectively  to  nothing,  and  a  -!  -i—  r    =  i?  A'.  4  —  >  =  /f ,  for  in  this  case 

""•Vi]  =  li]  =  ̂=  ̂'"^'^  ̂ il'r  ̂ {4}'  '"^  =  '"  ""''^^'  '^^  '•*'" have  y  =  0,  Z  =  0,  which  indicate  that  the  forces  resolved  respectively  parallel  to  two 

lines  in  the  plane  which  touches  the  surface  in  the  given  point,  are  equal  to  nothing  ;  this 

also  follows  from  considering  that  the  resultant  of  the  forces  is  necessarily  perpendicular  to 

the  surface.  If  the  variations  5.r,  ly,  Iz,  are  supposed  to  belong  to  the  surface  then  we 

shall  have  XS-r-J-  Y'^y\-Z'iz  =  0,  and  substituting  for  Sz  its  value  in  terms  of  ?x  and  5^, 

which  we  get  by  means  of  the  equation  \ -r-  f  •  ̂-^  +  ̂  "j"  !"  •  ̂̂   +  "!  "sT  (  '  ̂̂   ~  ̂• 

we  can  obtain  immediately  the  equations  of  condition 

ix  dy  dx  iz 
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If  we  deterniiue  the  variations  ix,  Si/,  Sz,  so  that  they  may  appertain 

at  the  same  time  to  the  two  surfaces,  and  consequently  to  the  curve 

formed  by  the  canal ;  Sr  and  Sr'  will  vanish,  and  the  preceding  equation 
will  be  reduced  to  the  equation  (^b)  which  therefore  obtains  in  the  case 

where  the  point  is  constrained  to  move  in  a  canal ;  provided  that  we 

make  two  of  the  variations  ix,  Sy,  Sz,  to  disappear  by  means  of  the  two 

equations  which  express  the  nature  of  this  canal. 

Let  us  suppose  that  u  =  0,  ?/— 0  are  the  equations  of  the  tAvo  surfaces 
whose  intersection  forms  the  canal.     If  we  make 

R 

V(|) Su  \-      /  hi  \  *  ,   ,  Su  ̂ 

Sx  Sy  oz 

'■  the  equation  (d)  will  become 

0=2.  S.  Ss.  +  A.  Su  +  x'.Su', 

in  which  the  coefficients  of  each  of  the  variations  Sd;  Sy,  Sz,  will  be  se- 

parately equal  to  nothing ;  thus  three  equations  will  be  obtained,  by 

means  of  which  the  values  of  a  and  x'  may  be  determined,  which  will 

give  R  and  R'  the  reaction  of  the  two  surfaces,  and  by  composing  them 
we  shall  have  the  reaction  k  of  the  canal  on  the  point  AI,  and  conse- 

quently the  pressure  of  this  point  against  the  canal.  The  reaction  re- 
solved parallel  to  the  axis  of  a:  is  equal  to 

^  Sx'  '  ^  Sx  ^  Sx  ^  Sx  •' 

*  When  the  point  is  forced  to  be  on  a  canal  of  simple  or  double  curvature  there  is 

only  one  equation  of  condition,  which  is  obtained  by  eliminating  A  and  >' ;  this  equation 
combined  with  the  equations  m  =  0,  «'  =  0  are  sufficient  to  detmiine  the  coordinates  of  the 
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therefore  the  equation  of  condition  u  =  0,  u'=0,  to  which  the  motion  of 
the  point  M  is  subjected,  express  by  means  of  the  partial  differentials 

of  functions,  which  are  equal  to  nothing  in  consequence  of  tliese  equa- 

tions, the  resistances  with  which  the  point  is  affected  in  consequence  of 
the  conditions  of  its  motion. 

It  appears  from  what  precedes  that  the  equation  (/>)  of  equilibrium 

obtains  universally,  provided,  that  the  variations  Sj:,  Sy^  Sz,  are  subjected 

to  the  conditions  of  equilibrium.  This  equation  may  be  made  the  foun- 
dation of  the  following  principle. 

"  If  an  indefinitely  small  variation  be  made  in  the  position  of  the 

"  point  M,  so  that  it  still  remains  on  the  curve  or  surface  along  which 

"  it  ought  to  move,  if  it  is  not  entirely  free ;  the  sum  of  tiie  forces 

"  which  solicit  it,  each  multiplied  by  the  space  through  which  the 

"  point  moves  in  its  direction,  is  equal  to  nothing,  in  the  case  of  an 

"  equilibrium."* 
The  variations  Sx,  Sy,  iz,  being  supposed  arbitrary  and  independant, 

it  is  possible  to  substitute  for  the  coordinates  .r,  y,  z,  in  the  equation 

(a),  three  other  quantities  which  are  functions  of  them,  and  to  equal 

the  coefficients  of  the  variations  of  these  quantities  to  nothing.  Thus 

naming  p  the  radius  drawn  from  the  origin  of  the  coordinates,   to  the 
D 

point  of  the  canal  where  the  given  forces  constitute  an  equilibrium,  in  this  case  it  is  only 

required  for  the  equilibrium  of  the  point  that  the  resultant  of  the  forces  should  exist  in  a 

plane  perpendicular  to  the  element  of  the  curve  on  which  the  point  is  situated,  from 

whence  it  appears  that  the  position  of  the  resultant  is  more  undetermined  than  when  the 

point  exists  on  a  curved  surface.     See  Notes  to  No.  9. 

We  might  simplify  the  investigation  of  the  pressures  and  obtain  immediately  the 

equation  of  equilibrium  between  ths  forces  by  taking  two  of  the  axes  in  the  plane  of 

the  normals  of  the  surfaces  whose  intersection  constitutes  the  curve,  for  then  we  shall 

have  at  once  Z—O,  the  third  axis  is  in  the  direction  of  the  tangent  to  the  curve 

formed   by   the  intersection   of  the   two   given  surfaces. 

*  The  equation  (b)  obtains  universally,  but  under  different  circumstances,  according  at 
tlie  point  is  free,  or  constrained  to  move  on  a  surface ;  in  the  former  case  V  the  resultan: 

of  all  the  forces  vanishes,  and  vS.S.Ji.  r=  V.hi  must  vanish;  in  the  latter  case  Fhasfe 
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projection  of  the  point  M,  on  the  plane  of  x  and  y,  and  it  the  angle 
formed  by  p  and  the  axis  of  x,  we  shall  have 

T=p.  COS.  TT ;  yzzfi.  sin.  v. 

If,  therefore  in  the  equation  [a),  we  consider  2^,  s,  sf  as  functions  of 

-  f.  It,  and  2 ;  and  then  compare  the  coefficients  of  Si?,  we  shall  have 

_1  S^  ̂    is  the  expression  for  the  force  V  resolved  in  the  direction  o( 

the  element  p.  S-ar.     Let  V  be  this  force  resolved  parallel  to  the  plane 
of  X  and  y,  and  P  the  perpendicular  demitted  from  the  axis  of  z  on 

PV' 

direction  of  V',  parallel  to  the  same  plane  ;     will  be  a  second  ex- P 

pression  for  the  force  V  resolved  in  the  direction  of  the  element  f  Jw ; 
therefore  we  shall  have 

PF.=  V. 

Su 

\
-
 

If  we  conceive  the  force  V  to  be  applied  to  the  extremity  of  the  per- 
pendicular P,  it  will  tend  to  make  it  turn  about  the  axis  of  Z ;  the 

product  of  this  force,  by  the  perpendicular,  is  denominated  the  moment 

of  the  force   V  with  respect  to  the  axis  of  z  ;  therefore  this  moment  is 

equal  to    V.\ —1  ;  and  it  appears  from  the  equation  (e),  that  the 

moment  of  the  resultant  of  any  number  of  forces  is  equal  to  the  sum 
of  the  moments  of  these  forces.* 

finite  value,  but  its  direction  being  perpendicular  to  the  surface  or  the  variation  of  this  per- 
pendicular  must  be  equal  to  nothing,   and  consequently   in  this   case  also  ̂ .Sis^  Viu 

must  vanish. 

*  The   force  V  resolved  parallel  to  the  axis  of  a  =  -^-^    =,  by  substituting  for 
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X  its  vftlue   V.^   '■   )  this  last  force  resolved  in  the  direction  of  the  elemeni u 

f.  dv,  i.  e.  perpentBcuter  to  ̂ =  V.—   l^_i'-^  tr  (by  substituting  for  1/  its  value) 

u  ^ 

V.  iSl   '.   •   sin.  a-  in  like  manner  if  we  resolve  the  force  V  parallel  to  the  axis  of  «, 

and  then  this  last  force  in  the  direction  of  5  3»-,  it  frill  be  equal  to  V.  U'^'";""—  ).  ̂j^g^  ̂  ti 

These  forces  in  the  direction  of  j.  Stt  act  in  opposite  directions,  therefore  their  difference 

^^   ((?■  sin.  a- — I)).  COS.  T — (j.  cos.  ?r — a),  sin.  ?r)_)  is  the  expression  for  that  part  of  die 

force  V  in   the  direction  of  the  element  ̂ .Jjr,  which  is  really  efficient,  this  expression 

"""■{■£■}'  ̂""^  "'"  ̂^'  ̂"^'  '^— ")"+(?•*'"•  ̂ —l>'+(z—cy  (by  substituting  for 

J  and  1/  their  values) ;  therefore  taking  the  derivitive  function,  a-  being  considered  as  the 

variable,  we  shall  have,  u.  i  -r—  f  = —  g.  sin.  a-.  (5.  cos.  a- — 0)+^.  cos.  v.  (5.  sin.  3-   6y. 

•••  —  \   ̂ \  = —  U<^"^-  '^-  («•  ̂'°-  'r— 6J— sin.  T.  (?.  COS.  ̂ —a)),=      for  conceiv- g         t    OTT     J  U  p 

ing  the  force  V  to  be  resolved  into  two,  of  which  one  is  perpendicular  to  ̂  ,  tlie  otlier 

being  in  the  direction  of  5,  the  triangle  constituted  by  tliese  forces  will  be  similar  to  a 

triangle,  two  of  whose  sides  are  ̂   and  P,  and  the  third  side  =  F'  produced  to  meet  P, 

■■■  that  part  of  the  force  V  wliich  is  perpendicular  to  5  is  to  V  as  P  to  5  •.•  it  is  equal  to 
PV 

From  the  definition   that    has    been   given    in  this    No.   of  the  moment  of  a  force 

with  respect  to  an  axis,  it  appears  that  it  can  be  geometrically  exliibited  by  means  of  a 

triangle,  whose  vertex  is  in  this  axis,  and  whose  base  represents  the   intensity  of  the , 

force,  it  vanishes  when  the  resultant  V  vanishes,  and  also  when  P  vanishes,  i.  e.  when 

the  resultant  piisses  through  the  origin  of  the  coordinates.     See  Notes  to  No.  6. 

Let  X  and  Vindicate,  as  in  the  preceding  notes,  the  force  V,  resolved  respectively  pa- 

rallel to  the  axes  of  x  and  3^,  X=F.ifi:±l,   Y^  V.^MlI^,  the  expression  for  these u  u 

forces  resolved  perpendicular  to  e=F.  i^^llii--   -,    V.liUJ.    f,   their  difference 
«  J  "         f 

=   =         ̂   ;  we  are  enabled  by   means  of  tliis  expression  to  deduce  the  equa- 

tion  of  the  right  line,  along  which  the  resultant  is  directed,  for  the   equations  of  its  pro- 
d2 
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jection  V  on  the  plane  of  x  y  is  y— ̂   =  — — .  ( x — a),       Xy — Xh  =  Yx —  Ylc.  Let  L  be 

A. 
equal  to  Yx — Xy,  and  the  preceding  equation  will  become  b  =  —  .a   "    we  might \  A 

derive  similar  expressions  for  the  projection  of  V  on  the  planes  of  r  and  2,  and  y  and  z, 

from  whence  it  is  easy  to  collect  the  equation  of  the  right  line  along  which  V  is  directed, 

—  Y"  indicates  the  distance  of  the  origin  of  the  coordinates  from  the  intersection  of  V 

with  the  axis  of  y,  and  -^  indicates  the  distance  of  the  origin  of  the  coordiaates  from  the 

intersection  of  the  resultant  V  with  the  axis  of  x.  Yx — Xy=  Ya — Xh  shews  that  it  is 

indifferent  what  point  of  the  direction  of  V  is  considered.  Yx — Xy  =  0  when  V  =  0, 

and  also  when  its  direction  passes  through  the  axis  o  z. 
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CHAPTE21  II. 

Of  the  motion  of  a  material  point. 

4.  A  point  in  repose  cannot  excite  any  motion  in  itself,  because  there 

is  nothing  in  its  nature  to  determine  it  to  move  in  one  direction  in  pre- 

ference to  another.  When  solicited  by  any  force,  and  tlien  left  to  itself, 

it  will  move  constantly,  and  uniformly  in  the  direction  of  that  force,  if  it 

meets  with  no  resistance.  This  tendency  of  matter  to  persevere  in  its 
state  of  motion  or  rest,  is  what  is  termed  its  inertia  ;  it  is  the  first 
law  of  the  motion  of  bodies. 

The  direction  of  the  motion  in  a  right  line  follows  necessarily  from 

this,  that  there  is  no  reason  why  the  point  should  deviate  to  the  right, 

rather  than  to  the  left  of  its  primitive  direction  ;  but  the  uniformity  of 

its  motion  is  not  equally  evident.  The  nature  of  the  moving  force 

being  unknown,  it  is  impossible  to  know  a  priori,  whether  this  force 

should  continue  without  intermission  or  not.  Indeed,  as  a  body  is  in- 

capable of  exciting  any  motion  in  itself,  it  seems  equally  incapable  of 

producing  any  change  in  that  which  it  has  received,  so  that  the  law  of 

inertia  is  at  least  the  most  natural  and  the  most  simple  which  can  be 

imagined ;  it  is  also  confirmed  by  experience.  In  fact,  we  observe  on 

the  earth  that  the  motions  are  perpetuated  for  a  longer  time,  in  pro- 

portion as  the  obstacles  which  oppose  them  are  diminished ;  which 
induces  us  to  think  that  if  these  obstacles  were  entirely  removed,  the 

motions  would  never  cease.  But  the  inertia  of  matter  is  most  remark- 

able in  the  motions  of  the  heavenly  bodies,  which  for  a  great  number  of 

ages  have  not  experienced  any  perceptible  alteration.  For  these  rea- 
sons we  shall  consider  the  inertia  of  bodies  as  a  law  of  nature  ;  and 

when  we  observe  any  change  in  the  motion  of  a  body  we  shall  conclude 

that  it  arises  from  the  action  of  some  foreign  cause. 
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In  uniform  motions  the  spaces  described  are  proportional  to  the 

times.  But  the  times  employed  in  describing  a  given  space  are  longer 

or  shorter  according  to  the  magnitude  of  the  moving  force.  From  these 

differences  has  arisen  the  idea  of  velocity,  which,  in  uniform  motions 

is  the  ratio  of  the  space  to  the  time  employed  in  describing  it.     Thus  s 

representing  the  space,  /  the  time,  and  v  the  velocity,  we  have  v—  — . 

Time  and  space  being  heterogeneal  and  consequently  not  comparable 

quantities,  a  determinate  interval  of  time,  such  as  a  second,  is  taken  for 

a  unit  of  time,  and  in  like  manner  a  portion  of  space,  such  as  a  metre 

for  an  unit  of  space,  and  then  time  and  space  become  abstract  numbeis, 

which  express  how  often  they  contain  units  of  their  species,  and  thus 

they  may  be  compared  one  with  another.  By  this  means  the  velocity 

becomes  the  ratio  of  two  abstract  numbers,  aiad  its  unity  is  the  velocity 

of  a  body  vi^hlch  describes  a  metre  in  one  second. 

5.  Force  being  only  known  to  us  by  the  space  which  it  causes  to  be 

described  in  a  given  time,  it  is  natural  to  take  this  space  for  its  measure, 

but  this  supposes,  that  several  forces  acting  in  the  same  direction,  would 

cause  to  be  described  in  a  second  of  time,  a  space  equal  to  the  sum  of 

the  spaces  which  each  would  have  caused  to  be  described  separately  in 

the  same  time,  or  in  other  words,  that  the  force  is  proportional  to  the 

velocity  ;  but  of  this  we  cannot  be  assured  a  p7~iori,  in  consequence  of 

our  ignorance  of  the  nature  of  the  moving  force.  Therefore  it  is  ne- 

cessary on  this  subject  also  to  have  recourse  to  experience,  for  whatever 

is  not  a  necessary  consequence  of  the  few  data  which  we  have  on  tke 

nature  of  things,  must  be  to  us  the  result  of  observation. 

Let  us  name  v  the  velocity  of  the  earth,  which  is  common  to  all  the 

bodies  on  its  surface,  let  f  be  the  force  with  which  one  of  these  bodies. 

M  is  actuated  in  consequence  of  this  velocity,  and  let  us  suppose  that 

V  ~  f'9{,fy  is  the  relation  which  exists  between  the  velocity  and  the 

force,  ̂ f)  being  a  function  oi f  which  must  be  determined  by  expe- 

rience. Let  a,  b,  c.  be  the  three  partial  forces  into  which  the  force  / 

may  be  resolved  parallel  to  three  axes  which  are  perpendicular  to  each 

other.     Let  us  then  suppose  the  moving  body  M  to  be  solicited  by  s 
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new  force,  f,  which  may  be  resolved  into  three  others  a',  h',  c,  pa- 
rallel to  the  same  axis.  The  forces  by  which  this  body  will  be  soli- 

cited parallel  to  these  axis  will  be  a-\-a',  b-\-b\  c-{-c',  naming  F  the 
sole  resulting  force,  by  what  precedes  we  shall  have 

F  =  y^^'l  «  +  (6+i,')«  +  (c-t-cO* 

If  the  velocity  corresponding  to  i<'be  named  U ;  *   —■ —    will 

be  this  velocity  resolved  parallel  to  the  axes  of  a,  thus  the  relative  velo- 

city of  the  body  on  the  earth  parallel  to  this  axis  will  be  -^ — — — —   '— 

or(a  +  «')'  'P'i.P)  —  <^' ff-  The  most  considerable  forces  which  can 
be  impressed  on  bodies  at  the  surface  of  the  earth  being  much  smaller 

than  those  by  which  they  are  actuated  in  consequence  of  the  motion  oi' 

the  earth,  we  may  consider   «',  7/,  c',    as  indefinitely  small  quantities 

relative  to  f;  therefore  we  shall  have  F  ̂   f  •\   „   t  and  ? 

(F)  =  <p.  (/)  4-  (««'+^^^+cc^  ̂ ^j.^  .  ̂ _^^,^  .  j^^.^^  ̂j^^  differential 

*  The  velocity  of  a  body  moving  in  a  given  direction  is  to  its  velocity,  estimated  in  any 
other  direction,  as  radius  to  the  cosine  of  the  angle  which  the  two  directions  make  with  one 

another,  that  is,  in  this   case  as  F  to  a+a',   therefore  the  velocity   U  resolved   parallel 

to  the  axis  of  a  will  be  equal  to  U      "l 

f  F.  =  ̂{a4-a')»-(-(i4-J')*4.(c-l.c')«  =  v/a'+5*+c^+2;(rt'+266'+2cc',  the 

squares  of  a,  b',  and  c  being  rejected  as  indefinitely  small,  if  this  radical  is  expanded  by 
the  binomial  theorem  (all  the  terms  except  the  two  first  being  neglected  as  involving  the 

squares,  products,  and  higher  powers  of  a',  V,  c',)  it  will  become 

\/a'+6*+c«+   2  {aa'+bb'+cc)  —f  +aa'bb'+cc, 

2  ya'+6»+^,  / 

and  (p  (F)  =  ?.(/+  "1±^*I1^)  equal  by  Taylor's  tlieprem  to 
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of  (p.(f)  divided  by  d.f.     I'hc    rcLitive    velocity  of  M  in  the  direction 
of  the  axis  of  a  will  thus  beconie 

a-<^-(J')  +  4  {  ««'  +  ̂'''  +  «'  }•  <?'-  CfJ 

its  relative  velocities  in  the  directions  of  b  and  c  will  be 

(/^Cf )  +  y  { .7f/  f-  W/  +  cc'l  9'  (/) ; 

The  position  of  the  axes  of  a  of  ̂   and  of  c  being  arbitrary,  we  may 

take  the  direction  of  the  impressed  force  for  the  axis  of  a,  and  then  b  and 

c  will  vanish  ;  the  preceding  relative  velocities  will  be  changed  into  the 
following 

a  I  <?.{/)  +  ̂  .  p'  C/) }  .^.  a'.<p'  (/) ;  -^- .    </ <p'  (/). 

If  (p'  [f)  does  not  vanish,  the  moving  body  in  consequence  of  the 

impressed  force  a'  will  have  a  relative  velocity  perpendicular  to  the  direc- 
tion of  this  force,  provided  that  a  and  b  do  not  vanish,— that  is  to  say, 

provided  that  the  direction  of  this  force  does  not  coincide  with  that  of 

the  motion  of  the  earth.  Thus,  conceiving  that  a  globe  at  rest  upon  a 

very  smooth  horizontal  plane  is  struck  by  the  base  of  a  right  angle  cy- 

linder, moving  in  the  direction  of  its  axis,  which  is  supposed  to  be  ho- 

rizontal, the  apparent  relative  motion  of  the  globe  will  not  be  parallel 

to  this  axis  in  all  positions  of  this  axis  relative  to  the  horizon.  We 

have  thus  an  easy  means  of  determining  by  experiment  whether  ip'{J') 
has  a  perceptible  value  on  the  earth  ;  but  the  most  accurate  i  xperiments 

have  not  indicated  in  the  apparent  motion  of  the  globe  any  deviation 

from  the  direction  of  the  force  impressed  ;  from  which  it  follows  that  on 

the  earth  <p'{f)  is  very  nearly  nothing.  If  its  value  was  at  all  per- 
ceptible, it  would  particularly  be  shewn  in  the  duration  of  the  csciila- 
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tions  of  a  pendulum,   which  duration  would  alter  according  as  the  po- 

sition of  the  plane  of  its  motion  differed  from  the  direction  of  the  mo- 
tion of  the   earth.     As  the  most  exact  observations  have  not  evinced 

any  such   difference,  we  ought  to  conclude  that  <p'{J)   is   insensible, 
and  at  the  surface  of  the  earth  ought  to  be  supposed  equal  to  nothing.* 

If  the  equation  <p'  (_/)  =  0  has  place  whatever  be  the  magnitude  of 

the  force  J",    ?>.(/')   will   be  constant,    and  the  velocity  will  be   pro- 
portional to  the  force  ;  it  will  be  also  proportional  to  it  if  the  function 

<?•{./)  is  composed    of    only   one  term,    as    otherwise   ̂ '.(/")   would 
not  vanish  unless  J"  did ;    therefore  if.  the  velocity  is  not  proportional 
to  the  force,   it  is  necessary  to  suppose  that,  in  nature,  the  function  of 

the  velocity  which  expresses  the  force  consists  of  several  terms,  which 

is  very  improbable  ;  we  must  moreover  suppose  that  the  velocity  of  the 

earth  is  exactly  such  as  corresponds  to  the  equation  (pXX)  ̂ ^  ̂ '^   which 

is  contrary  to  all  probability.     Besides,  the  velocity  of  the  earth  varies 

during  the  different  seasons  of  the  year  ;  it  is  a  thirtieth  part  greater 
in  winter  than  in  summer.     This  variation  is  even  more  considerable  if, 

as  every  thing  appears    to    indicate,  the  solar  system  be  in  motion  in 

space  ;  for  according  as  this   progressive  motion  conspires  with  that  of 

the  earth,  or  is  contrary  to   it,  there  must  result  in  the  course  of  the 

year,  very  sensible  variations  in  the  absolute  motion  of  the  earth,  which 

would  alter  the  equation  which  we  are  considering,  and  the  ratio  of  the 

force  impressed  to  the  absolute  velocity  which  results  from  it,  if  this  equa- 
tion and  this  ratio  were  not    independant  of  the   motion   of  the  earth. 

Nevertheless,  the  smallest  difference  has  not  been  discovered  by  observation. 

■*  These  experiments  evince  that  the  appearances  of  bodies  in  motion  are  independant 
of  the  direction  of  the  motion  of  the  earth  ;  and  from  the  preceding  investigation  it  follows, 

that  in  order  this  should  be  the  case,  the  small  increase  of  the  force  by  which  the  earth 

is  actuated  should  be  to  the  corresponding  increase  of  the  velocity,  in  the  ratio  of  the 

quantities  themselves;  thus  our  experiments  only  prove  the  reality  of  this  proportion,  which 

if  it  had  place,  whatever  the  velocity  of  the  earth  might  be,  would  give  the  law  of  the 

velocity  proportional  to  the  force. 

t  <p'  {/)  =  0,  not  only  when  <p  ( /)  is  constant,  but  also  in  other  cases,  such  as 
when  ip  (y)  is  a  maximum  or  minimum,  in  the  former  case  the  force  _/  may  be  of  any 

magnitude  whatever ;  in  the  latter  case  the  value  of  y  is  unique ;  but  since  the  velocity 
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Thus  we  have  two  laws  of  motion  ;  the  law  of  inertia,  and  that  of  the 

force  proportional  to  the  velocity,  which  are  both  given  by  observation. 

They  are  the  most  natural  and  the  most  simple  which  can  be  imagined, 

and  are,  without  doubt,  derived  from  the  nature  itself  of  matter,  but 

this  nature  being  unknown,  they  are,  with  respect  to  us,  solely  the  re- 
sult of  observation,  and  the  only  observed  facts  which  the  science  of 

Mechanics  borrows  from  experience.* 
6.  The  velocity  being  proportional  to  the  force,  those  two  quantities 

may  be  represented  one  by  the  other,  and  we  may  apply  to  the  compo- 
sition of  velocities  all  that  has  been  previously  established  respecting 

the  composition  of  forces.t  Thus  it  follows,  that  the  relative  motions 

of  a  system  of  bodies  actuated  by  any  force  whatever,  are  the  same 

whatever  be  their  common  motion,  for  this  last  motion  decomposed  into 

three  othei-s,  parallel  to  three  fixed  axes,  only  increases  by  the  same 
quantity  the  partial  velocities  of  each  body  parallel  to  these  axes,  and  as 

their  relative  velocities  only  depend  on  the  difference  of  these  partial 
velocities,  it  will  be  the  same  whatever  be  the  motion  common  to  all 

bodies  ;  it  is  therefore  impossible  to  judge  of  the  absolute  motion  of  the 

system,  of  which  we  make  a  part  by  the  appearances  which  can  be 

observed,  which  circumstance  characterises  the  law  of  the  force  propor- 
tional to  the  velocity. 

of  the   earth  is  different  in  different  points  of  its  orbit,  the  value  of  /  corresponding  to 

this  velocity  must  also  vary. 

If  (p  (y)  is  an  algebraic  function  ofyj  and  consists  of  only  one  term,  then  a'  (  f) 
will  not  vanish  unless  y  vanishes ;  but  if  ip  vcas  a  transcendental  function,  then  /  might 

have  a  finite  value,  tfiXJ')  vanisihing,  or  vice  versa, 
*  In  this  respect,  therefore,  the  theory  of  motion  is  less  extensive  than  the  theory  of 

equilibrium,  which  does  not  involve  any  hypothesis  whatever. 

f  Let  V,  V,  v",  represent  the  uniform  velocities  parallel  to  the  coordinates  x,  y,  z,  after 

any  time  t,  x  =-.  v  t,  y  =  v'.f,  z  =  v".t,  tlie  resulting  motion  will  be  uniform,  and  its  di- 

rection rectilinear,  the  equation  of,?,  the  line  described,  will  be  s  =t  ̂v--i-v''-\-v''',  the  ve- 

locity in  the  direction  of  s  =  \/i;''-f-u' --J-u"^,  the  cosines  of  the  angles  which  this  di- 
rection makes  with  x,  y,  and  z,  are  equal  respectively  to 

\/v'  -Jfv'-+v"^,  v/v^-f-v  *  +  «'*,  ̂ v'+v'^+v"'  ; 
thus  the  composition  and  resolution  of  velocities  are  effected  in  the  same  manner  as  the 

composition  and  resolution  of  forces. 
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It  follows  also  from  No.  3,  that,  if  we  project  each  force  and  their 

resultant  on  a  lixed  plane,  the  sum  of  the  moments  of  the  composing 

forces  thus  projected  with  respect  to  a  fixed  point  taken  on  the  plane,  is 

equal  to  the  moment  of  the  projection  of  the  resultant ;  but  if  we  draw 

from  this  point  to  the  moving  body  a  radius,  which  we  shall  call  the 

radius  vector,  this  radius  projected  on  a  fixed  plane  will  trace,  in  con- 

sequence of  each  force  acting  separately,  an  area  equal  to  the  product 

of  the  projection  of  the  line  which  the  moving  body  is  made  to  describe, 

into  half  the  perpendicular  let  fall  from  the  fixed  point  on  this  pro- 

jection ;  therefore  this  area  is  proportional  to  the  time  ;  it  is  also  in  a 

given  time*  proportional  to  the  moment  of  the  projection  of  the  force  ; 
thus  the  sum  of  the  areas  which  the  projection  of  the  radius  vector 

would  describe,  if  each  composing  force  acted  separately,  is  equal  to  the 
area  which  the  resultant  makes  this  radius  to  describe.  It  follows  from 

this,  that  if  a  body  is  first  projected  in  a  right  line,  and  then  solicited  by 

any  forces  whatever,  directed  towards  a  fixed  point,  its  radius  vector  will 

always  describe  about  this  point  areas  proportional  to  the  times,  because 

the  areas  which  the  new  composing  forcest  make  this  radius  to  describe 

will  vanish.  It  appears  conversely,  that  if  the  moving  body  describes 

areas  proportional  to  the  times  about  the  fixed  point,  the  resultant  of 

the  new  forces  which  solicit  it  is  constantly  directed  towards  this  point.? 
E  2 

*  The  area  varies  as  the  base  muUiplied  into  the  altitude ;  the  base  varies  as  the  time 

multiplied  into  the  projection  of  the  force ;  therefore  the  area  varies  as  the  continued  pro- 

duct of  the  altitude,  projection  of  force,  and  time,  or  (by  substituting  the  moment  for 

the  altitude  multiplied  into  the  projection  of  the  force )  as  the  moment  multiplied  into 
the  time. 

f  If  the  forces  directed  to  the  fixed  point  did  not  act,  the  moving  point  would  evi- 

dently describe  areas  proportional  to  the  times  ;  but  these  forces  being  supposed  to  act, 

the  areas  which  are  describ'id  about  the  fixed  point,  in  consequence  of  the  action  of  these 

forces,  ai-e  nothing ;  for  tlie  perpendicular  from  the  fixed  point  on  the  direction  of  the  force 
in  this  case  vanishes,  consequently  the  proportionality  of  the  areas  to  the  times  is  not 
disturbed  by  the  action  of  those  forces. 

X  By  means  of  the  equations,  -r— ■  =P.-  — ^  =  Q.  which  are  established  in  the  sub- 

sequent  number,  we  can  exhibit  immediately  the  relation  which  exists  between  the  areas 
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7.  Let  us  now  considei-  the  motion  of  a  material  point  solicited  by 
forces  which  seem  to  act  continually,  such  as  gravity.  The  causes  of  this 

and  similar  forces  which  have  place  in  nature  being  unknown,  it  is  im- 

possible to  know  whether  they  act  without  interruption,  or  whether 

their  successive  actions  are  separated  by  imperceptible  intervals  of  time  ; 

and  moments ;  for  if  we  multiply  the  first  of  these  equations  by  y,  and  the  second  by 

X,  and  then  subtract,  we  shall  have,  by  concinnating — — —   —  +  yP — xQ)  =  0;  if 

this  equation  he  integrated,  we  shall  obtain — -^""-^  ■  -^  Jl dt  (yP — xQ)=c;  yP — xQ. 
is  the  moment  of  the  projection  of  the  force  on  the  plane  x  and  y  (see  last  note  to  No.  3) ; 

it  vanishes  when  the  force  is  directed  to  the  origin  of  the  coordinates,  and  also  when  P 

and  Q  vanish,  that  is  when  the  point  is  not  solicited  by  any  accelerating  force, -consequently 

in  both  these  cases,  xdy — ydx  =  cdt  and  is  •/  proportional  to  the  time ;  in  the  second  case 
the  origin  of  the  coordinates  may  be  any  point  whatever ;  but  in  the  first  case,  the  origin 

must  be  in  the^xerf point,  to  which  the  forces  soliciting  the  point  are  directed;  [xdy — ydx 

=  the  elementaiy  area  which  the  projection  of  tlie  radius  vector  on  the  plane  x  y  describes 

\r  dt;  for  X  =  5.  cos.  TT,  y  zz.  ̂ .  sin.  5r ;  therefore  dx  =:  d^.  cos.  5r — d-n,  sin.  a-.g.  dy^d^. 

sin.  ■jr-\-d'!r.  cos.  57.^.  consequently  xdy — y.dx  ziz  d^.  sin.  iv.  cos.  ;r.^-f-(/ir.  cos.^jt.j- — d^. 

sin.  ?r.  COS.  3-.j+c?5r.  sin.  ̂ !r.§^=c?7r,g-  ;  but  since  ̂ dir  is  the  elementary  arc  described  by 

the  projection  of  the  radius  vector  on  the  plane  x,  y,  g.-rfjrwill  be  the  expression  for  the 
elementary  area.)  Since,  wlien  the  areas  are  proportional  to  the  times ^P — -rQrrO,  it  fol- 

lows that  the  magnitude  of  the  area  described  m  a  given  time  is  not  affected  by  the  in- 

tensity of  the  accelerating  force. 

By  a  similar  process  of  reasoning  it  may  be  shewn,  that  the  projections  of  the  elemen- 

tary area  on  the  plane  x,  2,  y,  2,  which  are  equal  to  xdz—  zdx,  ydz — zdy  generally,  are 

equal  respectively  to  c'.dt,  d'.dt.  when  the  forces  soliciting  the  point  are  directed  towards 
the  origin  of  the  coordinates.  When  the  areas  are  proportional  to  the  times,  the  curve 

described  is  of  single  curvature  ;  for  then  we  have  xdy — ydx=cdt,  xdz — zdxzuc'dt,  ydz — 

zdy=id'dt ;  if  the  first  of  these  equations  be  multiplied  by  z,  the  second  by  y,  and  the 

third  by  x,  we  shall  obtain,  by  adding  them  together,  the  equation  cz-\-c'y'rcf'x  =  0,  which 
belongs  to  a  plane. 

The  velocities  are  inversly  as  the  perpendiculars  when  the  areas  are  proportional  to  the 

tmies ;  for  if  we  call  the  perpendicular  p,  and  the  elementary  arc  of  the  curve  described 

ds,  we  will  have  p.ds  =  x.dy — y.dx  =  cdt  •.•  p  =  — =  —  . 

The  constant  quantities  c,  c,  c',  depend  on  the  species  of  the  curve  described ;  in  conic 
sections  when  the  force  is  directed  to  the  focus,  they  are  to  the  squaje  roots  of  the  para- 

meters as  the  cosines  of  inclinations  of  the  planes  x,y,  x,z,  yz,  to  the  plane  of  the  section 
to  radius.     See  No.  3,  book  2. 
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but  it  is  easy  to  be  assured  that  the  phenomena  ought  to  be  very  nearly 

the  same  on  the  two  hypotheses  ;  for  if  we  represent  the  velocity  of  a  body 

solicited  by  a  force  whose  action  is  continued  by  the  ordinate  of  a  curve 

of  which  the  abscissa  represents  the  time,  this  curve,  on  the  second 

hypothesis  will  be  changed  into  a  polygon,  having  a  great  number  of 

sides,  which  for  this  reason  may  be  confounded  with  the  curve.  We 

shall,  with  geometers,  adopt  the  first  hypothesis,  and  suppose  that  the 

interval  between  two  consecutive  actions  is  equal  to  the  element  dt  of 

the  time,  which  we  will  denote  by  t.  It  is  evident  that  the  action  of 

a  force  ought  to  be  more  considerable  accoi'ding  as  the  interval  is  greater 
which  separates  its  successive  actions,  in  order  that  after  the  same  time 

t  the  velocity  may  be  always  the  same.  Therefore  the  instantaneous 

action  of  a  force  ought  to  be  supposed  to  be  in  the  ratio  of  its  intensity, 

and  of  the  element  of  time  during  which  it  is  supposed  to  act.  Thus 

P,  representing  this  intensity  at  the  commencement  of  each  instant,  dt, 

the  point,  will  be  solicited  by  the  force  Pdt,  and  its  motion  will  be  uni- 

form during  this  instant.     This  being  agreed  upon. 

All  the  forces  which  solicit  a  point  AI  may  be  reduced  to  three, 

P,  Q,  R,  acting  parallel  to  three  rectangular  coordinates  x,  y,  z,  which 

determine  the  position  of  this  point  ;*  we  shall  suppose  these  forces  to 
act  in  a  contrary  direction  from  the  origin  of  the  coordinates,  or  to  tend 
to  increase  them.  At  the  commencement  of  a  new  instant  dt,  the 

moving  point  receives  in  the  direction  of  each  of  its  coordinates  incre- 

ments of  force  or  velocity,  Fdt,  Q.dt,  Rdt.     The  velocities  of  the  point 

M,  parallel  to  these  coordinates,  are  -1- '  -^>  ̂   ,t  for  during  an  inde- 
^  dt      dt     dt  *' 

*  By  thus  referring  the  position  of  a  point  in  space  to  rectangular  coordinates,  all 
curvilinear  motion  may  be  reduced  to  two  or  three  rectilinear  motions,  according  as  the 

curve  described  is  of  simple  or  double  curvature.  For  the  position  of  the  moving  point  is 

completely  determined  when  we  are  able  to  assign  the  position  of  its  projections  on  three 

rectangular  axes,  each  coordinate  represents  the  rectilinear  space  described  by  the  point 

parallel  to  the  axes  to  which  it  is  referred,  it  will  consequently  be  a  given  function  of  the 

time  ;  and  if  we  could  determine  these  functions  with  respect  to  the  three  coordinates,  the 

species  of  the  curve  described  might  be  assigned  by  eliminating  the  time  by  means  of  the 
three  equations  between  the  coordinates  and  the  time. 

t  The  space  being  a  function  of  the  time,  dx  =  v.dt  is  the  limit  of  the  value  of  the  incre- 
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finitely  small  portion  of  time,  they  may  be  considered  as  uniform,  and 

therefore  eijual  to  the  elementary  spaces  divided  by  the  element  of  the 

time.  Consequently  the  velocity  with  which  the  moving  body  is  solicited 
at  the  connneii;  enient  of  a  new  instant,  is 

—+P.dt ;    ̂  +Q.di;  Jl+Rdt; 
dt  '    dt  dt 

or 

^+d.^-d.^+P.dt; 
dt  dt  dt 

±+d.-^-d.^  +  Q.dh 
dt  dt  dt  ̂   , 

^A.d.J^^d.  —  +R.dt; 
dt^dt  dt  ̂  

but  in  this  new  instant,  the  velocities  with  which  the  moving  body  is 

actuated  parallel  to  the  coordinates  x,  y,  z,  are  evidently 

dx        ,    dx        dii         J    dy        dz     ,  ̂    dz 
  1-  d.    ;  — ^  +  d.  -i^;      +«•  —z  ; 
dt  dt  '    dt  dt   '     dt   ̂      dt' 

ment  of  the  space,  when  dt  becomes  indefiiiitely  small ;  we  can  assign  tJie  actual  value  by  means 

of  Taylor's  theorem  ;  for  if  i  receive  the  increment  dt,  then  {x=f{t)  becomes  x'=f{t^di) 
^  ,  s         dx      ,        d-x      df^    ,    d'x      dl^    ,    ̂        ,  ,. 

...    x'-x  =  /  {i+dt)-f  (t)  =  — .  dt+--r-  .  _+--•—-+  &c.   by  malong dt'     ̂    df      1.2    '    dt^    1.2.3 

I  sinrp  ̂ 
dt 

dx 

dt  indefinitely  small  all  the  terms  but  the  two  first  may  be  rejected  ;  and  since  -—  is  the 
d^x 

CoefiScient  of  dt  it  represents  the  velocity,  and  since  is  the    coefficient   of  dt^, 

it  is  proportional    to    the  force;    consequently   if   the    action     of   the   forces    solicit- 

d^t 
ing   the  point   should   cease   suddenly    —j^   would  vanish,  and  the  point  would  move 

d  'jc  d^x 

with  an  uniform  velocity,  if  instead  of  vanishing  -— •   became  constant,    then  — — ,  and 

all  subsequent  coefficients  would  vanish,  and  the  motion  of  the  point  would  be  composed 

of  an  uniform  motion,  and  of  one  uniformly  accelerated,  both  commencing  at  the  same 
instant. 
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therefore  the  forces 

-d.—  +  V.dt,  — d  -^+  Ci-dt,  -d.  ̂ +B.dt, dt  -         dt  dt 

must  be  destroyed,  so  that,  if  the  point  was  actuated  by  these  sole  forces 

it  would  be  in  equilibriuiu.  Thus  if  we  denote  by  So:,  St/,  Sz,  any  varia- 
tions whatever  of  the  three  coordinates  jt,  t/,  z,  which  variations  are 

not  necessarily  the  same  with  the  differentials  d^,  dy,  dz,  that  express 

the  spaces  described  by  the  moving  body  parallel  to  the  three  coordi- 
nates during  the  instant  dt,  the  equation  {b)  of  No.  3,  will  become 

0=,^;^.  \d.  ——P.dl.l  -\-Sy,  \d.  !k—Q.dt.l  +Sz.\d.  ̂ —R.dtX.  (/)* i       dt  i  i       dt  3  L       dt  ) 

We  may  put  the  coefficients  of  ̂.r,  Sy,  Sz,  separately  equal  to  nothing ; 

if  the  point  M  be  free,  and  the  element  dt  of  the  time  being  supposed 
constant,   the  differential  equations  will  become 

dt  ■         '     dt"  dt» 

*  From  the  equation  (J~)  it  appears  that  the  laws  of  the  motion  of  a  material  point  may 
be  reduced  to  those  of  their  equilibrium,  we  shall  see  in  No.  18,  that  the  laws  of  the  mo- 

tion of  any  system  of  bodies  are  reducible  to  the  laws  of  their  equiUbrium. 

f  If  P,  Q,  R,  are  given  in  functions  of  the  coordinates,  then  by  integrating  twice  we 

shall  obtain  the  values  of  x,  y,  and  z,  in  functions  of  the  time ;  two  constant  quantities 

are  introduced  by  these  integrations,  the  first  depends  on  the  velocity  of  the  point  at  a 

given  instant,  the  second  depends  on  the  position  of  the  point  at  the  same  instant. 

If  the  values  of  the  coordinates  x,  y,  z,  which  are  determined  by  these  integrations,  give 

equations  of  this  form,  x=a.f{t),  yz:^b.f  (t),  z=c.  fit),  the  point  will  move  in  a  right 

line,  the  cosines  of  the  angles  which  the  direction  of  this  line  makes  with  x,  y,  and  z,  are 

respectively  equal  to  —  —  .    .    — .       the  constant 

quantities  «,  b,  c,  depend' on  the  nature  of  the  function  y(0.  if/(0  =';  a,  b,  c,  re- 
present the  uniform  velocities  parallel  to  x,  y,  and  z,  the  uniform  velocity  of  the  point 

=  \/a*+F+cs"  if/(0  =<S  then  a,  b,  c,  are  proportional  to  the  accelerating  forces 
parallel  to  .r,  y,  z,  aiul  the  point  will  be  moved  with  a  motion  uniformly  accelerated,  repre- 
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If  the  point  M  be  not  free,  but  subjected  to  move  on  a  curve  or  on 

ii  surface,  then  by  means  of  the  equations  to  the  curve  or  surface,  there 

must  be  eliminated  from  the  equation  (f)  as  many  of  the  variations 

Sx,  Sy,  Sz,  as  there  are  equations,  and  th%  coefficients  of  the  remaining 

variations  must  be  put  separately  equal  to  nothing.* 
8.  We  may  suppose  the  variations  Sx,  Sy,  Sz,  in  the  equation  (fj  equal 

to  the  differentials  dz,  dy,  dz,  since  these  differentials  are  necessarily 

subjected  to  the  conditions  of  the  motion  of  the  point  M.  By  making 

this  supposition,  and  then  integrating  the  equation  (J"),  we  shall  havet 

dx»  +  dy^dz^_  ̂ ^  g_  f<^P,dx+Q.dy+Rdz, ■    dt* 

sented  by  ̂ a^+b^+c^.  If  ̂ -a.  f{t)-^hf  (t),  y=c.  f(t)+d.(/'t),  z=,.f(t)+g. 
f  (0)  the  point  will  move  in  a  curved  line;  however,  this  curve  is  of  single  curvature; 

for  by  eliminating  t  we  obtain  an  equation  of  the  form  a'x-}-6'y  +  c'2=0,  which  is  the  equa- 

tion of  a  plane.  The  simplest  case  of  this  form  is  x=a  {t)-\-b  {f),  y=h  (t)  -\-d  {t^), 
2=£.  (t)  -{-<r  (t^),  eliminating  t  between  the  two  first  equations  we  shall  obtain  an  equation 

of  the  second  order  between  a;  and  y,  and  from  the  relation  which  exists  between  the  co- 
efficients of  the  three  first  terms  of  this  equation,  it  is  evident  that  the  curve  is  a  parabola. 

l[  x=f(t),  u^:F{t),  ~=:J'J'(t),  all  the  points  of  the  ciu-ve  will  not  exist  in  the  same 

plane. *  The  law  of  the  force  being  given,  the  investigation  of  the  curve  which  this  force 

makes  the  body  describe,  is  much  more  difficult  than  the  reverse  problem  of  determining 

the  velocity,  and  force  the  nature  of  the  curve  described  being  given  ;  as  the  integrations 

which  are  required  in  the  first  case,  are  much  more  difficult  than  the  diiferentials  which 

determine  the  velocity  and  force  in  the  second  case. 

f  We  have  seen  in  No.  7,  that  when  a  point  moves  in  a  right  line,  its  velocity  is  equa 

to  the  element  of  the  space  divided  by  the  element  of  the  time ;  this  is  also  true  when  the 

motion  is  curvilinear  ;  for  if  P.Q.R,  the  forces  soliciting  the  point  parallel  to  the  tliree  co- 

ordinates, should  suddenly  cease,  then  the  velocity  in  the  direction  of  each  of  the  coor- 

dinates will  be  uniform,  and  equal  to  -^>     -i^>  -^  ,    respectively,  (see  second  note  to at       at       (it 

the  preceding  number)   consequently  the  motion  of  the  point  will  become  uniform,   and  its 

direction  rectilinear,  •.•  if  v  express  this  velocity  we  will  have,  by  first  note  to  No.  6. 
t 
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c  being  a  constant  quantity.       —  ̂   T-_!:   is  the  square  of  the  ve- 

locityofi/,  which  velocity  we  will    denote  byu;  therefore  if  Pdx,+ 
Q.dij,  +  i2(/2,  is  an  exact  differential  of  a  function  ?>,  we  shall  have 

This  case  obtains  when  the  forces  which  solicit  the  point  M  are  func- 

tions of  the  distances  of  their  origins  from  this  point.  In  fact,  if  ̂ ,  5', 

&c.*  represent  these  forces,  s,   s',  being  the  distances  of  the  point  M 
F 

(See  Lacroix  Traite  Elementaire,  No  139.)  The  rectilinear  direction  is  that  of  the  tan- 

gent, for  if  A,  B,  C,  denote  the  angles  which  this  direction  makes  respectively  with  x,y,  z, 

we   shall  have  v.  cos.  A  =  -j-,    v.  cos.  B  =  —^  ,  v.  cos.  C  =  —^ ,    by  substituting 

dx 
for  V.  its  value,  which  has  been  given  above,  and  tlien  dividing  we  obtain  cos.  A  =  —  j 

ds 

COS.B  =-j— ,  COS.  C  =  — ^;  but  these  are  the  cosines  of  the  angles  which  the  tangent 

makes  with  the  coordinates  ■.•  the  tangent  coincides  with  the  hne  along  which  the  point 
moves  when  the  forces  cease. 

*  If  P.dx-\-Q.dy  +  Rdz  =f[x,  y,  z, )  then  u^  =c+2,/  (  j,  y,  z,)  let  A  be  the  velocity 

corresponding  to  the  coordinates  a,h,c;  then  A  =  c+2.  y  (a,  b,  c,)  •.•  v- — A':m'2.  f 

{x,  y,  z) — 2./(n,  h,  c,)  •.•  the  difference  of  the  squares  of  the  velocities  depends  only  on 
the  coordinates  of  the  extreme  points  of  the  line  described ;  consequently  when  the  point 

describes  a  curve,  the  pressure  of  the  moving  point  on  the  curve  does  not  affect  the 
velocity. 

The  constant  quantity  c  depends  on  the  values  of  v,  and  of  x,  y,  z,  at  any  given 
instant. 

When  the  moving  point  describes  a  curve  returning  into  itself,  the  velocity  is  always  the 

same  at  the  same  point. 

If  the  velocities  of  two  points,  of  which  one  describes  a  curve,  while  the  other  de- 

scribes a  right  line,  are  equal  at  equal  distances  from  the  centre  of  force  in  any  one 

case,  they  will  be  equal  at  all  other  equal  distances. 

If  the  force  varies  as  the  ̂ i*  power  of  the  distance  from  the  centre,  then  s  and  /  be- 

ing any  two  distances,  (p  or  f(x,  y,  z,)  :=  /'  +  ̂'    •.•  v*—A\    s" '^^  —  s'"'^^  . 
In  tills  case  also  the  differential  of  the  velocity  r=  s.^ds,  therefore  by  erecting  ordinates 
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from  their  origins ;  the  resultant  of  all  these  forces  multiplied  by  the 

variation  of  its  direction  will,  by  No.  2,  be  equal  to  X.SJs ;  it  is  also 

equal  to  PJ-v  +  QJ/j  +  RJz;  therefore  we  have 

Pj:i:+QJij  +  E.Sz=^l.S.Ss. 

and  as  the  second  member  of  this  equation  is  an  exact  variation,  the 
first  will  be  so  likewise. 

From  the  equation  (g)*  it  follows,    1st,   that  if  the  point  M  is  not 

proportional  to  s",  we  can  exliibit  the  figure  which  represents  the  square  o^  the  velocity, 
\rhen  n  is  positive  the  figure  is  of  the  parabolic  species,  when  negative  it  is  hyperbolic. 

It'  the  distaiices  increase  in  arithmetical  progi'ession,  while  the  lorce  decreases  in  geo- 
metric progression,  the  figure  representing  the  square  of  tlie  velocity  will  be  the  logarith- 

mic curve.     See  Principia  Matthematica,  lib.  1,  prop.  40,  39. 

If  P(/j;-+-Q.(/y-l-iJcfe  be  an  exact  differential,  then    -; — ZZ  — —  ;    — ;— —  — ;—   ■+■    &c. 
"^  dj/         dx         dz         dx 

P,Q,R,  must  be  functions  of  ̂,  y,  and  z,  independant  of  the  time  •.•  if  the  centres  to  which 

the  forces  were  directed  had  a  motion  in  space,  the  time  would  be  involved,  and  conse- 

quently P.f/j4- Q.r/y-f/i.f/;:,   would  not  he  an  exact  differential,  for  then  the  equations 
dP        dR        ̂  

—   1-  &c.  would  not  obtam. dz  dx 

When  the  forces  P,Q,R,  arise  from  friction  or  the  resistance  of  a  fluid,  the  equation  P.dx-\- 

Q,.dy\-R.dz,  does  not  satisfy  the'preceding  conditions  of  integrability,  for  since  P.Q,R,  de- 

pend on  the  velocities   >  -j^,   —  in  tliis  case  ;  it  is  evident  that  P.dx-\-  Q.dt/-\-Rdz  cannot 

be  an  exact  differential  of  a  function  of  x,  y,  and  ;::,  considered  as  independant  varia- 

bles •••  to  integrate  P.dx+Q.dy-[-R.dz,  we  should  substitute  the  values  of  these  va- 
riables and  their  difTerentials  in  a  function  of  the  time,  which  supposes  that  we  have 

solved  the  problem ;  consequently  when  the  centre  to  which  the  force  is  directed  is  in  mo- 
tion, and  when  the  force  arises  from  friction  or  resistance,  the  velocity  is  not  independant 

of  the  curve  described. 

*  The  velocity  is  constant  when/ (x,i/,z)  is  constant ;  and  also  when  f{x,y,z,)  vanishes; 

when  the  point  is  put  in  motion  by  an  initial  impulse,  the  motion  is  unifonn,  and  its  direction 

rectilinear,  a.ndv'^  —  A'^,     =  c,  — •-  =  c.  -^  =.c",   for  then    -I  — —  >  =  P, (it  dt  dt  \   I'f  ) 

{d'lJ  1  I   d'z  ~> —j-~-  (  ̂^  Q-'\  ■  I  2    (   =  ̂ ^  are  equal  respectively  to  nothing. 

The  velocity  lost  by  a  body,  in  its  passage  from  one  plane  to  another,  is  proportional  to 
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solicited  by  any  forces,  its  velocity  is  constant,  because  then  iprzO.  It 

is  easy  to  be  assured  of  this  otherwise,  by  observing,  that  a  body 

moving  on  a  surface  or  on  a  curved  line,  looses,  at  each  rencounter  with 

the  indefinitely  small  [)lane  of  the  surface,  or  indefinitely  small  side  of 

the  curve,  but  an  indefinitely  small  part  of  its  velocity  of  the  second 

order.  2dly.  That  the  point  M,  in  passing  from  a  given  point  with  a 

given  velocity,  will  have,  when  it  attains  another  point,  the  same  velo- 
city, whatever  may  be  the  curve  which  it  shall  have  described. 

But  if  the  point  is  not  constrained  to  move  on  a  determined  curve, 

then  the  curve  described  possesses  a  singular  property,  to  which  we  have 

been  led  by  metaphysical  considerations,  and  which  is,  in  fact,  but  a 

remarkable  consequence  of  the  preceding  differential  equations.  It  con- 

sists in  this,  that  the  integral. /t'.r/5  comprised  between  the  two  extreme 
points  of  the  curve  described,  is  less  than  on  any  other  curve  if  the 

point  is  free,  or  than  on  any  other  curve  subjected  to  the  same  surface 

if  the  point  is  not  entirely  free. 

To  make  this  appear  we  shall  observe,  that  P.dx-^Q.dy  +  Rdzhemg 

supposed  an  exact  differential,  the  equation  (^'•)  gives 

f.J'u  =  P.Sx-irQJy+RSz. 

in  like  manner  the  equation  {f)  of  the  preceding  number  becomes, 

dx  dii  d" 
0  =  §x.d.-^  +  Si/.d.-^  +  Sz.d.  —  —v.dt.  Sv. 

dt  ^       dt  dt 

naming  ds  the  element  of  the  curve  described  by  the  moving  point,  we 
shall  have 

v.d(=ds  ;  ds  =  .ykt'^+dj/^-tdz*, 
f2 

the  tliffercnce  between  radius  and  cosine  of  the  indination  of  the  planes,  i.  e.  to  the  versed 

sine,  or  to  tlie  square  of  the  sine ;  and  when  th.e  curvature  is  continuous  the  sine  is  an 

indefinitely  small  quantity  of  first  the  order,  •.•  the  velocity  lost,  is  an  indefinitely  small 
quantity  of  the  second  order. 
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consequently 

0  =li:d.~-    +  Sy.d.  JL  +  Sz.d.-^   ds.Sv,     (li) 

dt  dt  dt  '     V.  / 

by  differentiating  with  respect  to  <5',  the  expression  for  ds,  we  have 

ds     .  r        dx      .  J    ,   dy     .  ̂         dz     ̂   r 

dt  dt  '    dt         ̂        dt. 

The  characteristics  d  and  S  being  independant,  it  is  indifferent  which 

precedes  the  other  ;  therefore  the  preceding  equation  may  be  made  to 

assume  the  following  form  : 

,  ,        ,   (dxSx  +  dy.Sy  +  dz.Sz)       ,     ̂   f/^r      ̂      r    dy       ,     r   dz 
v.S.ds=d.  ̂    -^    -^    — ^x.d.   — Si/.d.  -^  —Sz.d.  -—  ,    , 

dt  dt       ̂         dt  dt 

by  substracting  from  the  first  member  of  this  equation  the  second  member 

of  the  equation  (//)  we  shall  have 

.  .    ,  ,         d.  (dxJj:  +  dy.hi  +  dz.SzY 
S  irds)  zr    ^   

This  last  equation  integrated  with  respect  to  the  characteristic  d,  gives 

I.  fv.ds  =  const.+  ̂ ^•^^■+^.^%+^^-~-^^  ̂
 

*Ford.i±if±±M±if)^  <I.J^Ss.+d.  p^+d^h;  +'^d.  ̂ .+  ̂   'l.hj dt  dl  dt    -^  ̂      dt  at  dt 

+  Jld.^x    i^j!lhdx+-^hdi,+^^.dz.'l,    :■    by    performing    the    operations dt  \         dt  '    dt       ̂        dt  3 

»       >      jx       ,  <:  dx.lx-X-dy.h/-i-dz-^=\ prescribed  m  the  text,  v.e  obtain  v.d.ds-j-ds.iv=i.{v,dsi=  d.  i   ^    <  • 

This   equation  being    integrated   with  respect    to   the  characteristic   d  gives/.  d.{v.ds.) 

const.-)-  '^^•'■'+('?Ay+dz-^z  _  ̂ ^j^^^^  ̂ j^^  ̂ ^^.^  extreme  points  of  the  curve  are  fixed, 

the  variations  3x,  Jy,  2z,  ot  the  coordinates  must  be  equal  to  nothing  at  these  points  ;  con- 

sequently the  variation  o{/.(v.ds)  is  equal  to  nothing,  and  •.•  r(v.ds)  is  either  a  maxi- 

muni  or  niininium ;  but  it  is  evident  from  the  nature  of  function  /.  (v.ds.)  that  it  does  not 

admit  a  maximum. 
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If  we  extend  this  integral  to  the  entire  curve  described  by  the  moving 

point,  and  if  we  suppose  the  extreme  points  of  this  curve  invariable, 

we  will  have  S.J'v.ds  =  0,  that  is  to  say,  of  all  the  curves,  which  a  point 
solicited  by  the  forces  P,  Q,  R,  can  describe  in  its  passage  from  one 

given  point  to  another,  it  describes  that  in  which  the  variation  of  the 

integral  yt'.cf*,  is  equal  to  nothing,  and  in  which,  consequently,  this 
integral  is  a  minimum. 

If  the  point  moves  on  a  given  surface  without  being  solicited  by 

any  force,  its  velocity  is  constant,  and  the  integral  fv.ds  becomes 

v.fds.  Therefore  in  this  case  the  curve  described  by  the  moving 

point  is  the  shortest  which  it  is  possible  to  trace  on  the  surface  from  the 

point  of  departure  to  that  of  arrival.*. 
9.  Let  us  determine  the  pressure  of  a  point  moving  on  a  curved 

surface.  Instead  of  eliminating  from  the  equation  [J")  of  No.  7>  one 
of  the  variations  Sx,  Sy,  Sz,  by  means  of  the  equation  to  the  surface,  we 

can  by  No.  3  add  to  this  equation,  the  differential  equation  of  the  sur- 

*  Wlien  the  velocity  is  constant  the  integral  fv.ds,  becomes  v.  f.  ds=v.s ;  and  since  s 
is  a  minimum,  the  time  of  describing  s,  which  is  proportional  to  s  in  consequence  of  the 

iinifomiify  of  the  motion,  will  be  a  minimum  in  like  manner.  Since  the  equation 

l.J.{v.ds.)  =0,  has  place  when  Pdx-\-Qfly-\-R.dz  is  an  exact  differential,  it  belongs  to  all 

curves  that  are  described  by  the  actions  of  forces  directed  to  Jixed  centres,  the  forces  being 

functions  of  tlie  distance  fiom  those  centres ;  and  if  the  fomi  of  these  functions  was  given 

we  could  determine  the  species  of  the  curye  described,  by  substituting  for  v  its  value  in 

terms  of  the  force,  (which  we  have  by  a  preceding  note),  and  then  investigating  by  the 

calculus    of    variations,    the   relation    existing    between    the   coordinates    of  the  curve 

which  answers  to  the  minimum  of  the  expressiony(Ti.rf«).     If  S  the  force  varied  as  — ,-  by 

making  use  of  Polar  coordinates  we  would  arrive  at  the  polar  equation  of  a  conic  section, 
in  which  the  origin  of  the  coordinates  would  be  at  the  focus  of  the  section ;  if  S  was 

proportional  to  s  the  resulting  equation  would  be  also  that  of  a  conic  section,  the  origin 

of  the  coordinates  being  at  the  centre  of  the  section.  From  the  preceding  property  the 

known  laws  of  refi-action  and  reflection  have  been  deduced.  Mr.  Laplace  has  also  suc- 
cessfully applied  it  to  the  investigation  of  the  law  of  double  refraction  of  Iceland  chrystal, 

which  was  first  announced  by  Huyghens,  and  afterwards  confTrmed  by  the  celebrated  ex- 

periments of  Malus  on  the  polarization  of  light.  See  a  paper  of  Laplace's  in  the  volume 
of  the  Institute  for  the  year  1809. 



38  CELESTIAL  MECHANICS, 

face  multiplied  by  the  indeterminate — xdt,  and  then  consider  the  three 

variations  Sx,  Sjj,  Sz,  as  independant  quantities.  Therefore  let  ii  =  0  be 

the  equation  of  the  surface,  by  adding  to  the  equation  (J')  the  term 
—aSu,  (It.  the  pressure  will,  by  No.  3,  be  equal  to 

/  \du  } 

I  dx  ) 
«      C  f/M  /  «      )  dii  )^ 

I 

At  first  let  us  suppose  that  the  point  is  not  solicited  by  any  force ;  its 

velocity  »  will  be  constant,  and  since  v.dt=ds;  the  element  of  the  time 

being  supposed  constant,  the  element  ds  of  the  curve  will  be  so  like- 

wise, and  by  adding  to  the  equation  (./)  the  term  — xJu.dt,  we  will 

obtain  the  three  followino-  : 

0  =  V. d'^x  {  du  }     ̂        ,  d~y  S  ̂" 

ds» 

from  which
  we  may  collec

t 

,  d"y  \  du  I 

du  I 

ds"-  (  dx  )  ds^  <^  dy 

n  »  d'Z 
0  =  w. 

ax 

but  ds  beino-  constant,  the  radius  of  curvature  of  the  curve  described 

by  the  moving  point  is  equal  to 
ds'  t 

•  By  substituting  for  iW  its  value  -r-^^  we  eliminate   the   time   i,   if  the  resultin-r 

equations  be  squared,  we  obtain,  by  adding  their  corresponding  members, 

_  _.   ''■    ̂ ^  j     ̂  \  dy  S     "^  \  dz  f    ■ 

f   This  expression  for  the  radius  of  the  osculating  curve  may  be  thus  investigated :  let 

a,  b,  c,  express  the  coordinates  of  the  centre  of  this  circle,  its  radius  being  equal  to  r, 
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•••  by  naming  this  radius  r  we  shall  have 

*   c  <r/^'  3         ̂   dy  '         ̂   dz  ■>  r 

then  r*={x—aY-\-{ij—bY-^[z—cY  ;  dx.  {x—a)-{-dy.{y—b)-\-dz.  (2— c),  the  differential 

of  tills  equation  is  equal  to  nothing,  as  any  one  of  these  coordiiuites  may  be  considered 

as  a  function  of  the  two  remaining,  we  can  obtain  the  following  equations  of  partial  dif- 

ferences dx.  {x—a)Jr^z.  (z— (•)=0,  cii/.{j/—b)+dz.  (z—c)  =0,  (the  values  of  dz  in  these 

equations  are  evidently  different,)   consequently  we  have  cf'x.  (j — a)-{-d^z.  (z — c)+dx* 

+dz^-=0;d-y  {y—b)J^d--z.{z-c)-\-dy-^  +  dz'==0,  V  (x-«)=— £  {z—c),  (y-b)  = 
dz  .  . 

  -7—,  (z — e),  and  since  ds  is  supposed  to  be  constant,  we  have  d^x,dx-\-d''y.dy+dfz.dz 

=0,  (d'z  in  this  equation  refers  to  the  entire  variation  of  rfz,)  consequently  z  being  consi- 
dered as  a  function  of  x  and  y,  we  obtain 

d^x.dx+d^z.dz==0;d^y.dy+d^z.dz  =  0;  ■.■^=-p^;    ̂   —  ̂ ^  '^ 

these  values  being  substituted  in  place  of -7^   -;  in  the  preceding  equations  we  shall 

dx     dy 

have 

d"^  X  d^y 

•.•  by  adding  together  the  two  preceding  differential  equations  of  the  second  order,  sub- 

stituting for  (x — a)  (y — b)  their  values,  and  observing  that  the  whole  variation  of  z  is  equal 
to  the  sum  of  the  partial  ones  in  these  equations,  we  obtain, 

  ~    .  (z — c)+dx- -i-dy- -\-dz'=0,  consequently 

-  (dx-+du^+dz'')^ 

d^ x^  d*y~ 

by  substituting  for  (.r — aY  {y—b^   their  values -—-;-.  )s — c)-  ;■  J^^  .(z — c  =  ),     whicli 

have  been  given,  we  obtain 

{x-a)-+{y-by-M—cy=.^^^fli'^^T,    .  {d^x^'-^d^y^^H') d^x^-\-d'yi-d-  1 

   ds'' 
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consequently  the  pressure  which  the  point  exercises  against  the  surface 

is  equal  to  the  square  of  the  velocity  divided  by  the  radius  of  curvature 
of  the  curve  described. 

If  the  point  moves  on  a  spheric  sui'face,*  it  will  describe  the  circum- 

ference of  a  great  circle  of  the  sphere,,  which  passes  through  the  pri- 
mitive direction  of  its  motion  ;  since  there  is  no  reason  why  it  should 

deviate  to  the  right  rather  than  to  the  left  of  the  plane  of  this  circle  ; 

therefore  its  pressure  against  the  surface,  or  what  amounts  to  the  same, 

against  the  circumference  which  it  describes,  is  equal  to  the  square  of 

the  velocity  divided  by  the  radius  of  this  circle. 

If  we  conceive  the  point  attached  to  the  extremity  of  a  thread  desti- 
tute of  mass,  having  the  other  extremity  fiistened  to  the  centre  of  the 

surface,  it  is  evident  that  the  force  with  which  the  point  presses 

the  circumference  is  equal  to  the  force  with  which  the  String  would  be 

tended  if  the  point  was  retained  by  it  alone.  The  effort'  which  this 
point  would  make  to  tend  the  string,  and  to  increase  its  distance  from 

the  centre  of  the  circle,  is  denominated  the  centrifugal  force  ;  there- 

fore the  centrifugal  is  equal  to  the  square  of  the  velocity  divided  by  the 
radius. 

The   centrifugal   force!  of  a  point  moving  on  any  curve  whatever  is 

*  If  the  point  move  on  a  spherical  surface,  the  motion  will  be  necessarily  performed 

on  a  great  circle,  for  the  deflection  can  only  take  place  in  the  direction  of  radius,  and  in 

the  plane  in  wliich  the~body  moves. 

-f-  If  the  body  moves  on  any  curve  whatever,  the  centrifugal  force  =:  — ,    this  force 

acts  in  the  direction  of  a  normal  to  the  curve,  and  if  all  the  acceleratiag  forces  which  act 

on  the  point  be  resolved  into  two,  of  which  one  is  in  the  direction  of  the  normal,  and  the 

other  in  the  direction  of  the  tangent,  the  resultant  of  the  centrifugal  force,  and  of  the 

former  of  these  decomposed  forces,  is  the  entire  pressure  with  which  the  point  acts 

against  the  curve,  and  the  resistance  of  the  cui^ve  is  an  accelerating  force  equal  and  con- 
trary to  this  resultant.  If  we  denote  this  normal  force  by  L,  and  if  A,  B,  C,  be  the  angles 

which  it  makes  with  the  coordinates  x,  y,  z,  respectively,  then  by  the  equation  (y)  and 

No.  3,  we  have 

'^=P+L.  cos.  A;  -^    =   Q+L.  cos.  B;   ~    =  R+L.  cos.  C; 
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equal  to  the  square  of  the  velocity  divided  by  the  radius  of  curvature  of 

the  curve  ;  because  the  indefinitely  small  arc  of  this  curve  is  confounded 

with  the  circumference  of  the  osculating  circle.     Therefore  we  shall 

and  since -J—,  —--'  —j- ,  express  tlie  cosines  of  the  angles   which  the  tangent  makes" 

with  X,  y,  and  s,   ̂ -.  cos  .<4+-,-  .  cos.i?+— '^.  cos.  C.=0;  because  the  tangent  is  per- ds  -  lis  as  ' 

pendicular  to  the  normal.  (See  last  note  to  No.  1).  We  liave  also  cos  ̂ A-\-  cos.  -B-\- 

cos.  ̂ C=l,  and  the  four  undetermined  quantities  L,  A,  B,  C,  being  eliminated  between 
the  five  preceding  equations,  the  resulting  equation  will  be  one  of  the  second  order  be- 

tween x,  y,  I,  and  / ;  this  equation  combined  with  the  two  equations  of  the  trajector}' 

which  are  given  in  each  particular  case,  are  sufficient  to  determine  the  coordinates  in  a 

function  of  the  time.     See  notes  to  No.  3,  and  No.  7. 

The  elimination  of  L,  A,  B,  C,  might  be  effected  by  one  operation ;  for  multiplying 

the  three  preceding  equations  by  dx,  dy,  dz,  respectively,  and  adding  them  together,  we 

obtain  the  following  equation : 

^'  dt^  ~'  '^'  ~  ̂•'^^+  ̂ •^'/•+  ̂ '^--i-  ̂ -  ('^os-  ■^•(1^+  COS.  B.dy+  cos.C.ffe.) 

(the  latter  part  of  this  second  member  is  equal  to  nothing,  as  has  been  already  remarked ;) 

and  since  ds-=dx~~  -\r  d ij\  ̂  dz'- ,    d''s.ds=d''x.dx-{-d^y.dy+d^z.dz,  ;•  we  shall  have 

d's  _„  dx  dy  d^ 

df^-^-ir^^-'dT^^-ds ' 
from  this  last  equation  it  appears  that  tlie  accelerating  force  resolved  in  the  direction  of 

the  tangent,  is  equal  to  the  second  differential  coefficient  of  the  arc  considered  as  a  func- 

tion of  the  time,  •.•  this  expression  for  the  force  has  place  whatever  be  the  nature  of  the 
line  along  which  the  point  moves.  See  Notes  to  No.  7.  In  like  manner  it  appears  that  the 

expression  for  the  force  in  the  dii'ection  of  the  tangent  is  altogether  independant  of  L. 

d's It  is  also  evident,  that  when  there  is  no  accelerating  force  -j-j-   =  0,    this  also    follows 

from  the  circumstance  of  the  velocity  being  uniform  when  P,  Q,  R,  are  equal  to  notliing. 

Let  V  denote  the  resultant  of  all  the  accelerating  forces  which  act  on  the  point,  and 

6  the  angle  which  this  resultant  makes  with  the  normal,  then  V.  cos.  6  will  be  the  ex- 

pression of  the  resultant  resolved  in  the  direction  of  the  normal ;  and  when  all  the  points 

of  the  curve  exist  in  the  same  plane,  the  entire  pressure  will  be  equal  to  the  sum  or  dif- 

ference of  -- — ,  and  V.  cos.  6,  according  as  these  two  forces  act  in  the  same  or  in  con- 
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have  the  pressure  of  the  point  on  the  curve  which  it  describes  by  add- 
ing to  the  square  of  the  velocity,  divided  by  the  radius  of  curvature, 

the  pressure  produced  by  the  forces  which  solicit  this  point. *t 

traiy  directions,  •■•  +/,=:  =fc:   \.  V.  cos.  «.     We  can  express  this  pressure  otherwise 

by  means  of  the  rectangular  coordinates  ;  for  since  P,  Q,  are  the  expressions  for  the  force 

V  resolved  parallel  to  x  and  _?/,  these  forces  resolved  in  the  direction  of  the  normal  are 

equal  respectively  to  P.  -j-;  Q.  —z—,  (the  signs  of  — -,  and  -j-,  are  evidently  dif- 

ferent)  consequently  we  have 

r.  cos.  6=JfP.-f-   +  Q.— ,  and  v  L  =  — -h  P. -f- -fQ. -j-, as  (Is  r  as  as 

therefore  if  we  know  the  equation  of  the  trajectory,  and  if  we  have  also  the  values  of  P  and 

Q  in  terms  of  tlie  cooi-dinates,  we  can  determine  the  velocity,  and  consequently  L,  and 

d'x      d^v       d^z 
substituting  this    value  of  L  in    the  expressions  for  -j— '      ,     '  — ~  ,    which   liave 

been  given  in  the  foregoing  part  of  this  note,  we  might  b)'  integrating  determine  the  velocity 
in  the  direction  of  each  of  the  coordinates,  and  also  the  position  of  the  point  at  a  given 
moment. 

If  the  point  be  attached  to  one  extremity  of  a  thread  supposed  without  mass,  of  wliich  the 

other  extremity  is  fixed  in  the  evoluf  e  of  the  curve  described,  then  the  point  receiving  such 

an  impulse,  that  the  string  remaining  always  tended,  may  unroll  itself  in  the  plane  of  the  evo- 
lute,  it  will  describe  the  given  curve ;  the  direction  of  the  string  is  always  perpendicular  to 

the  curve,  and  its  tension  is  equal  to  the  normal  pressure  on  the  trajectorj^,  and  conse- 

1         ■"*     .   P^du  +  Qdv      „  ...  .  -       ̂     ̂   ,. 
quently  equal    to   1   ^   .     By  equating  this  expression   ot   L  to  notmng, 

we  can  derive  the  equation  of  those  trajectories  in  wliich  the  motion  is  fi-ee,  or  in  which 
the  trajectory  may  be  described  freely,  i.  e.  it  is  not  necessary  to  retain  the  point  on  the 

curve  by  means  of  a '  thread,  or  a  canal,  or  any  perpendicular  force. 
*  If  the  motion  is  performed  in  a  resisting  medium,  this  resistance  may  be  considered 

as  a  force  acting  in  a  direction  contrary  to  that  of  the  motion  of  the  body,  consequently  it 

must  tend  to  some  point  in  the  tangent.  If  we  denote  tliis  resistance  by  /  its  moment  is 

equal  — 7.Jj  (j  =  >/{.T-  0'  +  (.y — "')'+C~ — ")*'  ̂ '  "'j  ">  ̂ 6  the  .coordinates  of  the  cen- 

tre of  the  force  7.  therefore  3J  =  ̂-^^.  Sx-f-^i!=^^.  ̂ y+  ̂^^^.  h;   if  we  suppose 

   .r — I     dx 
the  centre  of  force  in  the  tangent,  then  i—  \/dx'+di/^+ds''  =ds  •:  — ~  —  "^   ' 
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y— m^_  J)  _    z—i_  __        _  ̂ ^j  j^.  _  j^_^ — 1^^  J  _^ — ^  ̂  j^^  .^^j^g  resisting  nie- i  ds  t  as  as  as  as 

dium  was  in  motion,  its  motion  must  be  compounded  with  the  motion  of  the  body,  in  order 

to  have  the  direction  of  the  resisting  force.  If  da,  db,  dc,  be  the  spaces  described  by  the 

medium,  wliile  the  body  describes  ds,  these  quantities  must  be  added  or  subducted  from 

dx,  dy,  dz,  in  order  to  have  the  relative  motions,  and  as  ds  =  y/dx'' +dij*-{-dz^,  if  Me 
   dx — da      . 

make  d(r  ;^  -/{dx — da)'--i-{cli/ — db)'-]^(dx — dc)*,  we  shall  have  Si  =  — '^   °'^+ 

^   .  jwJ — 1   —,  ̂z.        Tlie  resistance  /  in  general=  i|/  (v),  a  function  of  the  ve- 
dr  ■^  da- 

locity,  in  this  case  it  is  a  function  of  the  relative  velcoity. 

By  the  preceding  investigation  we  ai-e  enabled  to  apply  our  general  formula  to  motions 

made  in  resisting  mediums  without  entering  into  a  particular  consideration  of  this  species 

of  motion.  However  the  analysis  becomes  very  complicated  when  the  forces  which  com- 

pose P,  Q.  R,  exist  in  different  planes,  and  as  in  this  case,  the  causes  on  which  the  va- 

riation of  the  velocity  depends,  arise  in  some  measiu-e  from  the  velocities  themselves,  we 

are  not  permitted  to  regard  P.dx+ Q.d^  i-R.dz,  as  an  exact  differential  of  three  inde- 

pendant  variables,  which  facilitates  our  investigations  when  the  motion  is  performed  in  a 
vacuo.     See  Notes  to  Nos.  8. 

We  might  also  reduce  to  our  general  formula,  the  differential  equations  of  motion,  when 

the  retardation  arises  from  the  friction  against  the  sides  of  the  canal. 

f  If  the  body  moved  on  a  surface  we  might,  as  before,  abstract  from  the  consideration 

of  the  surface,  and  consider  the  material  point  entirely  free  by  adding  to  the  given  forces 

anotlier  accelerating  force,  of  lohich  the  intensity  is  unknown,  and  of  which  the  direction 

is  normal  to  the  surface,  •.•  if  this  force  be  denoted  by  L  we  shall  have,  by  the  equation 

(y )  of  No.  7,  and  by  No.  3,  the  following  equations  : 

(m^O  is  the  equation  of  the  suface.  See  Notes  to  No.  3). 

If  we  eliminate  L  between  these  three  equations,  N  will  also  disappear ;  and  if  the  two 

differential  equations  of  the  second  order,  which  result  from  this  elimination,  be  combined 

v/ith  the  equation  tc=:0  of  the  surface^  we  can  detennine  the  tliree  coordinates  of  the 

point  in  a  function  of  the  time.  If  we  multiply  the  preceding  equations  by  dx,  dy,  dz. 

respectively,  and  then  add  together  the  corresponding  members,  we  will  obtain 

d^x.dx+d'^M.du+d'z.dz        „  ,       ̂   ,       „  ,      ,t  ̂     f  ̂«   7    ,     .     f  ̂"  1      >    ■ 
  -~^^   =  P.dx+Q.dy+Rdz+N.L.  \  f^  \ '^'■'+  \-^  \    '^V^ 

f  3u  1 
\  Y7  W« ;  but  the  last  part  of  the  second  member  is  =  to  nothmg, '  g2 
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When  the  point  moves  on  a  surface,*  the  pressure  due  to  the  centri- 

fugal force,  is  •  qual  to  the  square  of  the  velocity,  divided  by  the  radius 
of  the  oscuiati  .g  circle,  and  multiplied  by  the  sine  of  the  inclination 
of  the  plane  of  this  circle,  to  the  plane  which  touches  the  surface ; 

therefore,  if  ■  ve  add  to  this  pressure,  that  which  arises  from  the  action 
of  the  forces  which  solicit  the  point,  we  shall  hiive  the  entire  force 
with  which  the  point  presses  the  surface. 

|sincerfi<  =  0,  and   -! -^  |  =  i -1  V  v   if  V.dx-\-Q_.dy+R.dz  is  an  exact  difFeren- 

tial,  we  shall  have  —r;=  P-—, — h  Q.~-  -\-R.^,  as  before,  and— —    =  r-  =    C4- 
dt^  as  dt  ds  dt^ 

y{P.dx-\-Q.d^-f-R.dz),  audif  P,Q,R,  and  consequently  v  were  given  in  tenns  of  the 

coordinates,  we  might  obtain  immediately  the  differential  equations  of  the  trajectory  by 
d^x  f  ̂71  i  ' 

multipljing   the   equation     ---^;-=  P+L.A^.  ■} -r — j- ,  by  di/   and  dz   successively,   and cit~  (.  dx  ) 

then  subducting  it  from  the  two  remaining  equations  multiplied  by  dx ;  by  concinnating 
ds 

the  resulting  equations,  substituting  for  dt  its  value  — ,  and  for  i;  its  value   m  a  function 

of  the  coordinates,  we  obtain  two  differential  equations  of  the  second  order,  fi-om  which 
eliminating  the  quantities  LN  there  results  a  differential  equation  of  the  second  order  be- 

tween the  three  coordinates  z,y,z,  solely;  this  equation,  and  the  equation  «^0  of  the 
surface  will  be  the  two  equations  of  the  trajectory. 

*  If  a  point  moves  on  any  curve  the  centrifugal  force  is  always  directed  along  the 
radius  of  the  osculating  circle ;  and  since  the  pressure  on  the  surface  is  always  estimated 

in  the  direction  of  a  normal  to  the  surface,  (see  No.  3)  if  the  plane  of  the  trajectory  is 

not  at  right  angles  to  the  surface,  the  radius  of  the  osculating  circle  will  not  coincide 

with  the  normal  to  the  surface,  and  consequently  the  part  of  the  centrifugal  which  pro- 

duces  a  pressure  on  the  surface  is  equal  to    ,  multiplied  into  the  cosine  of  the  an- 

gle which  the  radius  makes  with  the  nonnal,  but  this  angle  is  evidently  the  comple- 
ment of  the  angle  which  the  plane  of  tlie  osculating  circle  makes  with  the  plane 

which  touches  the  surface.  If  the  forces  soliciting  the  point  are  resolved  into  two, 

of  wliich  one  is  perpendicular  to  the  trajectory,  then  the  resultant  of  this  last  force, 

and  of  the  ccntrifijgal  force,  will  express  the  whole  force  of  pressure  on  the  curve; 

if  this  curve  was  fixed,  it  would  be  sufficient  for  the  pressure  to  be  counteracted,  that  its 

direction  was  in  a  plane  perpendicular  to  this  curve  ,  but  if  the  curve  be  one  traced  on  a 

given  surface,  then,  in  order  that  the  pressure  should  be  counteracted,  it  is  necessary 

that  the  resultant  of  the  forces  should  be  in  the  direction  of  a  nornml  to  the  surface.  Sec 

note  to  page  16. 
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We  have  seen  that  when  the  point  is  not  solicited  by  any  forces,  its 

pressure  against  the  surface,  is  equal  to  the  square  of  the  velocity,  di- 
vided by  the  radius  of  the  osculating  circle  ;  therefore  the  plane  of  this 

circle,  that  is  to  say,  the  plane  which  passes  through  two  consecutive 

sides  of  the  curve  described  by  the  point  is  then  perpendicular  to  the 

surface.  This  Curve  on  the  surface  of  the  earth  is  called  the  perpen- 

dicular to  the  meridian  ;  and  it  has  been  proved  (in  No.  8)  that  it  is 

the  shortest  which  can  be  drawn  from  one  point  to  another  on  the 

surface.* 

*  If  we  make  the  axis  of  one  of  the  coordinates  to  coincide  with  the  normal  to  the 

surface,  we  can  immediately  determine  the  inclination  of  the  plane  of  the  osculating  circle 

to  the  plane  touching  the  surface ;  for  if  we  denote  by  A,  B,  the  angles  which  the  radius  of 

the  osculating  circle  makes  with  the  normal  and  witli  the  coordinate  which  is  in  the  plane 

of  the  tangent,  and  by  »i,  n,  I,  the  angles  which  the  resultant  V  of  all  the  forces  makes  with 

the  three  coordinates,  the  force  _ll    resolved  parallel   to  these  coordinates  is  equal  to 

- — .  cos.  A,  —.  cos.  B,  A   '-.  COS.  100°,  (because  the  angle  between  the  radius  and r  r  r 

tangent  to  the  curve  is  equal  to  100')  in  like  manner  the  force  V.  resolved  parallel  to  these 

coordinates  equals   V.  cos.  m,   V.  cos.  n,   V.  cos.  I,  since  A  and  m  denote  the  inclination* 

of  the  radius  of  curvature,  and  of  the  resultant  to  the  normal,    .  cos.  A-\-V.  cos.  m, r 

express  the  pressure  of  the  point  on  the  siuface,  V.  cos.  n-\-- —  cos.  100°,  or   V.  cos.  n 

is  the  force  by  which  the  body  is  moved  ;  and  since  this  motion  is  performed  in  the  di- 

rection  of  the  tangent,    V.  cos.  l-\   .  cos.  B,  which  expresses  the  motion  perpendicular 

to   the  tangent  must  vanish;   consequently  we  have    V.   cos.  /-|-   cos.  B~0,   '.'  if 

F.  I,  V,  and  r  were  given  we  might  determine  B,   which  is  =  to  the  inclination  of  the 

plane  of  the  osculating  circle  to  the  plane  touching  the  surface,  it  also  foUoTvs,  that  when 

the  point  is  not  soUcited  by  any  accelerating  force,   cos.  B=0,  •.•  B=  100",  or  the 

plane  of  the   osculating  circle  is  perpendicular  to  the  surface,  which  we  have  previously 
established  from  other  considerations. 

Ifthe  plane  whose  intersection  with  the  surface  produces  the  given  curve  is  not  ■perpen- 

dicular to  the  surface,  then  the  radius  of  curvature  is  equal  to  the  sine  of  the  inclination 

of  the  cutting  plane  to  the  plane  touching  the  surface,  multiplied  into  the  radius  of  cur- 

vature of  the  section  made  by  a  plane  passing  through  the  normal  to  the  surface,  and 

tlirough  the  intersection  of  the  plane  touching  the  surface  and  the  cutting  plane.  See 

LacroLx,  No.  SSi.     •••  the  pressure  is  the  same  whether  the  point  move  in  a  greater  or 
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10.  Of  all  the  forces  that  we  observe  on  the  earth,  the  most  re- 

markable is  gravity  ;  it  penetrates  the  most  inward  parts  of  bodies,  and 

would  make  them  all  fall  with  equal  velocities,  if  the  resistance  of  the  air 

was  removed.  Gravity  is  very  neai'ly  the  same  at  the  greatest  heights 
to  which  we  are  able  to  ascend,  and  at  the  lowest  depths  to  which  we 

can  descend ;  its  direction  is  perpendicular  to  the  horizon,  but  on  ac- 

count of  the  small  extent  of  the  curves  which  projectiles  describe  rela- 

tively to  the  circumference  of  the  earth,  we  may,  without  sensible 

error,  suppose  that  it  is  constant,  and  that  it  acts  in  parallel  lines. 

These  bodies  being  moved  in  a  resisting  fluid,  we  shall  call  b  the  resist- 
ance which  they  experience  ;  it  is  directed  along  the  side  ds  of  the  curve 

which  they  describe  ;  moreover  we  will  denote  the  gravity  by  g.  This 

being  premised,  let  us  resume  the  equation  (fj  of  No.  7,  and  suppose 

that  tke  plane  of  x  and  y  is  horizontal,  and  that  the  origin  of  ̂   is  at  the 

most  elevated  point  ;   the  force  b  will  produce  in  the^^direction  of  the 

coordinates  .r,  y,  z,  the  three  forces  — b. —  ,  — b.-~  ,  — b.-^  •.'  by ds  ds  ds 

No.  7  we  shall  have  F=z—b.  ~  ;  Q--^b.^   ;  R-^b.-^  +g-. 
* dx      ̂          ,    du       -o         1   dz 

ds  ds  as 

and  the  equation  CJ])  becomes 

0=^;..^^.   't+b.^di.l+Sy.\d.±  +b.^dt.l I      dt^      ds       S      ̂   ̂      dt  ̂      ds       ) 

^■Sz.\d.^x.b.~  dt.—g.dt. I  * I      dt^      ds  ̂       $ 

less  circle,  for  the  sine  of  inclination  occurs  both  in  the  numerator  and  denominator  of 

the  expresiion ;  this  also  follows  from  considering  the  proportion  of  the  sagiita  of  curva- 

ture in  a  peipendicular  and  oblique  plane. 

The  investigation  of  the  shortest  line  which  can  be  drawn  between  two  given  points  on  a 

curved  surface,  whose  equation  is  u—0,  by  the  method  of  variations,  leads  us  to  the  same 
conclusions.  ?ee  Lacroix.  The  consideration  of  the  shortest  line  which  can  be  traced 

cm  a  spheroidical  surface  is  of  great  importance  in  the  theory  of  the  figure  of  the  earth. 
(See  Book  3,  No.  38.) 

*  Since  the  force  b  acts  in  tlie   direction  of  the  tangent  or  of  the  element  ds  of  the 

curve  (see  note  to  No.  9,)^  this  force  rs'solved  parallel  to  the  three  coordinates  jc,  y,  z, 
dx        dy        dz        ̂      dx        di)        dz  ,  .  ^     , 

=  "•~-ri"-~T'i  O'—j— ,    \ot —r- ,     -y- ,    — —    are  =:   to   the  cosmes  of   the  angles 
as        ds         ds  ds        ds        ds  " 
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If  the  body  be  entirely  free  we  shall  have  the  three  equations 

,  d.v       ,     dx     ,      ̂       1  dy    ,  ,     dij      ,. 
Q—d,——  +b.---.dt;  0  =  d.-~-  +b.  -^.  dt^ dt  ds  dt  ds 

0  =  d.-^  +b.~.dt—g.dt, dt  ds 

The  two  first  give 

±.   d.±-^.    d.    <^  =  0. dt  dt        dt  dt 

from  which  we  obtain  by  integrating,  dx^=.fdy,  f  being  a  constant  arbi- 

trary quantity.  This  equation  belongs*  to  an  horizontal  right  line, 
therefore  the  body  moves  in  a  vertical  jjlane. 

By  taking  this  plane  for  that  of  x,  z,  we  shall  have  ?/=:0,   the  two 

equations, 
,  dx     ̂   ,     dx      ,     ̂       ,  rfs      .  ,    dz      ,^  J, 

0  =  d.-   hb.  -r-.dt;  O^d.—-.  +b.—-~.  dt  —  g.  dt, dt  ds  dt  ds 

will  give,  by  making  dx  constant, 

,       ds.d»t     ̂      d*z        dz.d*t     ,  ,     dz     , 

'=-dF~'  ""—dT   rfF-  +'•  ̂•^^-^••^^^- 

From*  which  we  obtain  g.dt*  =  d*z,  and  by  taking  the  differential 

which  the  tangent  makes  with  the  three  coordinates ;  they  are  affected  with  negative  sign* 
because  they  tend  to  diminish  the  coordinates. 

^    _.  ...        dt/     ,  dx        dx     ,  dii  ,      tfi/*    .   , 
*  Dividing  -f^.  d.—   .  a.— T-  =:  0,  by  -^  it  becomes 

^    dt         dt         dt         dt  ^    df^ 
dx 

^'\~,  ̂ ^^^'   ■•■ '^y  integrating   -r—  =y" and  dx==f.dy,  since   tlie  equation  of  the 

~dt 

projection  of  the  line  wliich  the  projectile  describes  on  a  horizontal  plane,  is  that  of  a 

right  line,  the  body  must  have  moved  in  a  vertical  plane,  otherwise  its  projection  on  an 

horizontal  plane  would  not  be  a  right  line ;  this  circumstance  we  might  have  anticipated 

from  the  manner  in  which  the  forces  act  on  the  body. 

^  -wc  1      ',  ,     ,  dx  dx  dx,d^t 
*  It  we  make  dt  constant  in  the  equation  d.  ̂ -  +  i.  -=-  .  di=  0,  we  get   -;   

dt  ds  dt- 
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^g.dt.dH=d'z,  if  we  substitute  for  rf»nts  value  Af[fl,  and  for  dt*  hi 

ds d*z    - 
value  . — —,  we  shall  have 

b        ds.d^z 
i~\% g        2(rf 

This  equation  gives  the  law  of  the  resistance  b,  which  is  necessary  to 
make  the  projectile  describe  a  given  curve. 

If  the  resistance  be  *  proportional  to  the  square  of  the  velocity,  b  is 

ds* 

equa
l  

to  h,   ,  h  bein
g  

cons
tant

,   

when
  

the 
 
dens

ity 
 
of  the 

 
med

ium
  

is 

dt*  '  , 
unifoiTO.     We  shall  have  then 

b        h.ds*         h.ds* 

g       g'dl*  d*s. 

d^z  •  ■  d*" 
therefore  h.ds=   ,  which  gives  by  integrating  — ~  =  Sa.c^.t 2.d*z  da.* 

+  J.—  .  dt]=  0,  '.•  b  —  — j — ,  by  substituting  tliis  quantity  in  place  of  b,  and  differen- 

tiating, we  get  the  expression 

d^z        dzJH         ds.d't     dz   ,  ,  d^z         dz.d^f    ,     dzJH  , 

-Jt   dir  +-11^  '■d^'^-s-^'  =  —t   dF-  +  -d?   -"'^'•= 
d'z 

-g.dt=  0,   •■•by  differentiating  we  obtain  d^z  ='2g.dt.d^f,  and  substituting  for 
dt 

d't  its  value  4. — ~,  and  for  dt'  its  value  — ,    we  arrive  at  the  following  equation, ds  g 

2g.b.   C  d'z  -\   ̂       b  dH 
ds      I    g     i  g        ̂ d^r 

*  The  value  of  the  consrant   coefficient  /;   is  obtained  by  experiment ;  it  is  different  in 

different  fluids,  and  when  bodies  of  different  figures  move  in  the  same  fluid. 

ds^ 

t  Sinc
e  

the 
 
squa

re  
of  the 

 
velo

city
  

is  equa
l  

to  -^-j
-,  

the 
 
resi

stan
ce  

is  expr
esse

d  

by 

ds'  ,       d'-z       hds^         ds.d^z  d-z 

h.-j^,  vby  substituting  for  rf<=  its  value  —  ^  'WT^  2{d>z)*''   "'"  ""  "rf»7  ' 
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a  being  a  constant  arbitrary  quantity,  and  c  being  the  number  whose 

hyperbolic  logarithm  is  unity.     If  we  suppose  the  resistance  of  the  me- 
H 

•••  2A.4  =  log.  d^z^log.  F  :■  g^"^  ̂ F.d'z,  v  -— —  =  -—  .     (Let  2a=  -^r— )  and  we r.ax^        ax-  F.d.r:^ 

shall   have  2ac-*'  =         ^   ;  dx  being    constant   it   is   permitted  to  introduce   dx-   as  a 

divisor.     The  constant  quantity  a  depends  on  the  velocity  of  piojection,  and  on  the  angle 

which  its  direction  makes  with  the  horizon ;  for  by  substituting  — g.dt^  in  place  of  d-z  we 
dx^            n-                  dx^ 

shall  have   ■ — ■=  -2 — .c— 2'«      is  the  velocity  of  the  body  in  the  direction  of 

the  axis  of  x  at  the  end  of  the  time  t ;  let  ii  be  the  velocity  of  projection,  and  i  the  angle 

which  its  direction  makes  with  the    horizon,    we  shall  have  at  the  same   time  t  =  0, 

.T=:0,  2=0,    and  —r-  =  u.  cos.  6,  :■  ii^.  cos.  *tf  =  —  -~-  .     Let  h  be  the  height  due 
dt  2a  ° 

to  the  velocity  u,  u^  =%/'>  *•■  by  substituting  for  u-  its  value,  we  deduce  a= 

4:k  cos.^# 
By  making  dz=pdx,  ds   becomes  equal  to  dx.^i-i-p'-  ,  •■•  — c-''K  ds=2h.  cos.*  t.  dp. 
  c  d^z  7    c2*s.    

VI  +i^%i""'  ''P  =  -J^  5     *••    by  integrating   — —   \-C=2h.  cos.^  S.fdp.^l+p\ 

I  =2A.  COS.'  6.f-^^J=^  +  2h.  cos.  e.f  J^^  }  ='''•  COS.'  6.    log.    (p  +  ̂ /H:^), 

-|-.A.  COS.-  6.  p.  \/l-[-p-,  the  constant  quantity  C  is  easily  found;  for  since  p  is  the 
derivitive  function  of  z  considered  as  a  function  of  x,  at  the  commencement  of  the  motion, 

when  4=0,  p~  the  tangent  of  the  angle  of  projection  wliich  is  given,  '.•  C  is  equal  to 

h.  cos.=^  6.  }  (log.  (tan.  <-f-sec.  6)  +tan.  6.  sec.  6.)  i   +  -y-. 

By  substituting  for   ; —  its  value,  which  we  obtain  from  the  equation   r— =  2.. 2A  2n 

<ip  .    , 
cos.  2  (.  — i-,  we  deduce ax 

dx  =z    ,    and  rfz  =r 

'^/'•[^log.(/;+-^/l+p^)^-/J.^/ 1+/;  j_q 

p.dx=z 

and  since  g.dt^=d^z=dp.dx  we  have  <^<»= 

2Aillog.  (p+v/l+/^')+;;.x/l+p^)-d 
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dium  to  vanish,  h  is  equal  to  0  ;  then  by  integrating*  we  will  obtain  the 
equation  to  the  parabola  2;=  ajr*+/'^+c,  i  and  c  being  constant  arbi- 

trary quantities. 

The  differential  equation  d'zzzg.dt^,  will  give  dt'=   dx^,    from g 

v^,=      '^P   —  X 

{'2gh  (log.  (/;+^l+;;r)+;;Vl+P^)— <^]  "• 
If  the  integrals  for  these  values  of  dx,  dy,  dt,  could  be  exhibited  in  a  finite  form,  the  pro. 

blem  would  be  complete!)'  solved,  for  the  integrations  of  tlie  two  first  equations  would  give 
the  values  of  x  and  2  in  funciions  of  p ;  and   if  p  be  eliminated  between  the  resulting 

equations,  the  relation  between  x  and  y  would  be  had ;  those  integrations  have  hitherto 

baffled  the  skill  of  the  most  celebrated  analysts.     However  by  means  of  the  expressions 

for  dx  and  dz,  we  can  describe  the  curve  by  a  series  of  points,  and  the  approximation  wilj 

be  always  more  accurate,  according  as  we  divide  the  interval  between  the  extreme  values 

of^  into  a  greater  number  of  parts.     We  might  collect  some  of  the  remarkable  proper. 

ties  of  the  curve  described  from  the  preceding  values  of  dx,  dz  ;  for  if  p  be  very  great,  log. 

dp 

iP^V^-VP')  

vanishes  

with  
respect  

to;;,  
and  

'.•  
the  

limit  
of  

dx,  
dz,  

and  
dt  

are  
^ — —, 

dp  ''P  1  ,     ,  "  1     1 

2^'  """'^  >/5^  ■•■  ̂̂   ™'^S'''^S  "^^  S^^  ̂'="-  p'  -  ="  "^  '''^-  ■?''  '^^  +  2P"  • 

log.;?,  the  first  equation  indicates  that.j;  has  a  limit,  the  vertical  ordinate  increases  inde- 

finitely, but  in  a  less  ratio  than  ;;,  therefore'the  descending  branch  has  a  vertical  asymp- 
tote. By  eliminating  log.  ;j  in  the  expression  for  t  we  get  an  expression  for  z  fiom  which 

■we  may  collect,  that  according  as  the  direction  of  the  motion  approaches  towards  the 

vertical,  the  motion  of  the  body  tends  to  become  uniform. 

When  the  angle  of  projection  is  very  small,  we  can  find  by  approximation  the  relation 

which  exists  between  .t,  and  2,  for  that  portion  of  the  trajectory  which  is  situated  above  the 

horizontal  axis  ;  in  this  case  the  tangent  is  very  neai-ly  horizontal,  •.•  p  is  very  small,  and 

Vl+p  =l,y.;;.-.-f/«  =  r/aVr+7-  =dx,  q.p.  and  s=,t,  for  they  commence  together,
 

and  substituting  x  in  place  of  ̂,  we  have  ~  =  —  gT^^  ̂"^  "  ̂̂ '"^  ̂ ^  hypothesis  very 

small,  cos.^  (t  =--  1,  •.•  dp  =—^-.  dx,  by  integrating  this  equation,  when  we  know  the 

Ik 
value  of  the  constant  arbitrary  quantity  which  is  introduced  by  the  integitition  we  obtain 

the  value  of  p  and  •.•  of  2  =j  p.dx.    See  a  memoir  of  Legendre's  in  the  Transactions  of  the 

Academy  of  Beriin  for  the  yeai-  1782. 

•    In  this  case-rr  =5ia,  v -^=2ax-t-i,  v  s=ax'-|-i.«+c. d.X'  dx 
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which  we  may  obtain  t-zix.  V  ■ —  +f'-     If  *>  •s,  and  t,  commence  to- 

gather,  we  shall  have  c=  0,  f'=  O,  and  consequently 

g 

which  gives 

2  '2a 

These  three  equations  contain  the  whole  theory  of  projectiles  in  a  va- 
cuum ;  it  follows,  from  what  precedes,  that  the  velocity  is  uniform  in  an 

horizontal  direction,*  and  that  in  the  vertical  direction  the  velocity  is 
the  same  as  if  the  body  fell  down  the  vertical.  If  the  body  moves  from 

a  state  of  repose  b  will  vanish,  and  we  shall  have 

dz  _  _    1 

therefore  the  velocity  acquired  increases  as  the  time,  and  the  space  in- 

creases as  the  square  of  the  time. 

It  is  easy  bymeans  of  these  formula  to  compare  the  centrifugal  force  with 

that  of  gravity.  For  v  being  the  velocity  of  a  body  moving  in  the  circum- 

ference of  a  circle,  of  which  the  radius  is  r,  it  appears  from  No.  9,  that  its 

^» 

cen
tri

fug
al 

 

for
ce 

 
is  equ

al 
 
to   .   

  
Let

  
h  be 

 
the

  
hei

ght
  

fro
m  

whi
ch 

 

the
 

body  must  fall  to  acquire  the  velocity  v ;  by  what  precedes  we  shall 

have  v'  =  2g.h  ;  from  which  we  obtain  —   «•.  zJ—.     The  centrifugal 

dx  I  fJ^ 

*  ̂^^  Hr  ~  ̂ ^  velocity  in  an  horizontal  direction  =\/  - --,  and  -^  =  the  velocity V    ̂ ci  (It 

in  a  vertical  direction  =  gt  ,b.\/ _£.. 
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force  will  be  equal  to  the  gravity  g,  if  h^   Therefore*    a    heavy 

body  attached  to  the  extremity  of  a  thread,  which  is  fixed  at  its  other 

extremity,  on  an  horizontal  plane,  will  tend  the  string  with  the  same 

force  as  if  it  was  suspended  vertically  ;  provided  that  it  moves  on  this 

plane,  with  a  velocity  equal  to  that  which  the  body  would  acquire  in 

falling  down  a  height  equal  to  half  the  length  of  the  thread. 

1 1.  Let  us  considej  the  motion  of  a  heavy  body  on  a  spherical  surface, 

denoting  its  radius  by  r,  and  fixing  the  origin  of  the  coordinates  at  its> 

centre,  we  shall  have  r' — r' — j/' — ^'=0;  this  equation  being  com- 

pared with  that  of  z^— 0,  gives  u  =  r' — a'" — y'' — z"  ;  therefore  if  we  add  to 
the  equation  (X)  of  No.  7,  the  function  Su  multiplied  by  the  indeterrai- 

nnte  quantity  — x.dt.  we  shall  have 

0=Ss.  S'd.  —  +  'ixx.dt.  I  +  ̂i/.  I  d.-^  +  2x.ij.dt.  l 

+  Sz.  I  d.  —^  Q.xz.dt—g.d/.  I  * 

In  this  equation  we  can  put  the  coefficients  of  each  of  the  variations 

Sx,  Sy,  Sz,  equal  to  nothing,  which  gives  the  three  following  equations : 

Q^d.  —  +  2\.xdt, 
dt 

0  =  d.  ̂   +  2x.y.dt. 

dt    +       ̂ ' 

d^ 

O  =  d.  — ^o-  2k.z.
dt 

— g.dt,
 

dt 

*  The  plane  of  the  motion  behig  horizontal,  the  force  with  which  the  string  is  tended 

arises  entirely  from  the  centrifugal  force. 

t  Po.{^|=-...{^  ;=-.,.  m=_.. 
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The  indeterminate  a  makes  known  the  force  with  which  the   point 
presses  on  the  surface.     This  pressure  by  No.  9  is  equal  to 

consequently  it  is  equal  to  2xr  ;  but  by  No.  8  we  have 

_    dx^+dy'^+dz' 
c+2gz ^  *  dt* 

c  being  a  constant  arbitrary  quantity  ;   by  adding  this  equation  to  the 

equations  {A)  divided  by  dl,  and  multiplied  respectively  by  x,  y,  z,  and 

then   observing    that    x.dx+y.dy-\-z.dz  =0,  x.d''x+y.d^i/-{-z.d'z  + 

dx^  +  di/''+dz9=0,  are  the  first  and  second  diflPerential  equations  of  the 
surface,  we  shall  obtain* 

*  For  performing  these  operations  we  get  c-{-2gz  = 

  d?   +  "rfF  ̂ d^"^  -5^+2^-(^=+y'+s')-g2,  therefore  we  have 

SAr''  =  c-\-?igz,  and  '2xr  =  ^^  ,  •.•  the  pressure  is  equal  to     "*"  °    ,  when  the  ini- 

tial velocity  c  vanishes,  the  tension  of  the  pendulum  vibrating  in  a  quadrantal  arc  is,  at  the 

lowest  point,  =  to  three  times  the  force  of  gravity  ;  —  =  the  cosine  of  the  angle  wliich  the r 

radius  r  makes  with  the  vertical,  therefore  it  follows  that  when  a  body  falls  from  a 

state  of  rest,  the  pressure  on  any  point  is  proportional  to  the  cosine,  of  the  distance 

from  the  lowest  point,  it  is  easy  to  collect,  in  like  manner,  that  the  accelerating  force  va- 

ries as  the  rigiit  sine  of  the  angular  distance  from  the  lowest  point ;  we  might  from  the 
preceding  expression  for  tlie  pressure  deternune  the  point  where  this  pressure  is  in  a  given 
ratio  to  the  force  of  gravity. 



54  CELESTIAL  MECHANICS, 

If  we  multiply  the  first   of  the  equations   (A)  by  — t/,  and  add  it  to 
the  second,  multiplied  by  x,  and  then  integrate  their  sum,  we  shall  have 

dr.rfj/ — V'dx  _.     * 

  dt  "^^ 
d  being  a  new  arbitrary  quantity. 

Thus  the  motion  of  the  point  is  reduced  to  three  differential  equa- 
tions of  the  first  order, 

x.dx-\-y.dy  =  — z.dz, 

x.dy — y.dx  =  c'.rf?, 

dx*  >- di/' +  dz*  ,a 
  -J—J-    =  C  +  22-Z. 

By  squaring  each  member  of  the  two  first  equations,t  and  then  adding 
them  together,  we  shall  have 

i^^+y^)  (dx^  +  dy*)  =  c''dt'  +  z'dz\ 

*  x.dy — y.dx  =  c  .dt  shews  that  the  area  described  by  a  body  moving  on  a  spherical 

surface,  and  projected  on  the  plane  x,  y,  is  proportional  to  the  time ;  the  same  area  pro- 

jected on  the  plane  x,  2,  or  y.,  z,  is  not  constant  in  a  given  time ;  for  if  we  add  to  the 

first  of  the  equations  {A)  multiplied  by  — z,  the  third  multiplied  by  x,  and  then  integrate 
x.dz — z,"x  y  , 

their  sum,  it  becomes  equal  to    =  c' ■\-  f.{gx.d(),  this  might   have  been  anti- 

cipated, as  the  force  ̂   does  not  pass  pei'pelually  through  the  origin  of  the  coordinates, 

•••  x.dz — z.dx,  y.dz — z.dy  are  not  proportional  to  the  time,  but  as  there  is  no  force  acting 
parallel  to  the  horizontal  plane,  x.dy — y.dx  must  be  proportional  to  the  time, 

f  For  we  have  in  this  case 

x'^  .dx''  ■\-y'^  Ay''  .\-2x.y.dx.dy  =  z'^.dz''. 

x^dy^+y  .dx^  —  ̂ x.y.dx.dy  =  c'*rfr. 

\'(x''+y'^){dx''  +  dy'')  =^~c'''dF+z^Mz^. 

dx^-{-dy'^ :•  by  substituting  for  x'^+y*,  and    'J~^  '    ̂ ^"^  values  we  obtain  (r* — «») . 
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If  we  substitute  in  place  of.r'+3/%  and     '^'    '    -^    ̂    their  respective 

dz* 

values
  

r* — z\  and  c  +  2^'-2r   ~rr''> 
  
"^^  ̂ '^^  '^^^^ 

 
on  the  suppos

ition 

that  the  body  departs  from  the  vertical 

dt  — 

^(r'—z').  (c  +  2gz)—c'\ 

The  function*  under  the  radical  may  be  made   to   assume  the  form 

(a — z).  (b — s).(2o's+y)  ;   a,  b,f,    being  determined  by  the  equations 

{cdt'+2gz.dt^—dz^)  =  c'^dt-+z\dz^,   therefore    (r«— =*)  .  {c+2gz)  —  c  ̂).  dt^  = 

r'.rfz^  +Z-&* — z'^.dz'^,  consequently — r.dz 

dt  = 
^/{r^—z').(c+2gz)—c'^, 

dz  is  affected  with  a  negative  sign,  because  tlie  motion  commencing  when  the  body  Is  at 

the  lowest  point,  ̂   decreases  according  as  t  increases. 

*  If  we  multiply  the  factors  of  the  expression,  and  range  them  according  to  the 

dimensions  of  z,  .we  get  — 2gz^ — c2^+2r^.g2+/-'c  —  c'S  if  the  same  operation  be 

performed  on  the  expression  (a— z).(z — b) .  (,2gz+f)  we  will  obtain  — 2gz^+  {2g 

(a  +  b) — /).  2-  +  (y.  («  +  6) — 2g.ab)  z—^fab,  these  two  expressions  being  always  equal, 
their  corresponding  terms  must  be  identical,  consequently,  by  comparing  the  coefficients 

of  z,  we  have y  =  2g.  - — -- — -    by  comparing  the  coefficients  of  s',  and  substituting 

for  f  its  value  we  get 

2.g  -(  (a+A)   --r—  J-  =  — <^  '•■  ̂ y  concmnaung 

a-'-\-2ab-lfb--—r''4-ab                     „       f  r^—a^ah—b^  1 2a.    1   —   !   —  — C  =    2g.   <   —   — ;      f 

the  comparison  of  the  absolute  quantities,  gives,  by  substituting  for  /  and  c  their  values, 

which  ha*e  been  already  found, 

—r'-.b^-+>-^.ab4-a''b-    )  „       (r'—a').{r- 22.  <      '  '  J-      =    Jg.   =   ' 

<:; 
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a+b 

We  can  thus  substitute  for  the  arbitrary  quantities  c  and  d,  a  and  b, 
which  are  also  arbitrary,  of  which  the  first  is  the  greatest  value  of  z, 
and  the  second  the  least.     Then,  by  making 

•     «        /^=^ 
sin.  9=  V    r  ' 

« — Z> 

the  preceding  differential  equation  will  become 

dt=  r.^lTiTV)  d^ 

these  values  of^  c,  c'  being  possible,   we  are   permitted  to  substitute  the  expression 

{a~z)  .{z—b)  .{<2.gz-\.f)  in  place  of  (r^— 2;-) .  (c+2o;r)— e'S  therefore  ̂   = 

— v/(^a — 2^  .  [z—b) .  (^  ̂^;  ̂ rJ)>  ̂   being  a  function  of/,  this  differential  coefficient  vanishes 

when  a=s,  and  also  when  z=b;  —   =  — ^  (^a — z).{z — u)    K^g^-rJ)  —  0,    has  at  least 

txao  real  roots ;  for  as  the  point  is  constrained  to  move  on  the  surface  of  the  sphere,  the 

trajectorj'  has  necessarily  a  maximum  and  a  minimum  ;  and  as  impossible  roots  enter 
equations  by  pairs,  it  follows  that  all  the  roots  are  real,  moreover  it  is  manifest  from  the 

variations  of  the  signs,  tliat  one  root  is  negative:  _lf  expresses  the  velocity  of  the  point  in 
the  direction  of  the  vertical. 

*  The  transformation  sin .  «  =  a/     is  made  in  order  to  facilitate  the  integration. ^      a — b 

sin.*  i  =  °~^-,    and  cos.*  6=  ̂ ^^^  v  z=:a.  cos. '  «+6.(l— cos.*  ̂ )  =  «  cos.^  d-\-b  sin.^  t, a — 6  a — b 
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y*  being  equal  to 

(a-\-b)i+r* — b',  ~ 

The  angle  6  gives  the  coordinate  z  by  means  of  the  equation  ; 

z=a.  COS.*  9+  i.  sin.*  6, 

dt.  COS.  «r:   ■  ==  •%  —dz=:  2dl.  ̂ /  (a~z) .  (z—6) 

—r.dz 

and   '  -  ^^^   ^  (substituting  for  /its  value) 
-/ (a-zXz-b).{2gz+f)  ^      J        .       ] 

2rJe;^(a—z).(z—f>)  2r.d« 

(substituting  for  e  its  value  a.  cos.M+5.  sin.=  «)  we  obtain 

  2r.de  \/a+b       

\/2g.(a".cos.  ̂ S-j-ab.cos.'6^ab.sin.^e+b~.sin.*i+r*'i-ab 

  2r.de.^/a  +  b   

  2r.d6.\/7+b 

v/2g.(a-t-6)'-)-l?--— 6^)+(A^— a').  sin.»«)' 

for  4*— a  -  in  the  preceding  expression  we  shall  have  dt  = 
""*''*"  ̂ '=(7HiH^»^=)'   ̂ '-'''=-((«+^)'-+('-«-6')).yS     .-.    substituting 

2r.di.^ya+b 

v/%U«+<'  J-i-C-'— 6--)— ((a-t-6)^4-(r-~6^)).y».sin.M. 

_  r.v/2.(»+i)  di 
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and  the  coordinate  z  divided  by  r,  expresses  the   cosine   of  the  angle 
which  the  radius  r  makes  with  the  vertical. 

Let  TB-  be  the  angle  which  the  vertical  plane  passing  through  the  radius 

r,  makes  with  the  vertical  plane  which  passes  through  the  axis  of  J  j  w« 
shall  have 

XZZs/l^   2*.    COS.  -ar;  *  y —  oj T^—H^SWi.  w; 

which  give 

xdy — ydx=.{r'^'—!?').  d-cr, 

.'.  the  equation  xdy — ydx—c'dt  will  give 
d.dt 

dTszz. 

r'—z^ 
we  will  obtain  the  angle  Ts-in  a  function  of  S,  by  substituting  for   z  and 
dt  their  preceding  values  in  terms  of  6 ;  thus  we  may  know  at  any  time 

whatever,  the  two  angles  9  and  -cr,  which  is  sufficient  to  determine  the 

position  of  the  moving  point. 
T 

Let  us  name,  — ,    the  time  employed  t  in  passing  from  the  greatest 

*  X  =  the  product  of  the  projection  of  r,  on  the  plane  x,  y,  into  the  cosine  of  the 

angle  which  x  makes  with  the  projected  line,  .•.  as,  \f  r' — z'-  =rr  so  projected,  and  »  = 

the  angle  which  xmakes  with  ̂ Z r'- — 2^,  x=icos.  w.  \/r» — i^,  rfx=  —\'r'^ — s'.  sin.  w. 
zf/z.  cos.  OT  /   —  .  ,  /-:;   1     ,  *dz.   sin.  v» 

d^,   — .  ,  y  =■  \f  r'^ — z'.sin.  w,  .•.  dy=\/r^ — s^.ttm.  cos.  o — 

2 
.    ,            ,              xrfz.  sin.  «7.  cos.  33-     ,     ,  ,       .,  , 

xdy—ydi=\j^—z^)  d'a  cos.  »ot.   h   (r«— 2-)rf«.  wa 

z.dz.  sin.  ra  cos.  «r.       ,  ,       ,  ̂     j 

f  For  evolving  the  expression  for  dt  into  a  series,  it  becomes, 

i.V«.sin.'«.rf«+|^V*.sin.*.«....  .  2^g '••^^'"+^''  t/<i+  i.v«.sin.'«.rf«+i^v*.sin.«.«.rf«+^v«.  Bin.*  «*+*c. 

v/^-  ((,a  +  6)*+r»-6» 
COS.  2«       1     .  cos.  4 «      4.  COS.  2« 

but  sin.  •<=   ^  +  -2,  sin.  ♦#=— g   5—  +  2;^ 
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to  the  least  value  of  z,  a  semi-oscillation.     In  order  to   determine  it, 

we  should  integrate  the  preceding  value  of  dt  from  9=0  to  flzij.Tr,  w 

I  2 

.    .              COS.  6*  ,  6.  COS.  4«      15.  COS.  2«    ,    10 

'""•'=   32-+— 32   32— +3-2'*'=- 

4.      -r  2'^      •  —    32  16      ̂ 2.4' 
^.     .      ,  sin  6*    ,   6.  sin.  ■i^      15.  sin.  2«,    10 «    „ 

/^^-•'•'^*=— r92-+-i28   6r-+ 12-' '"'- 
(See  Lacroix,  Traite  Elementaire,  No.  200.) 

These  quantities  being  integrated  between  the  Umits  fl^O,  and  6=^.  n,  or  between  sin. 

1=0,  and  sin.  fl=l,  i.  e.  between  the  greatest  and  least  values  of  z,   become  respectively 

«r   1     3x1    lOx    1         r3.5.!r  l'?^^,  .,-.v- —.—,r-—i, -——•—=  \  ~   .— ,  S- &c.  for  the  parts  m  wluch  the  Sines  of  the  multiple  arcs 
2  I  2.*.2    32     2         (_  2.4.6  23 

occur,  vanish,  being  respectively  =  to  sin.  (2ir),  sin.  (ix),  sin.  (6ir),  the  numeral  co- 

efficients of  ~  are  equal  to  the  corresponding  coefficients  in  the  expanded  radical ;  .*.  these 

integrals  being  substituted  in  the  preceding  series  we  obtain 

2         Vg.  V    (a+6J^+lr»_6^)    [2  "^  2'^    2-2 +2.4"^  "teg  5 ,    1.3.5    ,  /1.3.5    :r.     ,    ̂ 

+  2:1:6^  We  2)+^''- 

Ifin  the  series,  dtJf.-^ .  y».  sin.  'e.di+~   y*.sin.*«.  dS+-^-^.y'^  sm.^i.d64-&c.  theintegrali *  ^.*  i2.4.D 

being  taken  as  above,   between  the  limits  sin.  <—0,sin.tf=:±  1;  «^ii,  «=-— (271+1).  »•, 

(where  A-  and  n  are  any  numbers  whatever)  will  satisfy  these  conditions  ;  from  which  indeter- 
mination  of  k  and  n,  it  follows,  that  the  vertical  coordinate  passes  through  its  maximum  and 

minimum  an  indefinite  number  of  times,  and  consequently,  when  all  obstacles  are  removed, 

the  number  of  oscillations  is  infinite ;  we  would  obtain  an  expression  for  the  time  intervening 

between  tlie  commencement  of  the  motion,  and  the  successive  transits  through  the  greatest 
13      5 

and  least  values  of  2,  by  taking  i  successively  =  ̂ jr,  — t,  —a-,  these  quantities   differing £1  £1  £* 

by  »-,  and  as  in  the  preceding  integral,  the  first  power  of  i  only  occurs,  it  is  evident  that  the 
times  of  all  oscillations  are  equal. 
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being  the  semi-circumference  of  a  circle,  of  which  the  radius  is  unity  ; 
we   shall  thus  find  > 

Supposing  the  point  suspended  at  the  extremity  of  a  thread  without 

mass,  of  which  the  other  extremity  is  firmly  fixed  ;  if  the  length  of  the 

thread  is  r,  the  motion  of  the  point  will  be  the  same  as  in  the  interior 

of  a  spherical  surface  ;  it  will  constitute  with  the  thread  a  pendulum, 

of  which  the  cosine  of  the  greatest   deviation  from  the  vertical  will  be 

— .      If  we  suppose  that  in  this  state,  the  velocity  of  the  point  is  no- r 

thing  J*  it  will  vibrate  in  a  vertical   plane,  and  in    this  case  we  shall 

*  —  expressing  the  cosine  of  the  angle  which  the  radius  makes  with  the  verti- 

tical,  when  the  deviation  from  the  vertical  is  the  greatest,  z  is  then  least,  and  consequently 

it  is  equal  to  b,  .:  >-  is  the  cosine  of  the  greatest  deviation,  and   as  generally    '—   =: 

1 — COS.  A   .     ,  .  .   .  r — b      .  , .  •       /.  1  •  ■       » 
  ,  in  this  case  it  is  r:  to  -jr— ,  y"    —  this  quantity,  lor  making  a  =  r   in    the 

expression  for  v',  it  becomes 

r-— Z^"         (r—b){r+b)        r—b 

The  pendulum  described  in  the  text  is  merely  ideal,  as  every  body  has  weight.  How- 

ever, philosophers  have  given  a  rule,  by  means  of  which  we  are  able  to  determine  th« 

length  of  the  imaginary  pendulum,  such  as  has  been  described,  from  the  compound  pen- 

dulum which  is  isochronous  with  it.     (See  No.  31  of  this  book.) 

From  the  equation  cfar.  (r* — z*)=c'.(/<  it  follows  that   the  angular  velocity  is  inversly 
as  the  square  of  the  distance;  this  is  universally   true,  whenever  the  areas  are  propor- 

c  dt 
tional  to  the  times,  for  we  have  then  ̂ •.d'a.=  ddt .:  d-n  =  -^.     See  note  to  No.  6. 

dx-A-dv'^  4-dz'^      ds''  '^^ From  the  equation  c-f-Sgz  =  — ■     ,     ■      =  -r—,    we  derive   dt  ==      /      ,  "■■■— '^  dt  dt^  \/c+2ga, ds 

when  the  velocity  —  vanishes  before  the    tangent   becomes   a   second  time  horizontal. 
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have,  a  =  r;  v*  =   The  fraction   is  the  square  of  the  sine 

of  half  the  greatest  angle  which   the   thread  makes   with  the  vertical  j 

the  entire  duration  Tof  an  oscillation  of  the  pendulum  will  therefore  be 

T=: 

;■   J) 

If  the  oscillation  is  very  small,       is   a  very    small   fraction,    which 

may  be  neglected,  and  then  we  shall  have 

therefore  the  very  small  oscillations  are  isochronous,  or  of  the  sarrie' da- 
ration,  whatever  may  be  their  extent ;  and  by  means  of  this  duration,  and 

of  the  corresponding  length  of  the  pendulum,  we  can  easily  deter- 
mine the  variations  of  the  intensity  of  gravity,  in  different  parts  of  the 

earth's  surface. 

Let  z  be  the  height  through  which  a  body  would  fall  by  the  action  of 

gravity  in  the  time  T;  by  No.  10  we  shall  have  2z:=g  T^,  and  conse- 

quently ^  =  ̂tt.^  r  j  thus  we  can  obtain  with  the  greatest  precision,  by 
means  of  the  length  of  a  pendulum  which  vibrates  seconds,  the  space 

through  which  bodies  descend  by  the  action  of  gravity  in  the  first  se^ 

cond  of  their  fall.     It  appears  from  experiments,  very  accurately  made. 
ds 

the  point  describes  only  a  part  of  a  circle  of  the  sphere,  but  if   y  be  finite,    when   the 

tangent  becomes  a  second  time  horizontal,  then  the  point  describes  the  entire  circumference. 

These  circumstances  may  be  determined  by  means  of  the  equation 

dx"-  4-  di/'^+dz' 
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that  the  length  of  the  pendulum  which  vibrates  seconds  is  the  same, 

whatever  may  be  the  substances  which  are  made  to  oscillate.  From 

which  it  follows  that  gravity  acts  equally  on  all  bodies,  and  that  it  tends, 

in  the  same  place,  to  impress  on  them  the  same  velocity,  in  the  same 
time. 

•  When  the  oscillations  are  very  small  T  =  t,*/  — ,  and  if  a  body  vibrated  in  a  cy- 

cloid whose  length  was  equal  to  2r,  the  time  of  an  entire  vibration  would  be  equal  to 

"••  f./  —  ,  ivhatever  be  the  amplitude  of  the  arc,  for  the  equation  of  this  curve  is  s'^zaz. o 

,_   dz  ,           

(See  Lacroix  Traite  Elementaire,  No.  102)  .".  dszz\/ a  — ='  ̂ "'l  V 2g  (A   z)  = 

V   5r —  -r-j  (^i  equal  to  the  value  of  r  when  ̂ rrO)  .'.  dt=  —   .   ~—^  =  —,\//^^^  \ 
'^^  V^i     vh-7     '^  V/  (y; 

^        k/  h      >''  *'''~*' V  V~~V  arc  COS.  f  -^^-—  j  +  C,ifwetake  this  integral  between 

the  limits  r=j^,  z=  0,—  =  - .  ̂ y/  — ,  ,*,  if  2a=r,  i,  e,  if  the  radius  of  the  osculating  circle 

be  equal  to  2a,  the  small  oscillations  in  this  circle  are  equal  to  the  oscillations  in  the  cycloid, 

and  sipce  /(  does  not  occur  in  this  integral,  the  time  of  describing  all  arcs  of  the  cycloid  are 

equal,  provided  one  extremity  of  these  arcs  be  at  the  lowest  point. 

It  appears  from  the  foregoing  investigation,  that  the  time  of  vibration  in  a  cycloidal  arc, 

is  the  hmit  to  vhich  the  time  in  a  circular  arc  approaches,  when  the  latter  becomes  inde- 

finitely small.  W  hen  great  accuracy  is  required,  all  the  terms  after  the  two  first  in  the  series 

expressing  the  time  in  a  circular  arch  are  rejected,  and  then  the  expression  for  T'= 

V.  w    —  S    1-j-   f-^y  (-n~)''  [   '^•""  which  it  appears  that  the  aberration  from 

isochronism  varies,  as  the  square  of  the  sine  of  half  the  amplitude. 

We  might  determine  the  time  of  describing  any  given  arc  of  a  circle,  if  we   knew  the 

coordinates  a  and  b,  and  also  z  the  coordinate  of  the  extremity  of  the  arc  required,  for 

then  the  angle  6  w  ould  be  determined.      We  might  also,  derive  a  general  expression  for 

the  time  of  describing  any  given  arc  of  a  ci/cloid.     For  if  in  the  initial  velocity  be  such,  as 

w  ould  be  acquired  in  falling  down  a  height  equal  to  A,  we  shall  have  at  any  point  in   the 

ds  — __— 
cycloid  «»=  2g.  {IHh—z)  consequently  — =  \/'^g(,H-\-h — 2)  .♦.  dt  = 

  =====  (by  substituting  for  ds  its  value    /T"(--   \ 
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12.  The  isochronism  of  the  oscillations  of  the  penduhnn,  being 
only  an  approximation  ;  it  is  interesting  to  know  the  curve  on  which  a 

heavy  body  ought  to  move,  in  order  to  arrive  at  the  point  where  the 

motion  ceases,  in  the  same  time,  whatever  may  be  the  arc  which  it 

shall  have  described  from  the  lowest  point.  But  to  solve  this  problem  in 

the  most  general  manner,  we  will  suppose,  conformably  to  what  has  place 

in  nature,  that  the  point  moves  in  a  resisting  medium.  Let  s  repre- 
sent the  arc  described  from  the  lowest  point  of  the  curve ;  z  the  vertical 

abscissa  reckoned  from  this  point ;  dt  the  element  of  the  time,  and  <r 

the  gravity.      The  retarding  force  along  the  arc  of  the  curve  will  be, 

v/ 
— .arc.  COS.  =-Tr„-r7\   \-  C;  we  determine  C  by  making^  =  0,  and*  ̂   //, 
Qg  \{H-]-h) 

we  might  deduce  from  this  general  expression,  the  time  of  describing  the  whole  cycloidal 

arch;  Cis  equal  to  =Y/   — - -!  arc-  j  cos.  =-7 — — ,  .•.  when  the   initial  velocity  vanishee 

C  =  0,  for  then  H  vanishes. 

In  the  precedirig  investigations  tlie  motions  are  supposed  to  be  performed  in  a  nonresist' 

ing  medium,  but  this  is  not  essentially  necessary,  in  order  that  the  oscillations  should  be  iso- 

chronous in  the  cycloid,  or  nearly  so  in  the  circle.  For  it  is  proved  in  No.  12,  that  the  os- 

cillations of  a  body  moving  in  a  medium,  of  which  the  resistance  is  as  tiie  velocity,  are  iso- 

chronous when  the  curve  described  is  a  cycloid,  and  it  has  been  demonstrated  by  M.  Poisson, 
tljat  when  a  body  describes  a  small  circular  arch,  in  a  medium  of  which  the  resistance  varies 

as  the  square  of  the  velocity,  or  as  the  two  first  powers  of  the  velocity,  the  oscillations  are 

isochronous,  the  analytical  expression  indicates  that  the  time  of  describing  the  first  arc  is  as 

much  lengthened  by  the  resistance,  as  the  time  of  describing  the  ascending  arc  is  dimi- 

nished, so  that  the  time  of  the  entire  vibration  remains  the  same  as  if  the  body  moved  in 

a  vacuo,  the  amplitude  of  the  arc  perpetually  lessens  ;  and  it  may  be  proved,  that  if  the 
intervals  of  time  are  taken  in  arithmetic  progression,  the  amplitudes  of  the  arcs  described 
decrease  in  geometric  proportion. 
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1st,  the  gravity  resolved  along  the  arc  ds,  which  thus  becomes  equal  to 
dz 

,g.  —  ;    2dly,  the  resistance  of  the  medium,    which  we  will  express  by 

<p.  );rf  .  -7-  being  the  velocity  of  the  point,  and  p.  X  -r—  >  being  any 

function  of  this  velocity.  By  No.  7  the  differential  of  this  velocity 

will  be  equal    to   —g.  -^   <p.  5  -— f  ;  therefore,  by  making  dt  con- Clo  C  Civ  -^ 

stant  we  shall  have 

-      d*s  ,       dz  ,        cc?5)  ... 

Let   us  suppose  that  0.\—{  =m.—  +«. -7-,  and* =4/(5')  >  denoting 
(a^j  dt  dt* 

by  i}/'(s')  the  differential  oi  ̂   {s')  divided  by  rf/;    and  by  f  (s')  the  dif- 

ferential of  ̂ '(s'")  divided  by  ds\  we  shall  have 

ds     ds'     ,,,  ,. 

di=dt-  ■'-(
'' 

the  equation  (?)  will  become 

•  Substituting  for  ̂ .  (c?i)  its  value  in  the  equation  (i),  it  becomes 

substituting  these  values  for  -r-  ,  and  — — ,  we  shall  have 
*  dt-  dt^' 
A^r'  /?/2  //c'*  rft*  ff'.rfl 
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We  make  the  term  multiplied  by  — — ,  to  disappear  by  means  of  the 

equation 

which  gives  by  integrating 

^{s')  =  \og.  S(A(5'+y)^}  zz-s; 

h  and  q  being  arbitrary  quantities.     By  making  /  commence  with  s  we 

shall  have  hq  '^  =  \,  and  if,  for  greater  simplicity  we  make,  hzzl,  we 
shall  have  ̂ —c"'  — 1.* 

K 

V  dividing  all  the  terms  by  ̂'.[s)  and  concinnating  we  obtain 

*  From  the  value  of  d^s  which  has  been  already  given,  we  get 

ds'^  ds* 

ds 

and  by  integrating  we  obtain,  log.  ds — log.  ds'-{-ns  =  e  or  log.  -^y  =  e — m ; 

V  -Tr=  —^  J  and  ds  =   ,  mtegratuig  again  we  shall  nave  s'  +  y  =    , 

V  \o^.  (ji.{s' +q))—ns—e  or  dividing  both  sides  by  n;  .  °^ '"^^ — ^  )=((log-(«-(*+9)»^)) n  ' 

=  «   ,  and  if  — ,  be  made  equal  to  — ^  we  obtain  log.  ((A.  (/-f-y"))  T    =  *.     If  we 

,  1 

suppose  s  to  commence  with  s,  they  are  =  to  0  at  the  same  instant,  •.•  log.  A.y  n  =  0,  at  this 

instant,  and  consequently /i.y »  =  1,  y  must  be  equal  to  uniiy   since  n  is  a  constant 

indetermined  coefficient,   •.•  log.  (i'+l)n  =  s  =  ̂ j.(«'),  and  /  =  c""  — 1. 
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c  being  the  number  whose  hyperboHc  logarithm  is  tmity  ;    the  diffe- 
rential equation  (/)  becomes  then 

dh'    ,        ds'    ,     „       dz     ,^      ,., 

^  =  ̂ +"-^+"^-^-(^+^^*- 
By  supposing  s  very  small,  we  may  develope  the  last  term  of  this 

equation  into  a  series  ascending  according  to  the  powers  of  5'  which  will 

be  of  this  form,  ks'+ls''  + ,  &c. ;  i  being  greater  than  unity  ;  the  last 
equation  then  becomes 

at^  (It 

mt 

This  equation  multiplied  by  c~^.  (cos.  y?  +  y/_i.  sin.  yt),    and  then  in- 

tegrated, becomes  (7  being  supposed  equal  to  w^y^-   "'*_) 

Jl    f     -)        r  (Is'           f 
c«-jcos.   yt-\-^-\.   sin.    yt[.    j-T^- +  ("f- — rV— ^  •  ̂  C  = 

— l.J^'dt.  c^  ̂cos.  yt-\-\/—\..  sin.  7^.  ( — &c.t 

*  For  since  sf  =  C" — 1,  -77  =  A'i.^^  =  — ;jr  "^      .      ,,.  ■•'  ■\'\^V  - 
ds  ^    '  tLc""         n.(l+s)        ̂ ^    '        K'.(l-j-/)=' 

,  ,   ,  d's'  '^^     .  dz 
•.•the  equation   (I)  becomes ———  + w. -7-   +""^--77-'    (!+*)>    when   ̂     is  veiy (IZ  CtC  tto 

small  the  variable  part  of  the  last  temi  of  this  equation  may  be  expanded  into  a  series 

proceeding  according  to  the  ascending  powers  of  s',  for  substituting  in  place  of  s'  it  be- 
dz  ... 

comes  =  — -  .  c""*,  when  *•  is  very  small  s'  is  also  veiy  small,  as  is  evident  from  the  equa- 

tion s'  =  c'"  —  1  ".•  — p   =  the  sine  of  the  inclination  of  the  tangent  to  the  horizon  is 
ds 

very  small,  and  as  all  the  terms  which  occur  in  the  expression  -r— .  (l-f-^')'  are  very  small 

it  can  be  developed  in  a  series  of  the  form  given  in  the  text. 

f  Cos.yi+\^—\-  sin.  yi  =  c''  '^-' _      ggg   Lacroix  Traite  Elementaire,  No.  164.,) 

•••  by  substituting  c'''v~'  in  place  of  the  circular  function,  we  obtain 



PART  I.— BOOK  I.  67 

By  comparing  separately  the  real  and  imaginary  parts,  we  will  have 

els' 

two  equat
ions 

 
by  means

  
of  which

  
we  can  elimin

ate  
— —  ;  but   it   will  be 

k2 

&c.    If  we  multiply  both  sides  of  this  equation  by  dt,  and  then  partially  integrate,  we  shall have 

(the  integral  of  rf/c(l  +yV-i)'-  ̂   ̂ ,^(|+yvri)  *. 

substituting  this  value  of /rff'.c(-1+''v/-0f-  j^  jj^^  ggj,^jjj  ̂ ^^^jj  ̂ ^f  ̂1,^  preceding  inte- 
gral,  and  for  k  its  value  y«-4   ,  we  obtain 4 

=  (-^_;»yV=i.+  v'.y.'.<f/.c(r +VV^)')  __;.^,,,(|  +  '''^^)'-^,. 

If  we  substitute  for  cV %/ ̂   '•  its  value  cos.  yt+  ̂ ~,  si„.  .^,,  and  concinnate,  we  will  obtain 

^  *    (cos.y*+^Z:i.sin.yO(-^+a-vV=T).0=-^/^'^'/^^(^ 
(COS.y<.+  y^_l.  sin,  yt.)  &C. 
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sufficient  to  consider  here  the  following* 

—   <//  —Cm  ") 
c  8 .  — -  .  sin.  yt+c  - .  *'.  1  — .  sin.  yt  —  y.  cos.  yt.  > cit  ^  A  y 

z=  —  l.Js"  dt.c~^  .  sin.  yt — &c. 

the  integrals  of  the  second  member  being  supposed  to  commence  with  t. 

ds 
Naming  T  the  value  of  t  at  the  end  of  the  motion,  when  —r-  vanishes, 

at  that  instant  we  shall  have 

c       .  s'.<   sin.  yT — y.  cos.  yT.  <r  zz.  —  l-Js''.  dt.  c^  .  sin.  yt — &c. 

When  s'  is  indefinitely  small,  the  second  member  of  this  equation  va- 
nishes, when  compared  with  the  first,  and  we  shall  have  ; 

O  zz   sin.  yT — y.  cos.  yT,* 

*  As  the  imaginary  parts  of  this  equation  cannot  be  equated  \\ith  the  real  parts,  the 

real  and  imaginary  parts  must  be  compared  separately,  which  gives  two  distinct  ecjaations, 

the   part   of  this   equation  which   is    considered,  is  the   part   which   was   multiplied  by 

f  Partially  integrating  the  expression  — /.  fs'.c  —.  sin.  yt.dt-^  &c.  we  obtain 

I-        ̂   ,.      Im    ̂   ̂    ,  ,.        li    ̂   'JL  ,,•,,, 
  .     C    2    .COS.yi.  S'    7T-  f-C  2     •  (it.  COS.  yt.  s'   f.C  2     .  COi.yt.  S'~^  ds  , 

if  we  integrate  the  second  term  of  this  expression,  as  before,  we  shall  have 

lin      '^       .  „     ■     Im'^     ̂   m   ,     .  ,■      Imi        ̂      .  ,  -i  ,  , 
—  jr-;-    c  2  .   Sin.    yt.  s'  -\- -—:^  f.C  i    dt.sm.  yt.  s'-\--—-  fc  a.sm.  y/.  «'.      as', Zy  4y '  2y 

in  like  manner  the  integration  of  the  term  in  this  last  expression,  which  contains  dt,  would 

give  terms  of  the  same  foi-m   as   in  the  preceding   integral ;  consequently  the  value  of 
mt 

— I  f.s'  dt.c~T.  sin.  y<+&c.  cannot  be  exliibited  in  a  finite  number  of  terms;  but  if  the 

mt 

preceding  intervals  are  taken  from  i  r:  0  to  <  =  T,  then  the  value  of  — IJs.  cY.  dt.  sin. 
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consequently 

tang.  yT=  — IL, m 

and  as  the  time   T  is,  by  hypothesis  independant  of  the  arc  described. 

yt=0,  for  by  substituting  m  place  of  cos.  yTits  value  — -~  sin.   yT,  in  the  terms  where  ds 

"y 

occurs,  these  terms  in  two  succeeding  expressions  will  be  equal,  and  affected  with  contrary 

signs,  consequently  they  destroy  each  other ;  \nth  lespect  to  those  terms  which  are  free 

from  the  sign  of  integration  f,  we  may  remark  that  they  resolve  themselves  into  two  de- 

creasing geometric  series,  which  are  respectively  of  the  following  forms 

/  m     ,.        Im'^  mt       .       Im*  J!^    ,.    „        ,  .  „   . 
— .  cos.  yt.c  2  .  s'   -■  COS.  yt.c~.  s  +  — — r.  COS.  yt.c  2  .  /',  &c.  ad  mfinitum, 
y  iy^  lo.y* 

Im       .  '"I  Im^  ^  Im^        .  ^ 
—  "H— :•  sm.  yt.c.    ~.  «.-*■——.  sin.  yj.c  a  .  s' — ^^  ,  .  sm.  yt.c  2  . «"-|-&c. ad  infim'tum, Zy  Hy*  S^y" 

by  summing  these  series  they  come  out  equal  respectively  to 

I  Im 

y  mt  2y*  ">' 
cos. yt.c  »  .  s'i   —,  sin.  yt.c  2  .  /«,  by  substituting 

'    4y*  ^  4y» 
7)1 

for  cos.  yTits  value  — .  sin.  yT,  the  first  expression  becomes 

2y 

h, 

l  +  I^il 

4y- 

sin.  y  T^.c".  «',  which  is  equal  to  tlie  second  with  a  contrary  sign,  consequently 

7nt 

it  follows  that  whatever  be  the  magnitude  /; — ^.yi',-.  dtxT".  sin.  yt  =  0,  when  the  integral 
is  taken  from  f— 0  to  t=zT.  The  same  reasoning  applies  to  the  other  terms  of  the  series, 

which  contain  powers  of  s'  superior  to  i. 

I  being  independant  of  /,  if  it  is  equal  to  nothing  when  s'  is  very  small  it  will  be  al- 

mt 
ways  equal  to  nothing  ;  and  since  neither  sin.  yt,  nor  c  T  change  their  signs  from  f=0,  to 

mt t=.  T,  it  is  evident  that  the  evanescence  o{Js''.c~2.  sin.  yt  can  only  arise  from  I  being 

equal  to  nothing,  in  this  case  also  the  coefficients  of  the  powers  of  s'  greater  than  /'.  i.  e. 
the  subseqnent  terms  of  the  series  vanish. 
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this  value  of  tang.  yT  has  place  for  any  arc  whatever,  therefore  what- 

ever be  the  value  of  *',  we  have 

mt 

0=  /.//',  dt.c~.  sin.  7'/  +  &c. 

the  integral  being  taken  from  t—0  to  t=T.  If  we  suppose  s'  very 
small  the  second  member  of  this  equation  will   be  reduced  to  its  first 

mt 

term,  and  it  can  only  be  satisfied  by  making  /  =0  ;  for  the  factor  c~  . 
sin.  yt,  being  constantly  positive  from  /— 0  to  t=  T,  the  preceding 
integral  is  necessarily  positive  in  this  interval.  Therefore  the  tauto- 

chronism  is  only  possible  on  the  supposition  of 

ds' 

which
  

gives
  
for  the  equat

ion  
of  the  tauto

chron
ous  

curve
 

g.dz-=   (1— c       J 71 

In  a  vacuum,  and  when  the  resistance  is  proportional  to  the  velocity,  n 

*  Substituting  for  1+i'  its  value  C",  and  ds'  its  value  n.ds.C",  we  obtain 

n'^S-dz.      „..        , ,  _.       _  ,  k.ds 

n.ds.C^ 
1.2ns  =  ̂ (cnj  _  J  )     ._.  gj^  _  J±±    jl  —  c"""   i  ,    •.• 

when  the  body  moves  in  a  vacuo,  or  in  a  medium  of  wliich  the  resistance  is  proportional 

to  the  velocity,  n=zo  :•  gdz  —     '       (1 — c-"*)    =  ks.  — ,  but  if  we  express  c-"*  in  a  se- 

nes  Jt  becomes  =  l   ~-\   — — -,  &c.  •.•  the  general  expression  for 

*  n      \  ^1  1.2    ̂    1.2.3  ;     , 

when  7!  =  0,  lc.ds.s.     From  this  equation  it  follows  that  k  =    ,      ,  this  is  also  g.p  true, ds.s 

when  n  has  a  finite  value,  if  s  be  taken  very  small,  as  is  evident  from  the  preceding  series. 
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is  nothing ;  and  this  equation  becomes  g.dzz=.hs.ds  ;  which  is  the  equa- 

tion of  the  cycloid. 

It  is  remarkable  *  that  the  coefficient  n  of  the  part  of  the  resistance, 
which  is  proportional  to  the  square  of  the  velocity,  does  not  enter  into 

the  expression  of  the  time  T;  and  it  is  evident  from  the  preceding 

analysis  that  this  expression  will  be  the  same,  even  though  we  should 

add  to  the  expression  for  the  law  of  the  resistance,  which  has  been  given 
above,   the  terms, 

ds'    ,        ds*        c. p.      +  q   +  &c. 
'      dt'       ̂      dt 

If  in  general,   R  represents  the  retarding   force  along  the  curve,    we, 
shall  have 

s  being  a  function  of  t,  and  of  the  entire  arc  described,  which  conse- 
quently, is  a  function  of  t  and  of  s.  By  differentiating  this  last  function, 

we  obtain  a  differential  equation  of  this  form, 

dt 

V  being  a  function  of  /  and  of  s,  which,  by  the  conditions  of  the  pro- 
blem must  vanish,  when  t  has  a  determinate  value,  which  is  indepen- 

dant  of  the  whole  arc  described.     Suppose,  for  example,  V  ■=.  S.T,    S 

*  Since  the  value  of  T  is  the  same  when  the  terms  P.  —H  4.  n.  — ^  +  &c.  are  added 

rff  3    ̂  "    tit*    ' 

to  VI.  ——■  -}-  n.—— ,  it  follows  that  the  generality  of  the  conclusion  is  not  affected  by 

ds  ds^  (  ds  ̂  
substituting  m.  -7-+  n.  -— -   in  place  of  ip   ]  -7-  j  • 
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being  a  function  of  s  only,  and  T  being  a  function  of  t  only  ;   we  shall 
have 

d-s       „    dS     ds        „  dT        dS       ds^    ̂     ̂    dT    ̂  
=  1  .    — ; —  •   — r—    +    O.   =  .     —  -         +    *J«        ,      •  j 

dt"^  ds       dt  dt         S.ds       if  dt 

but  the  equation  — —    =  ST,   gives  t,  and  consequently  — —  equal  to  a 
dt  ^  at 

function  of   -,   which  function  we  will  denote  by  -—-,   4' »  tttt  i 

therefore  we  shall  have 

d's         ds'     {  dS         ,1    ds 

dt^        S.dt^ {f +  *(^)}  =  -^- 
Such  is  the  expression  for  the  resistance  which  corresponds  to   the 

ds 
differential   equation    —    =  ST;   and   it    is  easy  to  perceive  that  it 

involves  the  case  of  the  resistance  proportional  to  the  two  first  powers  of 

the  velocity,  multiplied  respectively  by  constant  coefficients.  Other 

differential  equations  would  give  different  laws  of  resistance.! 

*  S  being  a  function  of  x,  which  is  a  function  of  t,  tlie  differential  coeflacient  of  S,  with 

resDect  to  ̂   =  — '—  '—r  >  and  substituting  for  T  its  value    ̂   ,  ■  we  obtain •^  ds     dt  ii-as 

d^s  dS      ds"^         „    dT 

dt^  ~    S.ds    dt'  '    dt  ' 

f  In  the  precedhng  investigation  the  body  is  supposed  to  ascend  from  the  lowest  point, 

and  the  curve  which  then  satisfies  the  condition  of  tautoclironism  is  U7iiqtte  in  a  given 

medium ;  but  if  the  body  descended  from  the  highest  point,  then  it  would  oscillate  at  the 

other  side  of  the  point  where  the  tangent  was  horizontal,  and  the  problem  becomes 

somewhat  more  indeterminate,  in  this  case  k  may  be  announced  more  generally  thus  ;  to 

find  the  lines,  the  time  of  describing  which  will  be  given,  whatever  be  the  amplitude  of 

the  arcli  described  ;  the  discussion  of  this  problem  is  too  long  to  be  inserted  here,  the 

reader  will  find  a  complete  investigation  of  it  by  Euler  in  the  Transactions  of  the  Academy 

of  Petersburgh  for  the  years  1764  and  ITS*,  he  demonstrates  tiiat  the  arcs  at  each  side 

•f  the  lowest  poijit  are  not  necessarily  equal  and  similar,  however,  the  sum  of  these  arcs 
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is  proportional  to  the  square  root  of  the  vertical  coordinate,  •.•  the  curve  whose  length 
is  equal  to  the  sum  of  these  arcs  will  be  the  common  cycloid,  in  like  manner,  if  we  have 

the  differential  equation  of  one  of  these  arcs,  we  can  determine  the  differential  equation 

of  the  other ;  if  the  first  arc  be  a  cycloid,  the  second  will  also  be  the  arc  of  a  cycloid  : 

in  this  case  the  time  of  describing  each  of  the  cycloidal  arcs  will  be  constant,  howevef 

the  generating  circle  of  the  second  cycloid  is  not  necessarily  equal  to  that  of  the  first. 
If  we  combine  the  condition  of  tautochronism,  with  the  condition  of  the  two  branches  at 

each  side  of  the  lowest  point,  being  equal  and  similar,  the  curve   will  be  then  the  vulgar 

cycloid,  therefore  this  is  the  only  plane  curve  in  which  the  sum  of  the  times  of  the  ascent  and 

descent  is  always  the  same  in  a  vacuo  ;  but  this  property  belongs  to  an  indefinite  number  of 

curves  of  double  curvature  which  are  formed  by  applying  the  cycloid  to  a  vertical  cylinder  of 

any  base,  the  altitude  of  the  curve  above  the  horizon  remaining  the  same  as  before,  for  «* 
ds^  +  ds 

=:  -— =  c — 2gz, '.'  dt=  —  ,  consequently  the  value  of  t   depends   on  the   initial '^**  \/c—2gz 

velocity,  and  on  the  relation  between  the  vertical  ordinates  and  arc  of  the  curve  •.'  what- 
ever changes  are  made  in  the  curve  compatible  with  the  continuity,  the  value  of  dt  will 

not  be  changed,  provided  the  preceding  relation  remains ;  and  it  follows  conversel}',  that 
the  projection  of  any  tautochronous  curve  of  double  curvature,  on  a  vertical  plane,  will  be 

a  cycloid  with  a  horizontal  base. 

In  the  cycloid,  if  a  body  falls  freely,  the  accelerating  force  along  the  tangent  varies  as 

the  distance  from  the  lowest  point,  for  4*=4a2,  '•'  g--f-  (=  accelerating  force  =:  -^  ,  I Us  ^(t  J 

the  pressure  arising  from  gravity  =  g.  — —   ,  and  the  pressure  which  is  produced  by  the 

centntugai  torce — -  for  radius  of  curvature  =  I.kj  a{a — 2),  and  the  square  of 
2.\/(i(a — 2)  V     \         /  1 

the  velocity  =  'i-g-{a — r),  see  No.  9,  (the  coordinates  of  z  are  reckoned  from  the  lowest 
point ;)  it  follows  from  the  preceding  expression  that  the  ivhole  pressure  at  the  lowest  point, 

and  consequently  the  tension  at   this  point  of  a  body  vibrating  in  a  cycloid  is  r=  to  twice 

the  gravity. 

When  a  body  describes  a  cycloid,  the  accelerating  force  varies  as  the  distance  from  the 

lowest  point,  as  has  been  stated  above ;  and  if  a  body  was  solicited  by  a  force  varying 

according  to  this  law,  the  time  of  falling  to  the  centre  will  be  given,  for  we  have 

^  =  —  As  V  '^^2=  —  ̂-5  ■^.  •••  "'  =  —  -^«*  +  C,  v=0,  s  =  S,  V  Cz=AS',  ••• dJt  "i  at 

v=A.  ̂   s«_ii  &^  •*=  -7-.   ^,  V  ̂ */  =  arc.  cos.^,  and  when   s—O,    t=T V^  O      S*  i 
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32,—^  ,  consequently  the  time  of  descent  to  the  centre,  is  the  same  from  whatever  point, 

the  body  begins  to  fall.  From  the  preceding  expression,  it  follows,  that  the  time  of  de- 
scribing any  space  s,  varies  as  the  arc,  and  the  velocity  acquired  varies  as  the  right  sine. 

Se«  Princip.  Mat.  Prop.  38,  Book  1st. 
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CHAPTER  III. 

Of  the  equilibrium  of  a  system  of  bodies. 

13.  The  simplest  case  of  the  equilibrium  of  several  bodies,  is  that 

of  two  material  points  meeting  each  other  with  equal  and  directly  con- 

trary velocities ;  their  mutual  impenetrability  evidently  annihilates  their 
motion,  and  reduces  them  to  a  state  of  rest. 

Let  us  now  suppose  a  number  m  of  contiguous  material  points, 

arranged  in  a  right  line,  and  moving  in  its  direction  with  the  velocity 

u,  and  also  another  number  ?«'  of  contiguous  points,  disposed  in  the 

same  line,  and  moving  with  the  velocity  u',  directly  contrary  to  u,  so 
that  the  two  systems  may  strike  each  other ;  there  must  exist  a  certain 

relation  between  u  and  u',  when  both  the  systems  remain  at  rest  after 
the  shock. 

In  order  to  determine  this  condition,  it  may  be  observed  that  the  system 

m,  moving  with  the  velocity  u,  will  constitute  an  equilibrium  with  a 

single  material  point,  moving  in  a  contrary  direction  with  the  velocity 

mu  ;  for  every  point  of  the  system  would  destroy  in  this  last  point,  a 

velocity  equal  to  u,  and  consequently  the  m  points  would  destroy  the 

whole  velocity  mu ;  we  may  therefore  substitute  for  this  system  a 

single  point,  moving  with  the  velocity  mu.  In  like  manner  we  may 

substitute  for  the  system  m',  a  single  point  moving  with  the  velocity  m'u' ; 
now*  the  two  systems  being  supposed  to  constitute  an  equilibrium,  the 
two  points  which  are  substituted  in  their  place,  ought  to  be  also  in 

equilibrio,   therefore  their  velocities  must  be  equal  j  consequently  we 
L  2 

*  These  two  systems  of  contiguous  material  points,  may  be  supposed  to  represent  two 

bodies  M,  M',  of  different  masses,  equal  respectively  to  the  sum  of  all  the  ms,  and  in',s. 
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have    for   the    condition     of    the     equilibrium  of    the    two    systems, 

mu-^m'u'. 
The  mass  of  a  body  is  the  number  of  its  material  points,  and  the 

product  of  the  mass  by  the  velocity,  is  what  is  termed  its  quantity 

of  motion  ;  this  is  also  what  we  understand  by  the  force  of  a  body  in 

motion.  In  order  that  the  two  bodies,  or  two  systems  of  points  whicli 

strike  each  in  contrary  directions,  may  be  in  equilibrio,  the  quantities  of 

motion  or  the  opposite  forces  must  be  equal,  and  consequently  the  ve- 

locities must  be  inversely  as  the  masses. 

The  density  of  bodies  depends  on  the  number  of  material  points 

which  tliey  contain  in  a  given  volume.  In  order  to  determine  their  ab- 

solute density,  we  should  compare  their  masses  with  that  of  a  body  t 

which  has  no  pores ;  but  as  we  know  no  such  body,  we  can  only  deter- 

mine the  relative  density  of  bodies,  that  is  to  say,  tlie  ratio  of  their 

density,  to  that  of  a  given  substance.  It  is  evident  that  the  mass  is  in 

the  ratio  of  the  volume  and  density ;  therefore,  if  we  denote  the 

mass  of  the  body  by  M^  its  volume  by  C/",  and  its  density  by  D,  we 
shall  have  generally  M=  U.  D  ;  in  this  equation  the  quantities  AI,D,U, 
relate  to  the  units  of  their  respective  species. 

In  what  precedes,  we  suppose  that  bodies  are  composed  of  similar 

material  points,  and  that  they  only  differ  in  the  relative  situation  of 

these  points.  But  the  intimate  nature  of  matter  being  unknown,  this 

supposition  is  at  least  very  precarious,  and  it  is  possible  that  there 

may  be  essential  differences^  in  their  integrant  molecules.  Fortunately, 

the  truth  of  this  hypothesis  is  of  no  consequence  to  the  sci- 

ence of  mechanics,  and  we  may  adopt  it  without  any  apprehension  of 

7  Distilled  water,  at  its  greatest  density,  is  the  substance  which  has  been  selected  for 
the  term  of  comparison,  as  being  one  of  tlie  most  homogeneous  substances,  and  tliat  which 

may  be  readily  reduced  to  a  pure  state. 

X  By  the  integrant  molecules  of  bodies,  as  contradistinguished  from  their  constituent 

parts,  we  understand  those  which  arise  from  the  subdivision  of  the  body,  into  minuter  por- 

tions ;  by  the  constituent  parts  are  understood  the  elementary  substances  of  which  a  body 

it  composed. 
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error,  provided  that  by  similar  material  points,  we  understand  points 

which,  when  they  meet  with  equal  and  opposite  velocities,  mutually  con- 

stitute equilibrium,  whatever  their  nature  may  be.* 
14.  Two  material  points,  of  which  the  masses  are  m  and  »/,  can  only 

act  on  each  other  in  the  direction  of  the  line  joining  them.  Indeed,  if 

the  two  points  are  connected  by  a  thread  passing  over  a  fixed  pully, 

their  reciprocal  action  cannot  be  directed  along  this  line  ;  but  the  fixed 

j)ully  may  be  considered  as  having  at  its  centre  a  mass  of  infinite  den- 
sity, which  reacts  on  the  two  bodies,  so  that  their  mutual  action  may  be 

considered  as  indirect. 

Let  p  denote  the  action  which  is  exerted  by  in  on  rri  by  means  of  the 

right  line  which  joins  them,  which  line  we  suppose  to  be  inflexible  and 

without  mass.  Conceive  this  line  to  be  actuated  by  two  equal  and  op- 

posite forces  p  and  —  p ;  the  force  — p  will  destroy  in  the  body  m  a  force 
equal  top,  and  the  force/? of  the  right  line  will  be  communicated  entirely 

to  the  body  rri.  This  loss  of  force  in  m,  occasioned  by  its  action  on  m', 

is  termed  the  reaction  of  m' ;  therefore  in  the  communication  of  motions, 
the  reaction  is  ahvays  equal  and  contrary  to  the  action.  It  appears  from 

observation  that  this  principle  obtains  for  all  the  forces  of  nature.! 

*  It'  there  be  actually  essential  differences  in  the  integrant  molecules,  then  it  is  noc 
inconsistent  to  suppose,  with  some  philosophers,  that  the  planetary  regions  are  filled  with 

a  very  subtle  fluid  destitute  of  pores,  and  of  such  a  nature  as  not  to  oppose  any  resist- 

ance to  the  motions  of  the  planets.  We  can  thus  reconcile  the  permanency  of  these 

motions,  which  is  evinced  by  observation,  with  the  opinion  of  those  philosophers  who 

regard  a  vacuum  as  an  impossibility  ;  however  the  plenum,  for  which  De-Cartes  contended, 

is  not  confirmed  by  the  preceding  hypothesis,  as  he  held  that  all  matter  was  homogeneous, 

and  that  the  ether,  which,  according  to  him  filled  the  planetary  regions,  differed  from 

other  substances  only  in  the  form  of  the  matter.  See  Princip,  Math.  Book  2,  Prop.  4-0 ; 

Exper.  l*,  and  Book  3,  Prop.  6,  Cor.  2  and  3  ;  Newton's  Optics,  Queiy  18;  and  Systeme 
de  Monde,  page  166.  However,  as  extension  and  motion  are  the  only  properties  which 

are  taken  into  accoimt  in  Mechanics,  it  is  indifferent  whether  matter  be  considered  as  ho- 

mogeneous or  not. 

f  This  equahty  does  not  suppose  any  particular  force  inherent  in  matter,  it  follows  ne- 

cessarily fi-om  this,  that  a  body  cannot  be  moved  by  another  body,  without  depriving  this 
body  of  the  quantity  of  motion  which  is  acquired  by  the  first  body,  in  the  same  manner 

as  when  two  vessels  communicate  with  each  other,  one  cannot  be  filled  but  at  the  expense 
of  the  other. 



78  CELESTIAL  MECHANICS, 

Let  us  suppose  two  heavy  bodies  m  and  m'  attached  to  the  extremities 
of  an  horizontal  right  line,  supposed  to  be  inflexible  and  without  mass, 

which  can  turn  freely  about  a  point  assumed  in  this  right  line.  In  order 

to  conceive  the  action  of  those  bodies  on  each  other,  when  they  are  in 

equilibrio,  we  must  suppose  the  right  line  to  be  bent  by  an  indefinitely 

small  quantity  at  the  assumed  point,  so  as  to  be  formed  of  two  right 

lines,  constituting  at  this  point  an  angle,  which  differs  from  two  right 

angles  by  an  indefinitely  small  quantity  w.  Let  J'  andj'  represent  the 

distances  of  m  and  m'  from  the  fixed  point ;  if  we  resolve  the  weight  of 
m  into  two  forces,  one  acting  on  the  fixed  point,  and  the  other  directed 

towards  nz',  this  last  force  will  be  represented  by    ̂   ,  g  being 

the  force  of  gravity.     In  like  manner  the  action  of  ni  on  m  will  be  re- 

presented  by  — '^       .  ,  the  two  bodies  constituting  an  equilibrium, 

these  two  expressions  will  be  equal,  consequently  we  will  have 

7n/=m'J"  ;  this  gives  the  known  law  of  the  equilibrium  of  the  lever, 
and  at  the  same  time,  enables  us  to  conceive  the  reciprocal  action  of  pa- 

rallel forces. 

Let  us  now  consider  the  equilibrium  of  a  system  of  pointsactuated  by  any 

forces  whatever,  and  i-eacting  on  each  other.  Let^representthe  distance  of 

m  from  ni  \f'  the  distance  of  m  from  m\f"  the  distance  of  wj'  from  /«",  &c. 

*  Gravity  must  be  distinguished  from  weight ;  the  weight  of  a  bedy  is  the  product  of  the 
gravity  of  a  single  particle^  by  the  number  of  particles. 

If  we  conceive  a  line  drawn  from  the  fixed  point,  parallel  to  the  direction  of  gravity,  meet- 

ing a  line  connecting  ni  and  ?»',  this  last  line  will  be  q.'p.,  horizontal,  and  therefore  perpen- 

dicular to  the  vertical  line,  which  will  *.•  be  equal  toy  multiplied  into  the  sine  of  the  angle 
whichy makes  with  the  horizontal  line,  but  as  the  sides  are  as  the  sines  of  the  opposite 

angles,  we  liave  the  sine  of  the  angle  whichy  makes  with  the  horizontal  line,  to  the  sine  of 

u,  or  its  supplement,  as,  f':f-{-J'  •.■  it  is  equal  to  :i-^ — j^:=q.p.-4——-,,nowi£tiie  weight 

be  represented  by  the  vertical  line,  then  mg  divided  by  sine  of  the  angle  whichy  makes 

with  the  horizontal  line,  i.  e,  — '^     .,        ■     will  be  the  force  in  the  direction  of/. 

"J 
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also  let  p  be  the  reciprocal  action  of  mon  m' ;  p'  that  ofm  on  m'^ ;  p''  that 

of  m'  on  m",  &c.  and  lastly,  let  mS,  m'S',  rri'S",  be  the  forces  which  act 

on  m,  rri,  m'' ;  &c.  5,  /,  s",  lines  drawn  from  any  fixed  points  in  the  di- 

rection of  these  forces,  to  the  bodies  m,  m',  rd\  Sec. ;  this  being  premised, 
we  may  consider  the  point  m  as  perfectly  free,  and  in  equilibrio  in  con- 

sequence of  the  action  of  the  force  mS,  and  of  the  forces,  which  the 

bodies  m,  ni,  m\  communicate  to  it ;  but  if  it  was  subjected  to  move  on 

a  curve  or  on  a  surface,  it  would  be  necessary  to  add  to  these  forces,  the 

reaction  of  the  curve  or  of  the  surface.  Therefore,  let  Ss  be  the  varia- 

tion of  s,  and  let  S^  f,  denote  the  variation  of  y,  taken  on  the  supposition 

that  rri  is  fixed.  In  like  manner  let  S^f,  be  the  variation  of ̂ ',  on  the 

supposition  that  iti'  is  fixed,  &c.  Let  i?,  B!,  represent  the  reactions  of 
the  two  surfaces,  which  form  by  their  intersection  the  curve  on  which  the 

point  is  constrained  to  move,  and  let  J'r,  Sr'  be  the  variations  of  the  di- 
rections of  these  last  forces.     The  equation  {d)  of  No.  3,  will  give : 

Qz=.mS.Ss  +p.S,f-\-  p'JJ'+kc.  +  mr  +  R'Sr'  +  &c. 

In  the  same  manner  m'  may  be  considered  as  a  point  perfectly  free,  re- 

tained in  equilibrio  by  means  of  the  force  niS',  of  the  actions  of 
the  bodies  m,  rri,  iri',  and  of  the  reactions  of  the  surfaces  on  which  ni 

is  constrained  to  move,  which  reactions  we  will  denote  by  R",  and  R". 

Let,  therefore,  the  variation  of  s'  be  called  Ss',  and  the  variations  of^  and/^', 

taken  on  the  supposition  that  m  and  m"  are  fixed,  be  respectively  S,,f, 

J,y"";  in  like  manner,  let  Sr",  Sr'",  be  the  respective  variations  of  the 
directions  of  R",  R'",  and  we  shall  have  for  the  equilibrium  of  ni 

O  =  m'S,  Ss'  +pJ„f+  f.SJ" + &c.  +  R'.Sr^'  +  R'aJr"'. 

If  we  form  similar  equations  relative  to  the  equilibrium  of  m'', 
and  ml",  &c.  by  adding  them  together,  and  observing  that 

ifv=i,f\i„f;iS'  =  lf^S,f',*  &c.   Sf,  and   Sf\   being  the  total 

•3/"=3^/'+3„/;  3/"' -  3,/'+S„/'/ +  &c. ;  for/ and  y  are  respectively  functions 
of  the  coordinates  of  their  extreme  points,  and  when  these  are  moved  by  an  indefinitely 

fmall  quantity,  all  the  powers  of  the  increments  of  the  coordinates,  after  the  first  may  be 

rejected,  and  then  the  entire  increment  of  _/  is  equal  to  the  sum  of  the  partial  incrementa 
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variations  ofyandy'+&c.  we  shall  have 

0=-z.m.SJs  +  xp.if-^j:RJr;  (k) 

in  this  equation,  the  variations  of  the  coordinates  of  the  different  point? 

of  the  system  are  entirely  arbitrary.  It  should  be  observed  here,  that 

in  consequence  of  the  equation  («)  of  No.  2,  we  may  substitute  in 

place  of  mS.Ss,  the  sum  of  the  products  of  all  the  partial  forces  by 

which  m  is  actuated,  multiplied  by  the  respective  variations  of  their 

directions.       The   same   may   be   observed   of   the   products   m'Sis'  ; 

If  the  distances  of  the  bodies  from  each  other  be  invariable,  i.  e.  if 

J^y',jr'''',  +  &c.  are  constant,  this  condition  may  be  expressed  by  making 
{/=0,  Sf'  =  0,  &c.  The  variations  of  the  coordinates  in  the  equation 
(k)  being  arbitrary,  they  may  be  subjected  to  satisfy  these  last  equations, 

and  then  the  forces  p,  p',p'',  &c.  which  depend  on  the  reciprocal 
action  of  the  bodies  composing  tl:e  system,  will  disappear  from  this 

equation  ;  we  can  also  make  the  terms  li.Sr,  R'Ji'.  •+  &c.  t  to  disap- 
pear, by  subjecting  the  variations  of  the  coordinates  to  satisfy  the  equa- 
tions of  the  surfaces,  on  which  the  body  is  constrained  to  move.  The 

equation  (/.)  will  then  become 

0=T.mS.Ss;  (I) 

from  which  it  follows  that  in  case  of  equilibrium,  the  sum  of  the  varia- 

which  are  due  to  the  separate  variation  of  each  coordinate,  ••■  the   entire  variation  of  y 
is  equal  to  the  sura  of  the  partial   variations,  which  correspond  to  the  characteristics  3, 
and  i^. 

*  From  this  it  appears,' that  the  conditions  of  the  equilibrium  of  a  system  of  bodies,  may 
be  always  determined  by  the  law  of  the  composition  of  forces ;  for  we  can  conceive  the 

force  by  which  each  point  is  actuated  to  be  applied  to  the  point  in  its  direction,  where  all 

the  forces  concurring,  constitute  an  equilibrium  when  the  point  is  entirely  free,  or  which 

constitute  a  resultant,  which  is  destroyed  by  the  fixed  points  of  the  system,  when  the  point 

is  not  altogether  free, 

f  See  Notes  to  No.  3. 

Tlie  equation  (/)  obtains,  whether  the  points  are  all  free,  or  are  subjected  to  move  o* 
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tions  of  the  products  of  the  forces,  into  the  elementary  variations  of 

their  directions  will  be  equal  to  nothing,  whatever  changes  be  made  in 

the  position  of  tlie  system  compatible  with  the  conditions  of  the  con- 
nection of  the  parts  of  the  system . 

We  have  arrived  at  this  theorem,  on  the  particular  supposition  of  the 

parts  of  the  system  being  at  invariable  distances  from  each  other ;  how- 

ever it  is  true  whatever  may  be  the  conditions  of  the  connection  of  the 

parts  of  the  system.  In  order  to  prove  this,  it  will  be  sufficient  to  shew 

that  when  the  variations,  of  the  coordinates,  are  subjected  to  those  con- 

ditions, we  have  in  the  equation  (Z,) 

0  =  I..p.Sf-^I..R.h- ; 

but  it  is  evident  that  Sr,  Si^,  &c.  are  equal  to  nothing,  when  these  con- 
ditions are  satisfied  ;  therefore  it  is  only  necessary  to  prove  that  in  the 

same  circumstances  we  liave 

0  =  i:.p.Sf. 

Let  us  therefore  suppose  the  system  actuated  by  the  sole  forces 

j9,  pf,  p,  &c.  and  that  the  bodies  are  subjected  to  move  on  the  curves, 

which  they  can  describe  in  consequence  of  the  same  conditions  ;  these 

forces  may  be  resolved  into  others,  some  of  which  q,  q',  q",  &c. 

acting  in  the  direction  of  J,'  J',  f",  &c.  will  mutually  destroy  each 
other,  without  producihg  any  action  on  the  curves  described ;  others 

will  be  perpendicular  to  those  curves ;  and  others  again  will  act  in  the 

direction  of  tangents  to  those  curves,  by  the  action  of  which  the  bodies 

may  be  moved ;  but  it  is  easy  to  perceive  that  the  sum  of  these  last 

forces  ought  to  be  equal  to  nothing  ;  since  the  system  being  by  hypothe- 
sis at  liberty  to  move  in  their  directions,  they  are  not  able  to  produce 

either  pressure  on  the  curves  described,  or  reaction  between  the  bodies ; 
M 

curved  smfaces ;  in  the  former  case,  the  forces  S,  S',  S",  constitute  an  equilibrium ; 
in  the  latter  case,  these  forces  have  a  resultant,  of  which  the  direction  is  perpendicular  to 

the  surface.    (See  Note  to  page  17.) 

0*- ro 
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consequently  they  cannot  constitute  an  equilibrium  with  the  forces 

— P' — P'f — F^'t  ̂^'  y>  ?'»  I"y  ̂^-  T,  T',  T" ;  therefore  they  must  vanish, 
and  the  system  must  be  in  equilibrio  in  consequence  of  the  sole  forces 

py—p',—p",  &c. ;  q,  q',  q",  &c. ;  T,  T',  &c.  Now,  if  Si,  Si',  &c.  repre- 
sent the  variations  of  the  directions  of  the  forces  T,  T',  Sec.  we  shall 

have  in  consequence  of  the  equation  (A-) 

0  =  l.(q—p)Jf  +  i:.TJi ; 

but  the  system  being  supposed  to  be  at  rest,  in  consequence  of  the  sole 

action  of  the  forces  q,  q',  &cc,  without  any  action  being  produced  on  the 

curves  described,  the  equation  (/c)  gives  us  also  0  —  l.qJJ';*  conse- 
quently we  have 

0  =  ■s:.pJf—I,.TJi ; 

but  as  the  variations  of  the  coordinates  are  subjected  to  satisfy  the  con- 

ditions of  the  curves  described,  we  have  Si,  =  0,  Si',  =  0,  &c. ;  therefore 
the  preceding  equation  becomes 

O  =.  l.p.Sf;f 

as  the  curves  described  are  themselves  arbitrary,  and  are  only  subjected 

to  the  conditions  of  the  connection  of  the  system,  the  preceding  equa- 

tion obtains,  provided  that  we  satisfy  these  conditions,  and  then  the 

equation  (k)  will  be  changed  into  the  equation  (/).  The  following 

principle,  known  by  the  name  of  the  principle  of  virtual  velocities,  when 

analytically  expressed,  is  represented  by  this  equation.     It  is  thus  an- 

*  0:=  2  y.S/,  for  q,  q,  q",  are  directed  along  the  lines  yjy'.y"";  and  are  supposed  to 
destroy  each  other  without  producing  any  action  on  the  curves  described. 

f  The  object  of  the  second  part  of  this  demonstration  is  to  shew,  that  if  the  system  is 

at  rest,  and  acted  on  by  the  sole  forces  /),  //,  ■p"-,  these  forces  may  be  so  decomposed  as  to 
afford  forces  equivalent  to  the  reciprocal  actions  of  the  respective  bodies,  and  that  the 

remaining  portions  of  the  forces,  as  well  as  these  reciprocal  actions,  will  balance  each  other, 

in  case  of  etjuilibrium,  according  to  the  terms  of  the  proposition. 

Since  the  equation  {k\  is  reduced  to  the  equation  (/),  when  we  subject  the  variations  of 

tlie  coordinates  to  satisfy  the  equations  of  the  surfaces,  on  which  the  bodies  are  con- 

strained to  move,  it  follows  that  it  is  not  necessary  to  compute  the  forces  f,  p,  &c.  in  order 

to  derive  the  equations  of  equilibrium  in  each  particular  case. 
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nounced:  "  If  we  make  an  indefinitely  small  variation  in  the  position* 
of  a  system  of  bodies,  which  are  subjected  to  the  conditions  they  ought 
to  fulfil,  the  sum  of  the  forces  which  solicit  it,  multiplied  respectively  by 

the  space  that  the  body  to  which  it  is  applied,  moves  along  its  direction, 

should  be  equal  to  nothing  in  the  case  of  the  equilibrium  of  the  system." 
This  principle  not  only  obtains  in  the  case  of  equilibrium,  but  it  also 

insures  its  existence.  Let  us  suppose,  in  fact,  that  whilst  the  equa- 

tion (0  obtains,  the  points  m,  m',  &c.  acquire  the  velocities  v,  v',  in 

consequence  of  the  action  of  the  forces  mS,  m'S',  which  are  applied  to 
them.  The  system  will  be  in  equilibrio  in  consequence  of  the  action  of 

these  forces,  and  of  — 7nv,  — m'x/,  &c. ;  denoting  by  Sv,  ix/,  &c.  the 
variations  of  the  directions  of  these  new  forces,  we  shall  have  in  con- 

sequence o£  the  principle  of  virtual  velocities 

0  =  l.mS.SS'—^.mvJv, 

but  by  hypothesis  l.mS.Ss.zzO,  therefore  we  have  0=l.mv.5v.  We  may 

suppose  the  variations  Sv,  Sx/,  &c.  equal  to  v.dt,  i/dt,  &c.  since  they  are 

necessarily  subjected  to  the  conditions  of  the  system,  and  then  we  have 

0  =  I,.mv\  and  consequently  v=0,  v'  =  0,  &c.  that  is  to  say,  the  system 

is  in  equilibrio  in  consequence  of  the  sole  forces  mS,  m',S',  &c. 
The  conditions  of  the  connection  of  the  parts  of  the  system  may  be 

always  reduced  to  equations  between  the  coordinates  of  the  several  bo- 

dies. Let  M  =  0,  m'  =  0,  &c.  be  these  different  equations,  by  No.  3, 

we  can  add  to  the  equation  (Z),  the  function  xSu,  x'Suf,  &c.  or  l\hi ; 

\,  x',  being  indeterminate  functions  of  the  coordinates  of  the  bodies,  the 
m2 

*  When  an  indefinitely  small  change  is  made  in  the  position  of  the  system,  so  that  the 

conditions  of  the  connections  of  the  points  of  the  system  may  be  preserved,  each  point 

advances  in  the  direction  of  the  force  which  solicits  it  by  a  quantity  equal  to  a  part  of  this 

direction,  contained  between  the  first  position  of  this  point,  and  a  perpendicular  deraitted 

from  the  second  position  on  this  direction  ;  these  indefinitely  small  hnes  are  termed  the 

virtual  velocities ;  they  have  been  denominated  vertual,  because  the  system  being  in 

equilibrio,  these  changes  may  obtain  without  the  equilibrium  being  disturbed. 
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equation  will  then  become 

0  =  I..mS.Ss-\-I,.xSu  ;* 

in  this  case  the  variations  of  all  the  coordinates  are  arbitrary,  and  we  may 

equal  their  coefficients  to  nothing ;  which  will  give  as  many  equations, 

by  means  of  which  we  can  determine  the  functions  x,x'.  If  we  com- 
pare this  equation  with  the  equation  {k)  we  shall  have 

l.xJu  =  l.pJf+l.RJr; 

by  means  of  which  we  can  easily  determine  the  reciprocal  actions  of  the 

bodies  m,  m',  &c.  on  each  other,  and  also  the  forces  — R, — R',  with  which 
they  press  against  the  surfaces  on  which  they  are  constrained  to  move. 

15.  If  all  the  bodies  of  the  system  are  firmly  united  to  each  other, 

its  position  will  be  determined  by  that  of  three  of  its  points  which 

are  not  in  the  same  right  line ;  the  position  of '  each  of  these  points  de- 
pends on  three  coordinates  ;  this  produces  nine  indeterminate  quan- 

tities ;  but  we  can  reduce  them  to  six  others,  because  the  mutual  dis- 

tances of  the  three  points  are  given  and  invariable ;  these  being  sub- 

stituted in  the  equation  (/)»  will  introduce  six  arbitrary  variations  ;  by 

supposing  their  coefficients  to  vanish,  we  shall  obtain  six  equations, 

which  will  contain  all  the  conditions  of  the  equilibrium  of  the  system  : 

let  us  proceed  to  develope  these  equations.! 

*  By  means  of  the  formulae  which  are  given  in  the  notes  to  No.  S,  page  H  and  15,  we 

can  determine  A,  >! ,  &c.  when  S,  S^,  S*,  are  given  for  each  individual  point ;  and  there- 

fore ;;,  p,  p",  k,  k',  ¥,  by  means  of  the  equation  2.A. Jie  =  l.p^f-^-  'S.R.^r ;  in  the  equa- 
tion Z  ?n.SJ«-f- 2.  a.5m,  m,  m',  m",  &c.  may  be  considered  as  entirely  free ;  and  if  we  put 

the  coefficients  of  the  variation  of  each  variable  equal  to  nothing,  and  then  eliminate  the 

indeterminate  quantities,  A,  /',  A-^,  &c.  between  these  equations,  the  expressions  which  re- 
sult, will  give  the  relations  which  must  exist  bstween  S,  Sf,  S",  &c.  and  the  coordinates, 

when  the  system  is  in  equilibrio. 

f  It  follows  immediately,  from  the  demonstration  of  the  principle  of  virtual  velocities, 

that  it  has  place  for  all  the  indefinitely  small  motions  which  can  be  given  to  a  solid  body, 

which  is  either  free  or  constrained  to  certain  conditions,  for  in  all  these  motions  the  re- 

spective  distances  of  the  points  of  the  body  remain  the  same. 
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For  this  purpose,   let  x,  y,  z,  be  the  coordinates   of  m ;   x',  i/,  ̂, 

those  of  m' ;  x",  y",  z",  those  of  m''^ ;   &c. ;   we  shall  have  then 

f'=  x/{^'^—x)*+(i/"—i/)*+iz'-zy 

and  if  we  suppose 

ix  =  jy  =  sjo"  =  &c. 

$y  =  Sy  =  Sy"  —  &c. ; 

Sz  —  Sz'  =  Sz''  =  &c. ; 

we  shall  have  $f=  0,  Sf'=  0,  Sf^^=^  O,  &c.  j*  the  required  condi- 
tions will  therefore  be  satisfied,  and  from  the  equation  (/)  we  may  infer 

we  have  thus  obtained  three  of  the  six  equations,  which  contain  the 

conditions  of  the  equilbrium  of  the  system.  The  second  members  of 

these  equations  are  the  sum  of  the  forces  of  the  system,  resolved  pa- 

rallel to  the  three  axes  of  x,  y,  and  z,  therefore  each  of  these  sums 

must  vanish  in  the  case  of  equilibrium. 

And  as  the  number  of  the  equations  of  equilibrium,  which  are  derived  from  the  principle  of 

virtual  velocities,  is  always  equal  to  the  number  of  possible  motions,  this  number  being  equal 

to  six,  in  the  case  of  a  solid  body,  or  of  a  body  whose  parts  are  invariably  connected,  the 

number  of  equations  of  equilibrium  will  be  six  in  like  manner. 

consequently  when  3x'=5x,  3j/'=;3y,  Sz'=h,  &c.  Sy=0,  therefore  2m.S.  -j  —  |  =  0, 

2^.S,  S  ̂  I  =  0.  &c. ;  for  when  ix=i3f  -  Jx" ;  iy—^Z^y ;  3^  ==  ?-'  =  ̂^'=  ̂'^-  • 
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The  equations  Sf^  =0,  if'  =  0,  $/"==  0,  &c.  will  be  also  satisfied, 

if  we  suppose,  z,  z',  z",  invariable,  and  then  make 

Sx  =  ySw  ;  Sy  =  — x.Jw  ; 

Saf  —  yi.iu,  &c.  iy  ==  — x'.Su,  &c. 

SiAt  being  any  variation  whatever.     By  substituting  these  values  in  the 

equation  (/)»  we  shall  have 

.0  =  ..„*.|^.(|)_,.(|)|. 

It  is  evident  that  we  may,  in  this  equation,  change  either  the  coor- 

dinates  x,  x',  x",  &c.  or  the  coordinates  y,  y',  y",  &c,  into  z,  z\  z", 
which  will  give  two  other  equations,  and  these  reunited  with  the  pre- 

ceding equation,  will  constitute  the  following  system  of  equations  : 

«=x»,5.^^.(A)_,.(|.)^i 

2i».S.3*=:0,  is  equivalent  to  SmS.   S  -i  \  .S^  —  0,  2mS.   ̂   -j^  | .  J^  =  0, 

2.OT.S.  -!  y-  f  -'^  :;^0.     See  Note  to  No.  2,  page  9. 

*  In  like  manner,  if  we  suppose,  3x=y.3«r,  'ixzzy'^n,  Sy  =  — «?«,  3y:=  — x'i»,  'if,  If, 
&c.  =  0,  for  substituting  in  the  preceding  expression  for  'if,  which  has  been  given, 
for  >x,  ix',  iy,  'iy,  and  it  becomes 

^  (xW).0,'-y)  +  (y-3,).(x-xO  ̂ ^^  ̂ ^^  j^^p^ 
By  substituting  in  the  equation,  lm,Sis:z.O,  for  2x,  iy,  &c.  their  values  it  becomes 

-M» -11 -'{-¥}'-=»■ 
When  all  the  forces  are  applied  to  the  same  point,  the  three  first  equations  suffice  for 

the  equilibrium ;  but  when  these  forces  act  in  different  points  of  space,  or  when  they  are 
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by  No.  3,  the  function  smSi/.] — i  is  the  sum  of  the  moments  of  all 

the  forces,  parallel  to  the  axes  of  x,  which  would  cause  the  system  to 

c  is  ̂  

revolve  about  the  axis  of  z.     In  Hke  manner,  the  function  ̂ m.S.r.)  ■—[ 

is  the  sum  of  the  moments  of  all  the  forces  parallel  to  the  axes  of  i/, 

which  would  cause  the  system  to  revolve  round  the  axis  of  z,  but  in  a 

direction  contrary  to  that  of  the  former  forces ;  therefore  the  first  of  the 

equations  CnJ  indicates  that  the  sum  of  the  moments  of  the  forces  is 

nothing  with  respect  to  the  axis  of  z.  The  second  and  third  equations 
indicate,  in  a  similar  manner,  that  the  sum  of  the  moments  of  the  forces 

is  nothing  with  respect  to  the  axes  of  ̂   and  x,  respectively.  If  we  com- 

bine these  three  conditions  with  those,  in  which  the  sum  of  the  forces  pa- 

rallel to  those  axes,  was  nothing  with  respect  to  each  of  them ;  we  shall 

have  the  six  conditions  of  the  equilibrium  of  a  system  of  bodies  inva- 

riably connected  together.* 
If  the  origin  of  the  coordinates  is  fixed,  and  firmly  attached  to  the 

system,  it  will  destroy  the  forces  parallel  to  the  three  axes,  and  the 

conditions  of  the  equilibrium  of  the  system  about  this  origin,  will  be 

reduced  to  the  following,  that  the  sum  of  the  moments  of  the  forces 

which  would  make  it  turn  about  the  three  axes,  be  equal  to  nothing, 

with  respect  to  each  of  them. t 

applied  to  different  parts  of  the  same  solid  body,  it  is  also  requisite  that  the  moments  of 

the  forces  with  respect  to  axis  of  x,  y,  and  z,  should  be  respectively  equal  to  nothing. 

*  If  all  the  points  exist  in  the  plane  of  x,  y,  then  3z,  J2',  Si",  are  equal  respectively  to 
nothing,  consequently  the  equations  of  equilibrium  are  reduced  to  the  three  following  : 

..,.s.{^|  =0,  ...-...{^jro.  -..s.{,.(|)}  -^.(l-j} 
f  When  the  origin  of  the  coordinates  is  fixed  and  invariably  attached  to  the  system, 

the  number  of  possible  motions  is  reduced  to  three,  therefore  the  number  of  equations 

of  equilibrium  will  be  three ;  this  also  appears  from  considering  that  the  number  of  inde- 

terminate quantities  may  be  reduced  to  three,  because  the  distances  of  any  three  assumed 

points  in  the  system,  not  existing  in  the  same  right  line,  from  the  fixed  origin  of  tht 
coordinates,  are  given. 
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f  In  this  case,  the  resultant  of  all  the  forces  which  act  on  the  body  passes  through  the 

fixed  pomt,  which  resultant  is  therefore  destroyed  by  the  resistance  of  the  fixed  point, 

and  it  expresses  the  force  with  which  this  point  is  pressed.  (See  last  note  to  No.  3.) 

WTien  there  are  two  points  of  the  system  fixed  and  invariable,  then  the  only  possible  motion, 

which  can  be  impressed  on  the  body,  is  that  of  rotation,  about  the  line  joining  the  given 

points,  consequently  if  this  line  be  taken  for  the  axis  of  z,  there  will  be  but  one  equation 

of  equilibrium,    i.  e.  ̂ .mS.  ̂   i/.  (-5—)  —  x.  ( -r—)  \  =  0,  this  is  also  manifest  from  the 

circumstances  of  the  indeterminate  quantities,  wliich  were  six  in  number  when  there 

was  no  fixed  point,  being  reducible  to  one,  when  the  origin  of  the  coordinates,  and  also 

another  point  of  the  system,  were  fixed  and  invariable.  The  forces  parallel  to  the  axes  of 

z  cannot  produce  any  motion  in  the  s)'stem,  ".'  it  is  only  necessary  to  consider  those 

which  exist  in  the  plane  of  x,  ̂  ;  and  as  to  those,  it  is  evident,  fi'om  the  equation 

2m. S.  -'  „.  (-r-)  —  X.  f  J-)  j-  =  0;  that  their  resultant  passes  through  the   origin  of 

the  coordinates,  its  direction  will  be  perpendicular  to  the  axis  of  z,  and  its  intensity  will 

express  the  force  with  which  it  presses  on  this  axis.  When  the  number  of  fixed  points  is 

three,  there  is  evidently  no  equation  of  equilibrium. 

If  the  forces  S,  S',  S'',  &c.  do  not  constitute  an  equilibrium,  in  order  to  reduce  them 
to  the  least  possible  number,  we  should  resolve  them  into  three  systems  of  forces,  parallel 

respectively  to  the  axes  of  x,  oiy,  and  of ;:,  then  reducing  the  forces  parallel  to  the  axes 

of  X,  and  ̂ ,  to  forces  —  to  them  respectively,  but  acting  in  the  same  plane,  which  is 
always  possible,  if  this  last  system  of  forces,  and  also  the  forces  parallel  to  the  axis  of  z, 

have  separately  unique  resultants ;  and  if  these  resultants  exist  in  the  same  plane,  we  can 

compose  them  into  one  sole  force,  which  will  be  the  resultant  of  the  given  forces  ;  but  if 

the  forces  directed  in  the  plane  x,  y,  can  only  be  reduced  to  two  parallel  forces,  not  re- 

ducible into  one,  then  if"  we  combine  them  with  the  force  parallel  to  the  axis  of  z,  the  en- 
tire system  of  forces,  will  be  reduced  to  two  parallel  ones  acting  in  different  planes,  conse- 

quently irreducible  into  a  unique  force.      Denoting 

S.m.S.  |-^l  ;  S.m.S.  |.^|  ;  2.)n.S.  | -i-  i,   by  P,    Q,  R;   respectively,  and 

-X.    fii}].    2...S.  |,.]^}   -=.{^}},   by   L,    M,N.,,x„  ,,    be 
the  coordinates  of  that  point  in  which  the  resultant  of  all  the  forces  meets  the  plane  of 

the  axes  of  x,  y,  we  shall  have  by  the  last  note  to  No.  3,  P.y,,  — Qx^,  n  L ;  Ra^., 
M  N 

=  M;  — Q.y^,  —  N;   therefore    x.,   =   — tt-;  v.,  =:  —    „  >    substituting    thtse  ex- R  R 

pressions    for  x^  and  y^,  In  the  equation  P-y,,  —  Q-x/,  =^  L,  we  will  obtain  the  equa- 
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•tion  L.R+M.Q-{-N.P^O,  which  may  be  considered  as  an  equation  of  condition 

which  must  be  satisfied,  when  the  forces  which  act  on  the  different  points  of  the  system, 

have  an  unique  resultant.  We  must  however  except  the  case  where  P,  Q,  R,  are  res- 

pectively equal  to  nothing;  for  then  the  forces  are  reducible  to  two  parallel  forces  zz.,  but 

not  directly  opposed  to  each  other.  If  only  P,  and  Q  vanish,  then  in  order  that  the 

preceding  equation  may  be  satisfied,  it  is  necessary  that  L  should  vanish,  consequently 

since  P,  Q,  and  L  vanish,  the  forces  which  are  directed  in  the  plane,  .r,  y,  constitute  an 

equilibrium,  •.•  the  unique  resultant  of  the  forces  S,  S',  S",  &c.  must  be  the  same  with  the 
resultant  R,  of  the  forces  parallel  to  the  axes  of  z,  •.'  we  conclude  that  if  L  does  not 
vanish  when  P  and  Q  vanish,  the  forces  have  not  an  unique  resultant,  since  the  forces 

in  the  plane  of  x,  y,  are  in  this  case  evidently  irreducible  to  one  sole  force ;  if  however 

only  one  of  the  three  sums  P,  Q,  R,  vanish,  then  the  forces  in  the  plane  .r,  i/,  and  those 

parallel  to  the  axes  of  z,  would  have  respectively  unique  resultants,  consequently  the  pre- 

ceding equation  of  condition  would  apply  to  this  case. 

When  the  forces  have  an  unique  resultant,  it  is  very  easy  to  determine  its  position 

with  respect   to   the  coordinates,  for  if  we  denote  this  resultant   by  V,  we  shall  have 

V^  ̂   P'-\-Q^-\- R-,  and—jT-,  —,   —    =  the  cosines  of  the  angles  which   V  makes 

with  the  axes  of  x,  y,  and  z,  respectively,  and  — — ,   —  ,  are  the  distances  of  the  in- H  R 

tersection  of  V  with  the  plane  of  x,  y,  trom  the  axes  of  j:  and  y,  respectively. 

Supposing  the  system  to  revolve  round  the  axis  of  z,  the  elementary  varia- 

tions of  X  and  y,  Sic.  are  r:  respectively  to  y'^a,  — rSa ;  if  y  be  made  the  axis 

of  rotation,  and  J<p  the  variation  of  the  angle,  then  we  shall  have  5x  —  — z.'^p  ;Jz  =  -\- 

x.'i^ ;  in  like  manner,  x  being  the  axis  of  rotation,  and  34-  the  corresponding  va- 

riation of  the  angle,  «!y  =  -^-z.l^ ;  iz  =  — y,'^^  ;  &c. ;  now  if  the  three  rotations  be  sup- 
posed to  take  place  together,  we  shall  have  the  entire  variation  of  x=y.Su — z.Jip,  of 

y  :=  z.i-^  —  x.^ai  of  z  =  x-isp — y-i^^,  and  similar  expressions  may  be  derived  for  the  va- 

riations of  x',  y,  z',  x",  &c. ;  now  if  we  substitute  these  values  for  Jx,  ̂y,-i-  &c.  in  the 

equation  flj,  we  shall  have  the  equation  L2<p-^-  M.J-J/,  A'.S<a=:0,  L,  M,  N,  indicating 
the  same  quantities  as  before ;  this  equation  is  evidently  equivalent  to  the  equation  (?i) ; 

when  the  coordinates  x,  y,  z,  of  any  point  of  the  system  are  proportional  to  the  elementaiy 

variations  i^,  S.p,  S«,  ;:  ̂^=y.Su,  z.Sij'  =  ̂ ^^>  x2p  z=.y'^^. 
And  consequently  Sa-  :=  0,  Sy  =^  0,  Jz  ̂   0  ;  '."  this  point  and  all  others  which  have 

the  same  property  are  immoveable,  during  the  instant  the  point  describes  the  angles  3^, 

^,  S«,  by  turning  round  the  axes  of  x,  y,  and  z ;  all  points  possessing  this  property  exist 

in  a  right  line  passing  through  the  origin  of  the  coordinates,  see  No.  28,  as  the  cosines 

of  the  angles  m,  n,  I,  which  this  hne  make  with  the  axes  of  x,  y,  and  2,  are 

■=  in  this  case 
/   r   in  mis  waBc  — ^-===;;^^=:= 

V     S« t-  -i:t-+ 

d±   -i .   .y  _  C   Sf   } 

N 
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Let  us  suppose  that  the  bodies  m,  m',  m",  are  subject  to  the  sole  force 

S   ii   I 

:•  the  right  line  which  makes  with  the  axes,  angles  whose  cosines  are  equal  to  those  ex- 
pressions, is  the  locus  of  all  the  points,  which  are  quiescent  during  the  instantaneous  ro- 

tation of  the  system.  Making  S«=-y/3<P+5^'-|-S«*,  we  obtain  i4>  =  S«.  cos.  m\  ̂ p  ~  J*. 

cos.  n  ;  S«  =  S«.  cos.  ̂ ;  consequently  Sx  =  {y.  cos.  l—z.  cos.  w).  Sfl;  ij/ =  (z.  cos.  m — 

X.  cos.  /.)  ̂6 ;  Ss.  =  (x.  COS.  71 — 7/.  cos.  m.)  ̂S,  substituting  for  Sx,  Si/,  h,  these  values  in  the 

expression  Sx*  +  Sy*-)"^2^>  which  is  equal  to  the  indefinitely  small  space  described  by  the 

point  whose  coordinates  are  x,  y,  z,  and  observing  that  cos.* /  + cos.'  j«-)-cos.^  n=  1, 

it  becomes  equal  to  {x*-\-i/^+z^ — (x.  cos.  m-\-y  cos.  }i-\-z.  cos.  l.y).  Ss^  x.  cos.  l-\-y. 
cos.  m+z.  cos.  n.  is  proportional  to  the  cosine  of  the  angle  which  the  line  whose  coordi- 

nates are  x,  i/,  z,  makes  with  the  right  line  which  makes  the  angles  /,  in,  n,  with  the 

axes  of  X,  y,  z,  '.'  when  the  line  drawn  from  the  origin  of  the  coordinates  to  the  point 
whose  coordinates  are  x,  y,  z,  is  perpendicular,  to  the  instantaneous  axis  of  rotation,  the 

elementary  space  described  by  a  point  so  circumstanced  —  ̂x»-)-^*  -f-z-.  Ss,  tliis  agrees 
with  what  is  demonstrated  in  No.  28.  If  we  suppose  d^,  2p,  Sv,  proportional  to  Z,,  A/,  A^, 

and  make  H  =  ̂  L^  +  M'+N',  then 

L        S^)/  M       S(p  N       iu  , 
~7y  =  -rr  =  COS. m  ;    ——-=  -r—  =   cos.   n.   -—  =  -r—  =  COS  I. H        Ss  H         Si  H        Se 

■••  1'  =  H.cosm;  M  =  H.  cos.  n;  N  =  H.  cos.  I;  •••  if  //  =  i,  m  =  0,  n  =  100°, 
/  =  100° ;  •.•  L,  the  moment  of  the  force  is  a  maximum  when  =  H,  and  the  moments 

whose  axes  are  perpendicular  to  the  axis  of  H,  will  be  equal  to  nothing.  Tliis  will  be  more 

•fially  explained  in  Nos.  21,  and  28,  it  is  mentioned  here  in  order  to  shew  how  the  conditions 
of  the  equilibrium  of  a  solid  body  may  be  expressed  by  means  of  the  greatest  momt?nt,  and 

unique  resultant;  if  this  resultant,  and  this  moment  respectively  vanish,then  ij»=0,  H=0, 

i.  e.  P,Q,R ;  L,M,N,  which  are  equivalent  to  the  equations  (j»)  (re),  are  equal  re4)ectively 

to  nothing  ;  consequently  the  evanescence  of  H  and  R  contains  the  six  equations  of  the 

equilibrium  of  a  system,  whose  parts  are  invariably  connected ;  and  as  by  No.  3,  the  sum 

of  the  moments  of  the  composing  forces  with  respect  to  an  axis,  is  equal  to  the  moment 

of  the  projection  of  the  resultant  of  these  forces  ;  this  resultant  must  necessarily  exist  in 

that  plane,  in  which  the  moment  is  the  greatest  possible,  •.•  the  perpendicular  to  tliis  plane 

L     M     N 
must  be  at  right  angles  to  the  resultant,  consequently,  as  — —  ,  —ry,  -77  ,   are   equal   to H      H      H 

the  cosines  of  the  angles  which  the  axis  of  the  greatest  moment  make  with  the  axis  of 
P      Q      It 

X,  y,  and  z,  and  as  -rrr-,  —  ,  —  ,    are   equal   to   the  cosines  of  the  angles  which    V,  the 

unique  resultant  makes  with  the  same  axes  ;  by  note  to  No.  2,  page  7,  we  have  LR+MQ 

+  NP=^0,  wliich  is  the  equation  indicating  that  the  forces  have  an  unique  resultant 
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of  gravity,  as  its  acts  equally  on  all  bodies  ;  and  as  we  may  con- 
ceive, tiiat  its  direction  is  the  same,  for  all  the  bodies  of  the  system, 

we  shall  have 

S,  =S',  =  S^=8cc.; 

whatever  may  be  supposed  the  direction  of  s,  or  of  the  gravity,  we 

shall  satisfy  the  thi'ee  equations  C^J'  by  means  of  the  three  following  :* 

O  =  S.m.-y ;  O  =  l,.m.i/  ;  0  =  ̂ .m.z ;  Co  J 

N  2 

•  The  force  of  gravity  being  uniform,  and  the  direction  of  its  action  being  always  the 

sa™e,5=S'=S'-&c.;|-^}={|;[=&c.{^}={|,},  (for  these  quan. 

ties    I  -r-  I    &c.  indicate  the  cosines  of  tlie  angles  which  the  directions  of  gravity  makes 

with  the  three  coordinates,)  the  three  equations  (n)  may  be  made  to  assume  the  following 
form : 

they  are  satisfied  by  means  of  the  three  following:  0=2.mx;  0=^S.my ;  0=^2.mz.     The 
equations  (m)  will  be  reduced  to  the  following 
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The  origin  of  the  coordinates,  being  supposed  fixed,  it  will  destroy 

parallel  to  each  of  the  three  axes,  the  forces 

by  composing  these  three  forces,  we  shall  obtain  an  unique  force,  equal 

to  S.T.m.  i.  e.  to  the  weight  of  the  system. 

This  origin  of  the  coordinates  about  which  we  suppose  the  system  in 

equilibrio,  is  a  very  remarkable  point  in  it,  on  this  account,  that  being 

supported,  the  system  actuated  by  the  sole  force  of  gravity  remains  in 

equilibrio,  whatever  position  it  may  be  made  to  assume  about  this  point, 

which  is  from  thence  denominated  the  centre  of  gravity  of  the  system. 

Its  position  may  be  determined  by  this  property,  that  if  we  make  any 

plane  whatever  pass  through  this  point,  the  sum  of  the  products  of  each 

body,*  by  its  distance  from  this  plane,  is  equal  to  nothing ;  for  this 

S         5         S 

these  forces  admit  a  resultant,  see  note  to  pace  89,  and  as  -r— ,  .^ ,  -^ ,  are  equal  to  the ex     dy     dz 

cosines  of  the  angles  which  its  direction  makes  with  the  axes  of  .r,  of  y,  and  of  z,  com- 

bining those  three  expressions,  the  resultant  is  evidently  =  to  Sim  ;  consequently  the  force 

with  which  the  fixed  origin  is  pressed,  in  this  case  equals  the  weight  of  the  bodies  com- 

posing the  systems.     S.lm.  answers  to  the  expression  tng.  in  the  first  note  to  page  78. 

It  follows  from  note  to  page  88,  that  the  resultant  of  all  the  forces  must  pass  through  the 

ori^n  for  2,rax  ;  l.my ;  2,n?2 ;  are  equal  respectively  to  nothing.     If  another  point  in  the 

system  \)e$ides  the  centre  of  gravity  was  fixed,  then  0  =  S.\  —  V  i.my   r— .  l.mz.  > 

is  the  sole  equation  of  equilibrium  ;  in  this  case  the  fixed  axis  of  rotation  must  be  vertical. 

*  If  Ax' -{■  By'-\-Cz'=  0,  be  the  equation  of  a  plane  passing  through  the  centre  of  gra- 
vity, the  cosines  of  the  angles  which  this  plane  makes  with  the  plane  of  the  axes  x  y,  of 

X  z,  and  of  y  z,  respectively,  i.  e.  the  cosines  of  the  angles  which  a  perpendicular  to 

this  plane  makes  with  th,e  axis  of  .r,  and  of  y,  of  2  = 

ABC 

see  LacroLx,  tom.  1.  No.  269, 

in  like  manner  the  cosines  of  the  angles,  which  lines  drawn,  from  the  point,  whose  coor- 

dinates are  x,  y,  z,  make  with  the  axes  of  x,  of  y,  and  of  z, 
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distance  is  a  linear  function  of  the  coordinates  x,  y,  z,,  of  the  body ; 
consequently  by  multiplying  it  by  the  mass  of  the  body,  the  sum  of 

these  products  will  be  equal  to  nothing  in  consequence  of  the  equa- 
tions.    CoJ 

In  order   to  determine  the  position   of  the  centre  of  gravity,  let 

X,  Y,  Z,  represent  its  three  coordinates  with  respect  to  a  given  origin  j 

let  x,  y,  z,  be  the  coordinates  of  m  with  respect  to  the  same  point ; 

'Z',  y',  z',  those  of  m',  &c.  the  equations  (oj  will  then  give 

O  =  x.m.(r — X.) 

but  we  have  s.w.X=Xz.w,  ■z.m  being  being  the  entire  mass  of  the 
system,  therefore  we  have 

y       7:.m.x 

we  shall  have  in  like  manner 

s.wi.j/  ^.m.z 

j   ̂   — 

s.w     '  -z.m    ' 

:•  by  note  to  No.  2,  page  7,  the  cosine  of  the  angle  which  the  perpendicular  to  the  given 
plane,  makes  with  the  line  whose  coordinates  are  x,  y,  z, 

  xA+yB +zC 

xA+yB+zC 
let  this  angle  =  a  and  ̂ /x=-f^^+s»  x  cos.  a'=  ./^a  i  P2  , /-z    =  ̂ ^^  distance  ot 
the  point  from  the  given  plane,  consequently,  the  sum  of  all  the  distances  multiplied  res- 

pectively into  their  masses 

A.  ̂ .mx-\-B.  J.my+  C.  S.wz 

in  consequence  of  the  equation  (o). 
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thus,  as  the  coordinates  X,  Y,  Z,  determine  only  one  point,  it  follows 
that  the  centre  of  a  system  of  bodies  is  an  unique  point. 

The  three  preceding  equations  give 

this  equation  may  oe  made  to  assume  the  following  form  :* 

the  finite  integral  s»zwj'[(y — or)*  +  (?/' — y)*+(:' — s)']  expresses  the  sum 
of  all  the  products  similar  to  that,  which  is  contained  under  tlie  charac- 

teristic s,  and  which  is  formed  by  considering  all  the  combinations  of 

*  The  square  of  the  sum  of  any  number  of  quantities,  being  equal  to  the  sum  of  the 

squares  of  tho.-e  quantities,  and  twice  the  sum  of  tUt;  products  of  all  the  binary  combi- 

nations of  the  different  quantities,  we  iiave 

(2(m.r))  '  =  2()n^.T^ )  -|-2  ̂ [mm'.xx) ;  Smm/.  (x — x')') 

denotes  the  products  which  are  obtained,  by  taking  on  one  part  all  the  binary  combinations 

of  the  bodies  mm ,  &c.  in  which  the  quantities  mm  are  affected  with  different  accents,  and 

then  multiplying  these  by  the  square  of  (x — x),  in  which  the  terms  have  respectively  the 

same  accents  as  tlie  bodies  which  they  are  multiplied  by,  thus  2.(x — x')'  =  r^4-x'^-)-x*^  + 

&c. — 2xx' — 2xx" — 2x'x" — &cand  ̂ {mm'  x — .t'y)  =  mm'x'+mm'j/^  -\-mm".x'  4-  nim"^"^  + 

m'm"x'^-j-ni'ni'..i"'-^-S:c.  — Imm'xx  — Imn'xx"  — Im'm"  xfx"  ;  &c.  zz'S^mm'.x') 

— 22(  )H///'.(xx'))  and  as  2(mx*)  =,  mx*  +jn'x'^  +m"x"^  +&c.  2(ot^-  ).  2m. 

=(jnx^+w't'*-;  m''2x"»  I    &c.)-(»n+w'+''-f  m"'-t-&c.)  ■=:m-x^  +  m"'x"--\-m"^x"'  +&c, 

+  mmx-  -f-mHj'x'+jwm'x''  +m"7n'.c'^-^7nm".x'''  ■f-m'm'.x"^ -\-&c.  =2(m*x')4. 

2(wm'x2)  •.•  (_;„.i)  =  =  2(wn  =  )+  22(mm'xa')  =  2(mx*).   2w — 2(»nm'x') — 2.ram'.(x— j;*)' 

-j-2;wm')x^)  ==  2(inx-).2m  — 2OTm'(x — x  )-,  (by  substituting  lor  2(«i»r^)  its  value 

2()nx")2m — 2'wm'.(x^;,  and  for  25(?wm'.xx').   its  value  2(mni'.(x2),)  — 2(^mm'.{x — x')\) 
•-•  the  value  of  Jt* 

(Smx)'  (2»nx')        'Smm'^x — x)' 
(2jnj*   ""      im  (2?h)«        ' 

we  might  derive  corresponding  expressions  for  Y^,  and  Z*. 
This  method  gives  the  position  of  the  centre  of  gravity  of  any  body  of  a  given  fonn> 

•without  being  obliged,  to  refer  the  position  of  its  molecules  to  coordinate  planes. 
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the  different  bodies  of  the  system.  We  shall  thus  obtain  the  distance 

of  the  centre  of  gravity  from  any  fixed  point,  by  means  of  the  dis- 
tances of  the  bodies  of  the  system,  from  the  same  fixed  axis,  and  of  their 

mutual  distances.  By  determining  in  this  manner  the  distance  of  the 

centre  of  gravity  from  any  three  fixed  points,  we  shall  have  its  position 

in  space  ;  which  suggests  a  new  way  of  determining  this  point. 

The  denomination  of  centre  of  gravity  has  been  extended  to  that 

point,  of  any  system  of  bodies,  either  with  or  without  weight,  which 

is  determined  by  the  three  coordinates  X,  Y,  Z. 

16.  Is  is  easy  to  apply  the  preceding  results  to  the  equilibrium  of  a 

solid  body  of  any  figure,  by  conceiving  it  made  up  of  an  indefinite 

number  of  points,  firmly  united  together.  Therefore  let  dm  be  one  of 

these  points,  or  an  indefinitely  small  molecule  of  the  body,  and  let 

X,  y,  z,  be  the  rectangular  coordinates  of  this  molecule ;  also  let 

P,  Q,  R,  represent  the  forces  by  which  it  is  actuated  parallel  to  the 

axis  of  r,  of  J/,  and  of  z,  the  equations  (w?)  and  (ri)  of  the  preceding 

number  will  be  changed  into  the  following : 

0  =fP.dm  ',  O  =fQ.dm  ;   0  ̂ fR.dm-* 

0  ̂ /C-Pi*— Q-^)-  dm  ;  0  =f{Pz—Rx).  dm  ;  O  =f{Ry—Qz).  dm ; 

The  sign  of  integration  f  is  relative  to  the  molecule  dm,  and  ought  to 
be  extended  to  tlie  entire  mass  of  the  solid. 

*  5  "V~  f  being  the  cosine  of  the  angle  which  the  direction  of  the  force  S  makes 

with  the  axis  of  x,  S.  )  —  >  =  the  force  resolved  parallel  to  the  axis  of  x,  •••  it  is  equal  to 

P;  and  as^.m=/dm,   2m.  -S.^-r^f  =/  P.dm,  and  since  2.S.  ̂ -^i.i/m=fPi/.dm; OX  t   0X 

^.m.S.  {  y-  {  ^  }  -  ̂ -  {  -^  }  =/  {P})-  Q^)  dm,  &c. 
From  the  values  which  have  been  given  in  the  text  for  the  coordinates  of  the  centre  of 

gravity,  it  is  manifest  that  the  position  of  this  centre  remains  unaltered,  whatever  change 

may  take  place  in  the  absolute  force  of  gravity,  •.•  when  bodies  are  transferred  from  one 
latitude  to  another  on  the  surface  of  the  earth,  though  the  absolute  weight  varies,  still  the 
position  of  the  centre  of  gravity  is  fixed. 
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If  the  body  could  only  turn  about  the  origin  of  the  coordinates,  the 
three  last  equations  will  be  sufficient  for  its  equilibrium.* 

*  When  any  system  of  homogeneous  bodies  is  in  equilibrio,  the  centre  of  gravity  is 
then  the  highest  or  lowest  possible  ;  this  is  immediately  evident  from  the  principle  of  virtual 

velocities,  for  let  the  weights  of  any  number  of  bodies  m,  ?h',  m",  be  denoted  by  S,  S',  S"» 

&c.  and  let  y,  s,  s",  &c.  represent  lines  demitted  from  the  centres  of  the  several  bodies 

m,  m',  m",  &c.  on  the  horizontal  plane;  now  if  the  position  of  the  system  be  disturbed  in 
an  indefinitely  small  degree,  we  shall  have,  when  the  bodies  of  the  system  are  in  equili- 

brio, the  equation  of  virtual  velocities 

Sh+  S'.h'+S.h"+&c.  =  0, 

consequently  the  quantity  of  which  this  expression  is  the  variation,  i.  e.  Si  +  S'«'-f-S'V'-t. 
&c.  (=  the  entire  weight  of  all  the  bodies  composing  the  system,  multiplied  by  the  distance 

of  the  centre  of  gravity  of  the  system  from  the  horizontal  plane,  =  s^.S.'^m.)  is  a  maximum 
or  mioimum,  and  as  the  weight  of  all  the  bodies  of  the  system  is  always  given,  the  distance 

of  the  centre  of  gravity  of  the  system  from  the  horizontal  plane  must  be  either  a  maximum 

or  a  minimum  when  the  system  is  in  equilibrio ;  this  being  established,  it  is  interesting  to 

know  the  equation  of  the  curve,  in  which  the  centre  of  gravity  is  lower  than  in  any  other 

curve  whose  points  of  suspension  and  length  are  given;  the'investigation  of  this  curve, 
which  is  termed  the  catenary,  is  very  easy,  it  occurs  in  all  the  elementary  treatises,  the 

differential  equationis  of  the  following  form  [i^-\-g).dx~g.  cos.  c.vdx'  -\-y'. 
It  might  be  proved  conversely,  that  when  the  distance  of  the  centre  of  gravity  from  an 

horizontal  plane  is  the  greatest  or  least  possible,  the  system  is  in  equilibrio,  for  we  shall 

have  SJ.<-(-i)'.Js'  + &/''3.^''/-^-&c.  =  G.S.« ,  =0,  however  there  is  an  essential  difference  be- 
tween their  states  of  equilibrium  ;  in  the  first  case,  the  equilibrio  is  denominated  instable,  in 

the  second,  it  is  termed  stable,  in  order  to  determine  these  two  different  states,  we  should 

attend  to  the  species  of  the  motion  when  the  centre  deviates  by  an  indefinitely  small  quan- 
tity from  the  vertical,  see  Xo.  30. 

*  In  Physical  and  Astronomical  problems,  the  method  that  is  generally  employed,  to 
determine  the  mean  value  between  several  observed  ones,  of  wliich  some  are  greater,  and 

some  less  than  the  true  one,  is  to  divide  the  sum  of  all  the  observed  values  by  their  number. 

Tliis  comes,  in  fact,  to    determine  the  distance  of  the  centre  of  gravity  from  a  given 

plane.     For  if  z,  z,  z",  &c.  represent  the  observed  quantities,  then    ,     &c. n 

is  the  expression  for  the  mean  value,  but  if  ̂,  2',  7!',  denote  the  distances  of  the  centres  of 

zm-\-z'mi-\-z"m."-\- 
gravity  of  n  masses,  equa  each  to  m  from  the  plane,  then    —   ,  arc.    = 
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the  distance  of  the  centre  of  gravity  of  the  system  of  in  masses  from  this  plane 

—  '"  ,  &c.  =  the  required  mean  value. 

If  several  forces  concurring  in  a  point  constitute  an  equilibrium,  then  supposing  that, 

at  the  extremities  of  lines,  in  the  directions  of  these  forces,  and  respectively  proportional 

to  them,  we  place  the  centres  of  gravity  of  bodies  equal  to  each  other,  the  common 

centre  of  gravity  of  these  masses  will'  be  the  point  where  all  the  forces  concur.  For 
since  the  forces  are  by  hypothesis  represented  by  lines  taken  their  direction,  and  con- 

curring in  one  point,  it  is  evident  that  by  making  this  point  tlie  origin  of  the  coordi- 

nates, we  shall  have  the  sum  of  the  forces  parallel  to  the  three  rectangular  axes  propor- 

tional to  2(j),  2(!/),  2(3),  these  sums  are  •••  by  the  conditions  of  the  problem  =  to  nothing, 

see  note  to  page  11 ;  and  since  the  masses  are  all  equal  we  shall  have  2(x).m  =  2(»a) 

=  0,  this  also  obtains  for  the  other  axes,  consequently  we  shall  have  2(ot.j-)  =  0,  ~{m^) 

=  0,  'Z{mz)  =  0,  •••  the  origin  of  the  coordinates  coincides  with  the  centre  of  gravity  of 
the  system  of  masses  respectively  equal  to  vi. 

The  centre  of  gravity  of  a  body,  oc  system  of  bodies,  is  that  point  in  space  from  which 

if  lines  be  drawn  to  the  molecules  of  the  body,  the  sum  of  their  squares  is  the  least  pos- 

sible. For  if  X,  Y,  Z,  represent  the  coordinates  of  such  a  point,  then  the  sura  of  the 

squares  of  the  distances  of  all  the  molecules  of  the  system  from  this  point  is  equal  to 

2((j; — X)  *-f-(y — ^*(z — Z)'^)>  'f  ̂ e  take  the  differential  of  tliis  expression  with  respect  to 
each  of  the  coordinates,  and  multiply  each  of  the  terms  of  the  sums  which  are  respec- 

tively equal  to  nothing,  by  the  element  of  the  mass,  we  shall  have  2.m.(.i- — .Y)  =  0, 
2.»7i.(^— Y)=0,  2.«4z— Z,)  =  0, 

...  A'=r  ̂ Oa^.   Y_  ̂^^  ■  Z—  ""'"  - 
2w  2»J    '  2ffi 

and  from  what  has  been  demonstrated  in  the  preceding  note  it  follows,  that  if  we  apply 

to  all  the  points  of  the  system,  forces  directed  towards  the  centre  of  gravity,  and  propor- 

tional to  the  distances  between  those  points  and  the  centre  of  gravity,  these  forces  will 

constitute  an  equilibrium ;  consequently  when  several  forces  constitute  an  equilibrium, 

the  sum  of  the  squares  of  the  distances  of  the  point  of  concoiu-se  of  these  forces,  from 
the  extremities  of  lines  representing  these  forces,  i.  e.  the  sum  of  the  squares  of  these 
Unes,  is  a  minimum. 

From  the  preceding  property  it  appears,  that  if  several  observations  give  different  values 

for  the  position  of  a  point  in  space,  the  mean  position,  i.  e,  the  position  which  deviates 

the  least  from  the  observed  positions,  is  that  in  which  the  sum  of  the  squares  of  its  dis- 

tances from  the  observed  positions  is  the  least  possible.  The  problem  is  altogether  similar 

when  we  wish  to  combine  several  observations  of  a7iij  kind  whatever;  for  the  distances  of 

the  points  correspond  to  the  differences  between  the  particular  results  and  their  mean 

value ;  and  since  it  is  impossible  entirely  to  exterminate  these  differences,  we  are  obliged  to 

select  a  mean  result,  such  that  the  sums  of  the  squares  of  these  differences  may  be  a  mi- 
O 
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niniuni ;  this  is  the  principal  of  the  method  of  the  least  squares,  which  was  devised  by 

Le  Gendre  to  combine  the  equations  of  conditions  between  the  errors  deduced  from  a. 

comparison  of  the  astronomical  tables  with  observation ;  it  comes  in  fact  to  find  the  centre 

of  gravity  of  the  observations  which  we  compare  together. 

The  general  form  of  the  equations  of  condition  is  as  follows : 

0  ~  a-\-bx-\-ci/-\-dz-\-&c.  when  we  pass  into  one  member  all  the  terms  which  com- 
pose them,  a,  b,  c,  are  given  numerical  coefficients,  if  all  these  equations  could  be  satis- 

fied exactly,  by  the  values  of  x,  y,  z,  their  first  members  would  be  necessarily  reduced  to 

nothing  by  substituting  for  x,  y,  z,  their  values,  but  as  this  substitution  does  not  render 

them  accurately  equal  to  nothing,  let  E,  E',  E",  represent  the  errors  which  remain,  then  we 

shall  liave  E—  a-\-bx-\-cy-\-dz-^&:z. ;  E~  a'-hi'x-f  c'y  +  i/'s-f&c. ;  E":=.a"  \V'x-\-c'iy^ 
&c.  the  quantities  x,  y,  z\  &c.  are  to  be  determined  by  tlie  condition  that  the  values 

E,  E',  are  either  nothing,  or  very  small ;  the  sum  of  the  squares  of  the  errors  := 

i;=-fii=+£'-4-&c.=  (a=-fa'--fa'''=4-&c.)-i-{i'+i'*+i''''*).x2+(c--f  (■'  =  -ff»'*-f&c.)/- 

-f.(rf*-ha!"- -\-dff '  -f  &c.)« '  -1-  ; 

2{abJro:b'^a"b"->r&c.)xJ(-  2  {acJra'c'+a"c«)y{-  2  {ad-\-dd'+a''d''-\-8cc.)z; 

■\-%bc+b'c' -\-b/'c"J^&c.)  xy-{-  ̂ (bd  +  b'd'-^b"d'/)-{-^z  +  &iC. 

the  minimum  of  this  expression,  with  respect  to  x,  will  be  0 

=  2.n6+x  'S-.h'^+y  l..bc^z.  2.M-f  &c. 

the  minimum  with  respect  to  j/  =  2.ac-|-x2.6c-|-y2c*-l- x.2.rfc=  0,  we  derive  a  cor- 
responding value  for  the  minimum  of  z,  hence  in  order  to  form  the  equation  of  the 

minimum  with  respect  to  one  of  the  unknown  quantities,  we  must  multiply  all  the 

terms  of  each  proposed  equation  by  the  coefficient  of  the  unknown  term  in  that  equa- 

tion, and  then  put  the  sum  of  the  products  equal  to  nothing.  Though  this  method 

requires  more  numerical  calculations,  in  order  to  form  the  particular  equation  relative 

to  each  unknown  quantity,  than  the  method  suggested  by  Mayer ;  it  is  more  direct  in 

its  application,  and  requires  no  tentation  on  the  resulting  equations.  Laplace  has  shenii 

in  his  Theory  of  Probabilities,  that  when  we  would  take  the  mean  between  a  great  number 

of  observations  of  the  same  quantity,  obtained  by  different  means,  this  is  the  only  method 

which  the  theory  permits  us  to  employ,  see  Le  Gendres  Memoir  on  the  determination  of 

the  orbits  of  the  comets,  ard  Biot's  Astronomic  Physique,  tome  2.  page  200. 
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CHAPTER  IV. 

Of  the  equilibrium  of  fluids. 

17»  In  order  to  determine  the  laws  of  the  equilibrium,  and  of  the 

motion  of  each  of  the  molecules  of  a  fluid,  it  would  be  necessary  to 

ascertain  their  figure,  which  is  impossible  ;  but  we  have  no  occasion  to 

determine  these  laws,  except  for  fluids*  considered  in  a  mass,  and  for 
this  purpose  the  knowledge  of  the  figures  of  their  molecules  is  useless. 

Whatever  may  be  the  nature  of  these  figures,  and  the  properties  which 

depend  on  them  in  the  integrant  molecules,  all  fluids,  considered  in  the 

aggregate,  ought  to  exhibit  the  same  phenomena  in  their  equilibrium, 

and  also  in  their  motions,  so  that  from  the  observation  of  these  pheno- 

mena, we  are  not  able  to  discover  any  thing  respecting  the  configura- 
tion  of  the  fluid  molecules.      These  general  phenomena   depend   on 

o2 

*  Although  the  figure  of  the  molecules  of  fluids  are  unknown  to  us,  still  there  can  be 

no  question  but  that  they  are  material,  and  consequently  that  the  general  laws  of  the  equili- 

brium and  motion  of  solid  bodies  are  applicable  to  them.  If  we  were  able  analytically  to 

express  their  characteristic  property,  to  wit,  extreme  smallness,  and  perfect  mobility,  no 

particular  theory  would  be  required  in  order  to  determine  tiie  laws  of  their  equilibrium  and 

motion  ;  they  would  be  then  only  a  particular  case  of  the  general  laws  of  Statics  and  Dy- 
namics. But  as  we  are  not  able  to  effect  this,  it  is  proposed  to  derive  the  theory  of  their 

equilibrium  and  motion  from  the  property  which  is  peculiar  to  them,  of  transmitting 

equally,  and  in  every  direction,  the  pressure  to  which  their  surface  is  subjected;  this 

property  is  a  necessary  consequence  of  the  perfect  mobility  of  the  molecules  of  the  fluids. 

In  the  definition  wliich  has  been  given  in  the  text  there  is  no  account  made  of  the  tena- 

city or  adhesion  of  the  molecules,  wloich  is  an  obstacle  to  this  free  separation  ;  this  adhe- 
sion exists  however  between  the  molecules  of  most  of  the  fluids  with  which  we  are  ac- 

quainted. 
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the  perpect  mobility  of  these  molecules,  which  are  thus  able  to  yield  to 

the  slightest  force  This  mobility  is  the  characteristic  property  of 

fluids ;  it  distinauishes  them  from  solid  bodies,  and  serves  to  de- 

fine  them.  It  follows  from  this,  that  when  a  fluid  mass  is'  in 
equilibrio  each  molecule  must  be  in  equilibrio  in  consequence 

of  the  forces  which  *  solicit  it,  and  of  the  pressures  to  which  it 
is  subjected  by  the  action  of  the  surrounding  particles.  Let  us 

proceed  to  develope  the  equations  whicii  may  be  deduced  from  this 

property. 

For  this  purpose,  let  us  consider  a  system  of  fluid  molecules,  consti- 
tuting an  indefinitely  small  rectangular  parallelepiped.  Let  x,  y,  z, 

denote  the  three  rectangular  coordinates  of  that  angle  of  the  parallele- 
piped, which  is  nearest  to  the  origin  of  the  coordinates.  Let  dx,  dy, 

dz,  represent  the  three  dimensions  of  this  parallelepiped  ;    let  p  repre- 

*  When  a  fluid  is  contained  in  a  vessel,  the  pressure  to  which  it  is  subjected  at  its  sur- 

t'ace  is  transmitted  in  every  direction,  as  has  been  just  stated,  but  since  the  molecules  ar^ 

material,  'they  must  have  weight,  therefore  it  also  presses  the  sides  of  the  vessel  with  a 
force  arising  from  the  weight  of  the  molecules,  and  different  in  every  point  of  the  sides ; 

and  if  the  fluid  is  contained  in  a  vessel  closed  in  every  side,  when  the  molecules  are  solicited 

by  any  given  accelerating  forces,  then  the  pressure  is  different  for  every  particular  point,  its 

direction  is  always  perpendicular  to  the  surface,  since  by  No.  3,  when  the  resistance  of  a 

surface  destroys  the  pressure  on  it,  the  direction  of  this  pressure  must  be  normal  to  the  sur- 

face. The  intensity  of  this  pressure  depends  on  the  given  forces,  and  on  the  position  of 

the  point. 

Therefore  it  appears,  that  in  the  equilibrium  of  a  fluid  contained  in  a  vessel,  the  entire 

pressure  in  each  point  of  the  sides  is  the  sura  of  two  pressures  altogether  distinct ;  one  of 

which  arises  from  the  pressure,  exerted  on  the  surface,  and  is  the  same  on  all  the  pomts ; 

the  other  is  owing  to  the  motive  forces  of  the  particles  of  the  fluids,  and  varies  from  one 
point  to  another. 

Fluids  are  generally  distinguished  into  two  classes,  incompressible,  and  elastic;  with 

respect  to  the  last  class,  they  may  press  against  the  sides  of  the  vessel  in  which  they  are 

enclosed,  although  no  motive  forces  act  on  the  particles,  or  without  any  pressure  urging 

the  surface  of  the  fluid.  For  from  their  elasticity  they  tend  perpetually  to  dilate  them- 

selves, which  gives  rise  to  a  pressure  on  the  sides  of  the  vessel  :  however  this  is  a  constant 

pressure  in  tlie  same  fluid ;  it  depends  on  the  matter  of  ll>e  fluid,  its  density  and  tem- 

perature. 
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seut  the  mean  of  all  the  pressures,  to  which  the  different  points  of  the 

side  dy.  dz  of  the  parallelepiped,  which  is  nearest  to  the  origin  of  the 

coordinates,  is  subjected  ;  and  let  f'  be  the  corresponding  quantity  on 
the  opposite  side.  The  parallelepiped,  in  consequence  of  the  pressure  to 

which  it  is  subjected,  will  be  urged  in  the  direction  of  x\  by  a  force 

equal  to  (j) — ;p')-  dy.dz  ;  p — p  is  the  difference  of  f,  taken  on  the  hy- 
pothesis that  .r  alone  is  variable  ;  for  although  the  pressure  f  acts  in  a 

direction  contrary  to  ̂ j,  nevertheless  the  pressure  to  which  a  point  is 

subject  being  the  same  in  every  direction,  p'*-p  may  be  considered  as 
the  difference  of  two  forces  infinitely  near,  and  acting  in  the  same  di- 

rection ;  consequently  we  have* 

p'^^zz  <  -J-^\.dx,  and  [p — p').  dy.  dz  =  —  \~J^  \'  ̂'^'  ̂ y'  ̂ ~' 

Let  P,  Q,  /»*,  be  the  three  accelerating  forces  which  solicit  the  mo- 
lecules of  the  fluid,  independently  of  their  connexion,  parallel  to  the  axe^ 

of  X,  of  y,  and  oi  z  ;  if  the  density  of  the  parallelepiped  be  denoted  by  />, 

its  mass  will  be  equal  to  p.  dx.  dy.  dz.  and  the  product  of  the  force  P  by 

this  mass,  will  represent  the  whole  motive  force,  which  is  derived  from 

•  Since  p,  5,  P,Q,Il,  generally  vary  from  one  point  to  another  of  the  fluid  mass,  tliey 
must  be  considered  as  functions  of  x,  7/,  z.  We  distribute  the  fluid  into  parallelepipeds,  in 

order  more  easily  to  express  in  analytical  language  the  fact  of  the  equality  of  pressure, 

which,  as  has  been  stated,  is  the  fundamental  principle  from  which  we  deduce  the  whole 

theory  of  thtir  equilibrium,  and  by  supposing  these  parallelepipeds  indefinitely  small,  we 

ite  permitted  to  consider  all  the  points  of  the  same  side  as  equally  pressed,  and  also 

^  >  Pt  Q,  R,  as  constant  for  each  side  respectively,  by  means  of  which  we  are  able  to 

detennine  the  pressure  p.  x,  y,  z,  being  the  coordinates  of  the  angular  point  next  the 

origin,  and  p  being  a  function  of  these  coordinates,  we  shall  have 

the  coefficient  )  ~-  [  =  <  -^  \  &c.  they  are  taken  negatively  because  they  tend  to 

diijamish  the  coordinates. 
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it ;   consequently  this  mass  will  be  solicited  parallel  to  the  axes  of  x\  by 

the  force  jpP—  f— f-1  C,  dx.dy.dz.     For  similar  reasons  it  will  be  so- (.  \  dx  SS 

licited  parallel  to  the  axes  of  j/,  and  of  a,  by  the  forces 

ip.Q — \-~-  5  f  .  dx.dy.dz.  and  S^.R — 1-^|^.  dx.  dy.  dz.    &c. 

therefore,  by  the  equation  [b)  of  No.  3,  we  shall  have 

or  ip  =  p(P.<J*4-Q.J;j/+ii.J^). 

The  first  member  of  this  equation  being  an  exact  variation,  the  second 

must  be  so  likewise  ;  from  which  we  may  deduce  the  following  equation 

of  partial  differentials,* 

I     dy    S~  I    dx    )'   I    dz     ̂       \    dx    f    I    dz     >~C    dy   i 

.  *  Wheng  (P.Jx+Q.Sy+/?.Ss.)  is  an  exact  difFerential,  |  — ^| — 1=  <  -~  \    &c. 

(see  Lacroix  Traite  Elementaire,  Calcul.  Differential  and  Integral,  No.  261.) 

'''~~clf"^  Ihj  dx     "^     dx     '       dz     "^     dz    ~    dx    "^    dx     ' 

SL—L  .  _^?:iL__  ±   1   i_Lj  if  we  multiply  the  first  equation  by  R,  the  second  by 
dz     ~     dz  dy  dy 

— Q,  and  the  third  by  P,  we  shall  obtain, 

^.R.dP:     JhP.d^        R-i-dQ        R.Q.d^  ^.Q.dP        Q.P.di  _        ̂ .Q.dR 

dy     ̂      dy  '  dx  dx       '  dz  dz  dx 

R.Q.d^     ̂ .P.dQ        P.QJj  _  ̂ .P.dR    I    R.P.di 

dx      '        dz  dz       '^       dy  dy      ' 
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from  which  we  may  obtain 

This  equation  expresses  the  relation  which  must  exist  between  the 

forces  P,  Q,  and  R,   in  order  that  the  equilibrium  may  be  possible. 
If  the  fluid  be  free  at  its  surface,  or  in  certain  parts  of  this  surface, 

the  value  of  p  will  be  equal  to  nothing  in  those  parts  5  therefore  we 

shall  have  Sp  z:  0,  provided  that  the  variations  Sx,  Sy,  iz,  appertain  to 
this  surface  ;  consequently  when  these  conditions  are  satisfied,  we  shall 
have 

O  =  PJx  +  QJy  +  RJz. 

If  Su  —  O,  be  the  differential  equation  of  the  surface,  we  shall  have 

PJx  +  QJt/  -jr  R.iz  =  \Ju, 

X  being  a  function  of  r,  1/,  z',  from  which  it  follows,  by  No.  3,  that 

by  reducing  all  the  terms  in  which  Jj  is  involved  to  one  side,  and  then  adding  them  toge- 
ther, we  get 

(  RMP        R.dQ        Q.dP    ,    Q.dR        P.dQ        P.dR 

y.      dy  dx  dz  dx  dz  dy 

_RP^       RQ.d^         QP.d^        RQ.d^        PQ.3g         RP.d^  _ 

dy     '^      dx       ■*■       dz      ~      dx     ~~      dz      +      dy      "^  ̂ * 
by  coacinnating 

This  equation  shews  whether  the  equilibrium  is  possible,  though  we  are  unable  to  as- 
certain the  density  ;. 
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the  resultant  of  the  forces  P,Q,R,*  must  be  a  perpendicular  to  those 
parts  of  the  surface,  in  which  the  fluid  is  free. 

Let  us  suppose  that  the  variation  P(}'x  4- Q.(r3/  +  i?.(?s;  is  exact,  this  is 
the  case  when  P,Q,R,  are  the  result  of  attractive  forces.  Denoting  this 

variation  by  J'<?,  we  shall  have  Sp  =  fS(p;  therefore  p  must  be  a  function 
oi p  and  of  9,  and  as  the  integration  of  this  differential  equation  gives  (p 

If  the  relation  indicated  by  this  equation  does  not  obtain  between  the  forces  P,  Q,  R, 

the  fluid  will  be  in  a  perpetual  state  of  agitation,  whatever  figure  it  may  be  made  to  as- 
sume ;  but  when  this  relation  is  satisfied,  the  equilibrium  will  be  possible,  and  vice  versa  ; 

and  as  P,Q,,R,  are  functions  of  the  coordinates,  we  can  integrate  the  expression  5.(P.Sx+ 

Q.Sy-[- J?.S;.)  by  the  method  of  quadratures,  by  means  of  which  we  can  find  the  value  of 

the  pressure  for  any  given  place  of  the  fluid  ;  consequently  we  can  obtain  the  force  with 

which  any  side  of  the  vessel  in  which  the  fluid  is  enclosed  is  pressed.  But  though  the 

relation  which  exists  between  the  forces  must  be  such  as  to  satisfy  the  preceding  equa- 

tion, when  there  is  an  equilibrium,  still  this  is  not  suflicient,  in  most  cases,  to  insure  the 

equilibrium,  for  the  fluid  must  also  assume  a  determined  figure,  depending  on  the  nature 

of  the  forces  P,  Q,  R,  which  solicit  the  molecules. 

*  When  an  imcompressible  fluid  is  free  at  its  surface,  and  in  a  state  of  equilibrium,  p 

must  vanish,  v  Sp—0,  if  the  fluid  is  elastic  this  condition  can  never  be  satisfied,  because  g 
being  proportional  to  p,  whilst  the  density  has  a  finite  value,  p  can  never  vanish.  When  p 

vanishes,  Or:J/^=P.Sx-{- Q.Sy-f  ii.Sx,  v  when  Sx,  S^,  3;:,  appertain  to  the  surface,  by  sub- 

stituting for  P,  Q,  R,  their  values,  the  resulting  expression  will  be  the  equation  of  the  sur- 

face. It  follows  from  No.  3,  that  the  resultant  of  the  forces  P,  Q,  R,  must  be  perpendi- 

cular to  the  surface ;  it  may  be  proved  directly  thus  : 

P  Q  R 

y/p^^a'-VR"  V/'^  +  Q-fA'*'  V P'  +  Q.''+R^' 

are  equal  to  the  cosines  of  the  angles,  which  the  resultant  makes  with  the  axes  of  x,  ofy, 

and  of  z,  but  since  P.Sx-j-Q.Jy+iJ.Jz,  is  the  equation  of  the  surface,  they  also  express 

the  cosines  of  the  angles  which  the  normal  make  with  the  same  axes  respectively ;  see 

Notes  to  page  li ;  consequently  the  normal  coincides  with  the  resultant.  This  coincidence 
of  the  resultant  with  the  normal  is  the  second  condition,  which  must  be  satisfied,  in  order, 

as  has  been  stated  above,  to  insure  the  equilibrium ;  and  it  is  this  condition  which  enables 

us  in  each  particular  case  to  determine  the  figure  corresponding  to  the  equihbrium  of  the 

fluid,  and  if  there  be  one  only  attractive  force  directed  tov.ards  a  fixed  point,  then  the  surface 

will  be  of  a  spherical  form,  the  fixed  point  being  the  centre  of  the  sphere  ;  if  this  point 
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in  a  function  ofp,  we  shall  have  p  in  a  function  of  />.  Therefore  the 

pressure  is  the  same,  for  all  molecules  whose  density  is  the  same  ;  thus  Jf> 
must  vanish  with  respect  to  those  strata  of  the  fluid,  in  which  the  density 

is  constant,  and  with  regard  to  these  surfaces,  we  have, 

0=PJx+QJy+RJz.* 

consequently,  the  resultant  of  the  forces,  which  solicit  each   molecule 
P 

be  at  an  infinite  distance  the  surface  will  degenerate  into  a  plane,  •••  if  the  planets  were 
1 

originally  fluid,  and  if  their  molecules  attracted  each  other  with  forces,  varying  as  -—  they 

would  assume  a  spherical  form.     See  No.  12,  Book  S**. 

•  If  P.3x-f-(J.Jy+/?.32is  an  exact  variation,  Sip,  Jprr^Jip,  •.•  j  must  be  some  function 
of  <p,  otherwise  it  would  not  be  an  exact  variation  ;  however,  the  form  of  this  function  is 

undetermined,  see  note  to  page  10,  consequently  p  will  be  a  function  of  ̂ ,  and  p 

and  {  will  be  the  same  for  all  those  molecules  in  which  the  value  of  (p  is  given,  i,  e.  for 

the  molecules  in  the  same  strata  of  level,  therefore  when  the  density  varies,  an  equili- 
brium cannot  subsist  unless  each  stratum  is  homogeneous  during  its  entire  extent ;  for 

when  this  is  the  case,  j,  and  consequently  p  is  the  same ;  •••  ̂ p  :x.  0,  for  the  surfaces  in 

which  5  is  constant,  •.•  for  such  surfaces  O^P.Jj^+ Q.5y-j-i2.Jz,  and  the  resultant  coin- 
cides with  the  normal.  If  we  integrate  the  preceding  equation,  by  putting  ip  equal  to  a 

constant  arbitrary  quantity,  we  derive  an  equation  which  appertains  to  an  indefinite  num  ■ 

ber  of  surfaces,  differing  from  each  only  by  the  value  of  this  constant  arbitrary  quantity. 

If  we  make  this  quantity  increase  by  insensible  gradations,  we  will  have  an  infinite  series 

of  surfaces,  distributing  the  entire  mass  into  an  indefinite  number  of  strata,  and  constituting 

between  any  two  successive  surfaces,  what  have  been  denominated  strata  of  Level.  The 

law  of  the  variation  of  the  density  5,  in  the  transit  from  one  strata  to  another,  is  altogether  ar- 

bitrary, as  it  depends  on  what  function  of  ip,  5  is,  but  this  is  undetermined.  It  appears  from 

what  precedes,  that  there  are  two  cases,  in  which  Sp  —  0,  when  it  is  at  the  free  surface,  in 
which  case  p  must  vanish  of  itself,  and  also  when  p  is  constant,  i.  e.  for  all  surfaces  of  the 

same  level,  consequently  when  the  fluid  is  homogeneous,  the  strata  to  which  tlie  resultant  of 

the  forces  is  perpendicular,  are  then  necessarily  of  the  same  density. 

When  the  fluid  is  contained  in  a  vessel,  closed  in  on  every  side,  it  is  only  necessary  that 

all  strata  of  the  same  level  must  have  the  same  density  ;  in  elastic  fluids,  the  first  condition 

to  wit,  that  p  should  vanish,  or  that  P.3j;-|-Q.Sy-|-i?.Jz— 0,  can  never  obtain,  v  unless 
this  fluid  extends  indefinitely  into  space,  so  that  {  may  be  altogether  insensible  it  cannot 

be  in  equilibrium,  except  in  a  vessel  closed  in  on  every  side. 



106  CELESTIAL  MECHANICS, 

of  the  fluid,  is  in  the  state  of  equilibrium,  perpendicular  to  the  spruces 

of  these  strata,  and  on  this  account  they  have  been  termed  strata  of 

level.  This  condition  is  always  satisfied,  if  the  fluid  is  homogeneous, 

and  incompressible,  because  then  the  strata,  to  which  this  resultant  is 

perpendicular,  are  all  of  the  same  density. 

For  the  equilibrium  of  an  homogeneous  fluid  mass,  of  which  the  ex- 

treme surface  is  free,  and  covers  a  fixed  solid  nucleus  of  any  figure 

whatever,  it  is  necessary  and  sufficient,  first,  that  the  variation  P5x+ 

Q..Sy  +  R-\-Jz  be  exact ;  secondly,  that  the  resultant  of  the  forces  at  the 

exterior  surface  be  directed  perpendicularly  towards  this  surface.* 

*  If  two  different  fluids  are  in  equilibrio,  then  the  surface  which  separates  them  must 
be  horizontal ;  if  the  denser  fluid  is  superior,  the  centre  of  gravity  of  all  the  molecules  will 

be  highest;  if  it  be  inferior,  then  the  centre  will  be  lower  than  in  any  other  position,  •.■ 
that  the  equilibrium  may  be  stable,  the  denser  strata  should  be  inferior.  See  Kotes  to 
No.  15. 

When  ̂   is  constant,  the  equation  ip^C,  gives  the  relation  which  must  exist  for  each 
stratum  of  level  between  the  coordinates  of  the  different  molecules  of  the  surface  which 

answers  to  the  preceding  equation  ;  in  this  case  S<p  =  0,  which  shews  that  <p  is  either  a 

maximum  or  minimum,  and  generally  when  P.Jc-j-Q.Jy+if.Ji  is  an  exact  variation,  5  is 

a  function  of  $,  •.•  the  equation  of  equilibrium  2yj — ^.S^p^rO,  shews  that  in  the  state  of 
equilibrium  there  is  a  function  of  p  and  of  x,  y,  2,  which  is  either  a  maximum  or  a  mini- 

mum. Though  in  the  state  of  equilibrium  all  the  molecules  in  the  same  strata  of  level 

have  necessarily  the  same  density,  and  experience  the  same  pressure,  still  the  converse  is 

not  true,  for  in  homogeneous  incompressible  fluids,  g  is  constant  in  those  sections  of  the 

fluid  in  which  neither  2ip,  nor  5p~0. 

In  elastic  fluids,  the  density  g  is  observed  to  be  proportional  to  the  compressing  force,  •.•  p 

■^.k.^  ;  k  depends  on  the  temperature  and  matter  of  the  fluid,  by  substituting  for  5,  in  the 

equation  J/j^zgSip,  weobtain  ep=.^.  S<p,  •■•  by  integrating  we  get  log.p+C zz—,  because 

when  the  matter  and  temperature  are  given,  k  will  be  constant,  •••by  makuig  C=  — log.  £, 

<P 

we  
obtain  

piz  
Ec  

k,  
:•  

since  

p   
and  

5,  
==  

^  
-j-  

j- 
,  are  

respectively  

functions  

of  
<f),  

the 
pressure  and  density  will  be  constant  for  each  stratum  of  level,  but  the  law  of  the  variation 

of  the  density  is  not  arbitrary,  as  in  the  case  of  incompressible  fluids,  for  the,  eqiiatiop 

p]        E       ̂   
.''    '■■'■""•■ 5  =  ■—=:  -J- .  c  k,  determines  the  law.     If  the  matter  of  the  fluid  remaining  homo- 

geneous, the  temperatuie  undergoes  any  alteration,  k  will  be  a  function  of  the  variable 
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tetnperatuire,  but  in  order  that  the  equation  — ^s=—    may  be  an  exact  variation,  it  is 

necessary  that  k,  and  •••  the  temperature  should  be  functions  of  <f),  these  functions  are 

altogether  arbitrary ;  consequently  we  conclude,  that  when  the  fluid  is  in  a  state  of  equi- 

librium, the  temperature  of  each  stratum  is  uniform,  and  that  the  law  of  the  variation  of 

temperature  is  arbitrary ;  but  this  law  being  given,  we  are  able  to  integrate  the  expres- 

sion  -y-i  from  which  integral  we  can  conclude  the  law   of  the  densities  and   pressures 

by  means  of  the  equations  p:   .     -  '  ;  — 

In  incompressible  fluids,  if  the  force  varies  as  the  n""  power  of  the  distance  from  the 

centre,  by  fixing  the  origin  of  tlie  coordinates  at  this  point,  we  have  P  ̂   ̂ jr"-*.  j,  Q  =: 

^jr"-l  y,  R=A^r^Kz,--  P.Jx+Q.Sy-f-iJ.Sz  =^g,'^l.  (x.SxH-^%+J.3z)=Jjr".  Jr,  = 

dp,  •••        ,  ,     when  »  IS  given,  r:  (p  =p+C,  when  n  = — 2,  —2    =  n  =   ^ 1+1  n+l  r 

if  gravity  is  the  sole  force  acting  on  the  molecules,  by  making  the  axis  of  z  vertical,  P  and 

Q,  will  vanish,  and  R  =  g,  '.•  /P.Sx-j-  Q.dy  +  R.h  is  reduced  to  the  equation  g.h  =  0,  •.• 

gz  =  C,  consequently  the  surface  is  horizontal,  since  R  =  (A^r'^^.z)  =g,/(g.dz)  =p 

:•  the  pressure  varies  as  the  height.     Since  when  the  force  varies  as  the  n""  power  of  the 

distance  from  the  centre  dp  =  Ar".dr^,  by  substituting  in  the  equation  of  elastic  fluids 
in  ip  Ar^"^^ 
~~~T    ft""  »^)  and  integrating,  we  get  log.  p   =  —   >,     consequently,    if  the 
P  "  K.(?2-j-l  ' 

("+  l)""  powers  of  the  distance  be  taken  in  arithmetic  progression,  the  pressures  and  the 
densities  proportional  to  them,  will  be  in  geometric  progression,  •■•  if  n  is  negative,  and  if  in 
the  radius,  ordiaates  be  erected  proportional  to  the  pressures  or  densities  ,the  locus  of  their 
extremities  will  be  a  curve  of  the  hyperbolic  species,  and  the  radius  produced,  will  be  an 
asymptote  to  the  curve,  if  n  is  positive,  the  locus  of  the  extremities  of  the  coordinates, 

will  be  a  curve  of  the  parabolic  species,  if  n:;0,  i.  e.  if  the  force  is  constant,  the  locus 
will  be  the  loganthmic  curve.    See  Princip.  Matth.  Liber  2.  Prop.  22,  et  Scholium. 

p2 
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CHAPTER  V. 

The  general  principles  of  the  motions  of  a  system   of 
bodies. 

18.  We  have,  in  No.  7,*  reduced  the  laws  of  the  motion  of  a  point, 
to  those  of  its  equilibrium,  by  resolving  the  instantaneous  motion  into 

two  others,  of  which  one  remains,  while  the  other  is  destroyed  by  the 
action  of  the  forces  which  solicit  the  point ;  we  have  derived  the  diffe- 

rential equations  of  its  motion,  from  the  equilibrium  which  subsists  be- 

tween these  forces,  and  the  motion  lost  by  the  body.  We  now  proceed 
to  employ  the  same  method,  in  order  to  determine  the  motion  of  a 

system  of  bodies  m,  m',  m  \  &c.  Thus,  let  mP,  mQ,  Em,  be  the  forces 
which  solicit  ?«  parallel  to  the  axes  of  the  rectangular  coordinates  *, 

y,  z ;  let  m'P',  m'Q',  m'R',  be  the  forces  which  solicit  m,  parallel  to 
the  same  axes,  and  so  on  of  the  rest ;  and  let  us  denote  the  time  by  /. 

The  partial  forces  m.—-—,m.-^,wz.—^  of  the  body   m  at   any   instant at        at        at 

whatever  will  become  in  the  following  :t 

•  The  principle  established  in  this  number,  has  been  termed  <Af  pmiciple  of  D'  Alembert, 
by  it  the  laws  of  the  motion  of  a  system  are  reducible  to  one  sole  principle,  in  the  same 

manner  as  the  laws  of  the  equilibrium  of  bodies  have  been  reduced  to  the  equation  {I)  of 
No.  14. 

\  In  consequence  of  the  mutual  connection  which  subsists  between  the  different  bodies 

of  the  system,  the  effect,  which  the  forces  immediately  applied  to  the  respective  bodies 

would  produce,  is  somewhat  modified,  so  that  their  velocities,  and  the  directions  of  their 

motions,  are  different  from  what  would  take  place,  if  the  bodies  composing  the  system 

were  altogether  free  ;  consequently,  if  at  any  point  of  time  we  compute  the  motions  which 

/ 
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m.—r   +  m.  d.  —   m.  d.—--+  mP.dt ; dt  dt  dt 

»i.-4^+  m,d.  -4- dt                dt m.d.  ̂   +  mQ.dt 

dt 

dz   ,          .    dz 
m.——  +  m.  d.  — — 

dt    '             dt 
—  m.  d — r^+  inR.dt ; 

dt 
the  bodies  would  have  at  the  subsequent  instant,  if  they  were  not  subjected  to  their  mu- 

tual action ;  and  if  we  also  compute  the  motions,  which  they  have  in  the  subsequent  in- 

stant, in  consequence  of  their  mutual  action,  the  motions  which  must  be  compounded 

with  the  first  of  these,  in  order  to  produce  the  second,  are  such  as  if  they  acted  on  the 

system  alone,  would  constitute  an  equilibrium  between  the  bodies  of  the  system ;  for 

if  not,  the  second  of  the  abovementioned  motions  would  not  be  those  which  actually  ob- 

tain, contrary  to  the  hypothesis.  But  as  these  motions,  which  must  be  compounded  with 

the  motions  which  actually  have  place,  in  order  to  produce  the  first,  are  altogether  un- 

known ;  in  the  analytical  expressions,  we  substitute  expressions  equivalent  to  them,  i.  e. 

the  quantities  of  motion  which  have  actually  place,  taken  in  a  direction  contrary  to  their 

true  one,  and  the  motions  which  would  take  place,  taken  in  the  true  direction,  by  means 

of  this  we  are  able  to  establish  immediately  equations  of  equilibrium  between  the  iirst  and 

second  of  the  abovementioned  species  of  motion,  and  also  to  determine  the  veloc.fies  which 

would  take  place,  if  the  bodies  composing  the  system  were  altogether  free.  Now  if  we 

suppose  the  preceding  motions,  resolved  respectively  into  three  others  parallel  to  three 

rectangular  coordinates,  mP,  niQ,  inR,  m'P',  &c.  will  represent  the  motions  parallel 
to  the  three  axes  which  the  bodies  would  assume,  if  they  were  altogether  free. 

d^x  d'u  d^z  ,    d-^x 
m.-  ,  _     ,    m. — r^  ,    m. — r--,    m 

— ,  &c. 

dt^  dt'  dt^  dt 

represent  the  motions  parallel  to  the  same  aXes,  which  the  bodies  actually  have,  at  the  com- 
mencement of  the  secondinstant.  Since  the  motions  which  actually  take  place,  are  to  be 

taken  in  a  direction  contrary  to  their  true  one,  they  are  affected  with  negative  signs. 

We  might  by  means  of  this  principle,  without  introducing  the  consideration  of  virtual 

velocities,  derive  several  important  consequences  ;  but  it  is  the  combination  of  this  prin- 

ciple with  that  of  virtual  velocities,  which  has  contributed  so  much  to  the  perfection  of 

Mechanics ;  this  combination  was  first  suggested  by  L'Agrange,  who  by  this  means  has 
reduced  the  investigation  of  the  motion  of  any  system  of  bodies,  to  the  integration  of 

differential  equations  ;  thus  we  can  reduce  into  an  equation  every  problem  relating  to  Dy- 

namics, and  it  belongs  to  pure  analysis  to  complete  the  solution  ;  so  that  it  appears  that 

the  only  bar  to  the  complete  solution  of  every  problem  of  Mechanics,  arises  from  the  im- 
perfection of  the  analysis. 

It  is  manifest  from  the  introduction   of  the  expression  —r-^>  in  P^^'®  "^  ̂^'^  increase 
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and  as  the  forces 

rfj  ,    dx  dy    ,  ,    dy  dz    ̂          ,    dz 
ni.   1-  m.  d.  ——  ;  m.  -~+  in.  d.  -^-  ;  m.  ——  +  m.  d.  — —  ; dt  dt  dt  dl  dt  dl 

of  the  velocity,  tliat  the  changes  in  the  motions  of  tlie  body  arc  made  by  insensible 

degrees. 

The  inspection  of  the  equation  (/')  sliews  tliat  it  consists  of  two  parts  entirely  dis- 
tinct, of  which  one  is  the  quantity  which  wc  ought  to  put  equal  to  nothing,  when  the 

forces  P,  (I,  It,  J'',  itc.  which  are  applied  to  the  diflbrent  points  of  the  system,  constitute 
an  equilibrium,  the  other  part  arises  from  the  motion  which  is  produced  by  the  forces 

/',  <i,  II,  /■•',  iVc.  when  they  do  not  constitute  an  equilibrium ;  therefore  we  may  express 

the  equation  (/')  in  this  manner: 

0  =  2.(«.(/^.3x+a3y-f./?.3.-)-  -m.^^.ix  +  ̂.  33,+.-^'| .  3,.  J 

ai\d  the  equation  (/)  of  No.  H',  is  only  a  particular  case  of  the  equation  (F) ;  thus  the 

principle  of  virtual  velocities  may  be  considered  as  an  universal  instrument  which  is  ne- 

cessary for  the  solution  of  all  problems  relating  to  Mechanics.    The  expression 

by  which  the  equation  (P)  differs  from  the  equation  (l)  is  entirely  independant  of  the 

positiim  of  the  axes  of  the  coordinates ;  for  by  substituting  the  coordinates  .r',  t/',  z,  in 
place  of  the  preceding  coordinates  x,  y,  z,  by  the  known  formula:  we  have 

X  r:  ax'-\-bff'+cz', 

,  1/  r=  ax'Jfb'y'-^-c'z, 

the  origin  being  tlie  same,  by  differentiating  the  preceding  expression  twice,  the  coeffi- 
cients a,  b,  r,  a,  &c.  being  constant,  we  obtain 

n'»i  =  a.d^x'-\-b.d^iy  -^-c.d^z', 

d*y  =  a'.d'x'+b\d't/+c.d*z-, 

d^z—of.d'x'+b^.d'y'+OM'x': 
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only  remain  j  the  forces 

—  m.  d.   +  P.  dt  -.-^m.d.  —^  +  Q.dt ;  — m.d.   h  R.dL 
dt  '  dt  dt 

will  be  destroyed. 

By  distinguishing,  in  this  expression,  the  characters  wi,  x,  y,  z., 

P,  Q,  R,  by  one,  two,  marks,  &c.  successively,  we  shall  have  an  ex- 

pression for  the  forces  destroyed  in  the  bodies  rd,  m'.,  &c.  This  being 
premised,  if  \ve  multiply  these  forces  by  the  respective  variations  of 

their  directions  ix,  Sy,  Sz,  &c.  we  shall  obtain,  by  means  of  the  princi- 

ple of  virtual  velocities,  laid  down  in  No.  14,  the  following  equation, 

in  which  dt  is  supposed  to  be  constant. 

I  dt*  S  (  dt'  )  (  dt' 

■,(P) 

From  this  equation  we  may  eliminate,  by  means  of  the  particular 

conditions  of  the  system,  as  many  variations  as  we  have  conditions  ;  and 

then  by  making  the  coefficients  of  the  remaining  variations  separately 

and  also, 

3x  =  a.Ji'-f-A.Jy'-J-c^z', 

h/^  a'.3f'-|-i'.3y+c'Ji', 

3z  =  a'  .3x'+  b^'.hj"  +  c".'i:f ; 

V  by  substituting  for  these  expressions  in  the  expression 

rf»x     .      ,        dry      ,        d\z  d*jf     .,,        dW     ,,,        d'^z      ,, 
„.  _.  3^+«._^.+^.__.weget,«.^^.  Jx-hm.-^.  b +'»-;^-  ̂ ^- 

{oT  a^  -\-a'^  +a"'  =  1,  ab-^ac  +  6c  =  0,  &'C.  see  Notes  to  page?;  the  same  fiubstitu- 

tions  being  made  in  the  expressions  of  the  mutual  distances  between  the  bodies,  the  co- 

efficients a,  b,  c,  a',  &c.  will  disappear  for  the  same  reasons. 
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equal  to  nothing,  we  shall  obtaui  all  the  equations  necessary  for  deter- 
mining the  motions  of  the  several  bodies  of  the  system. 

19.  The  equation  (p)  involves  several  general  principles  of  motion, 
which  we  shall  examine  in  detail.  The  variations  Sx,  Sy,  Sz,  will  be 

subjected  to  all  the  conditions  of  the  connection  of  the  *  parts  of  the 

forces,  by  supposing  them  equal  to  the  differentials  dz,  dy,  dz,  dx'.  Sec. 

*  If  the  equation  of  condition  involves  the  time  explicitly,  then  we  are  not  permitted  to 

suppose  the  variations  Sx,  hj,  Sz,  equal  to  the  differentials  dx,  dy,  dz,  as  for  instance,  if 

one  of  the  bodies  composing  the  system,  always  existed  on  a  given  surface,  which  surface 

moved  according  to  a  given  law  ;  or  if  the  body  moved  in  a  resisting  medium,  whicli 

medium  was  in  motion,  then  there  will  exist  an  equation  between  the  coordinates  of  the 

body  and  the  time  which  will  also  be  at  any  instant,  the  differential  equation  of  the  sur- 

face, the  most  general  equation  expressing  the  preceding  condition,  is  of  the  following  form: 

0.{x,  y,  z ;  x,  y,  z,  &c.  t)  =0, 

at  the  following  instant  the  coordinates  will  be  varied  by  the  quantities  3j,  ly,  Iz  ;  Sx',  oy\ 
&c    and  the  equation  of  condition  will  become 

<p.{x-\rSi,  y ̂ Sy,   zlzx    x'+J^,  y'+Sy',  s'+Sz',  &c.  t)  =:F  =r.  0, 

V  the  difference  of  these  two  expressions,  i.  e. 

bat  the  complete  differential  of  the  preceding  function  = 

T  is  the  differential  coefficient  of  F,  taken  on  the  hypothesis  that  the  time  varies,  conse- 
quently, if  F  involves  the  time  explicitly,  when  we  subject  the  variations  Ix,  iy,  &c.  to 

satisfy  the  conditions  of  the  connection  of  the  parts  of  the  system,  we  are  not  permitted 

to  regard  the  expression 

as  equal  to  nothing. 
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This  supposition  is  consequently  permitted,  and  then  the  integration 
of  the  equation  (P)  gives 

V  ,„.i^il±J^±f^)  =c+2.2.>.(P.di  +  Q.^i/+i2.(/^) ;   (Q) 

c  being  a  constant  arbitrary  quantity  introduced  by  the  integration. 
If  the  forces  P,  Q,  R,  are  the  results  of  attractive  forces,  directed 

towards  fixed  centres,  and  of  a  mutual  attraction  between  the  bodies ;  the 

function    "L.fm.^P.dx  +  Q.dy+Rdz)*    is  an  exact  integral.     For   the 
Q 

*  In  fact,  the  accelerating  force  of  m,  produced  by  the  action  of  m  in  the  direction  of 

the  line_^  zsm  F,  (Fis  always  a  given  function  ofjl)  '.'  the  components  of  tliis  force  pa- 

rallel  to  the  axes  of  x,i/,  z,  are  m'F.  - — - — ,  m'F.  ,  m'F.         ~   ,  •.'  the  parts  of 

P.dx+  Q,.dy-\-R.dz,  which  answers  to  this  force  alone  are 

ni'F.{{x' — x).dx-^{y' — y).dy-\-{z' — z).dz),  and  as  the  accelerating  force  of  m',  arising 
from  the  action  of  m,  resolved  parallel  to  the  coordinates  x,  y,  z,  respectively  = 

m.F.   —   4-  m.F.  ̂ ^~y      +  VI.F.      ~~      ,    the  corresponding  part   of  FJx-t 

Q'.dy'+R'.dz,   is,  F.w.  |if=ii.rf/+l^^:^.%'+if=il.  dz\,  therefore  in  or- 

der  to  have  the  motive  force  ai'ising  from  the  mutual  action  of  the  bodies  m  and  m' 

we  must  multiply  the  first  expression  by  m,  and  the  second  by  »n',  and  adding  them  toge- 
ther, they  will  become 

mm'.F.  (x'—x).  dx  +  (y'—y).dy+(z-zJ.dz+{x—x').dx^-\-{y—y').  dy+iz—z),  d^)= 

mm'.F.fd/,  for  asf^  =  {x-^y+{y-yY +{z-z'y,fdf:^ 

{x-x').(dx-dx')  +  {y-yWy-dy)  +  {z-z).{dz-dz), 

consequently  as  F  is  given  to  be  a  function  of  y;  ̂f-dj.  is  an  exact  differential.  If  the 

.centres  to  which  the  forces  are  directed  Jiave  a  motion  in  space,  then  P.rfx+  Q.di/^Rdz, 

is  not  an  exact  differential,  though  the  law  according  to  which  the  forces  vary  should  be  a 

function  of  the  distance,  see  Note  to  page  34. 

The  sum  of  the  living  forces  at  any  instant  will  be  given  by  the  equation  (  Q),  when 
we  know  the  value  of  this  sum  at  a  determined  instant,  and  the  coordinates  of  the  bodies 

composing  the  system  in  the  two  positions  of  the  system.  And  when  the  system  returns 
to  the  same  position,  the  living  forces  will  be  the  same  as  before. 
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part  whicli  depends  on  the  attractions  directed  towards  fixed  points,  are 

exact  integrals  by  No.  8.  This  is  equally  the  case,  with  respect  to 

those  parts,  which  depend  on  the  mutual  attractions  of  the  bodies  com- 

posing the  system ;  for  if  we  name^  the  distance  of  m  from  m',  m'F, 

the  attraction  of  ot' on  »z ;  the  part  of  m(P.ds  +  Q.di/  + R.dz)  which 

arises  from  the  attraction  of  m'  on  m,  will  be,  by  the  above  cited 

No.  equal  to  — mra'Fdf,  the  differential  df  being  taken  on  the  supposi- 
tion, that  the  coordinates  x,  y,  z,  only  vary.  But  reaction  being  equal 

and  contrary  to  action,  the  part  o?m'{P'.dx'-\-Q'.dy'-]rR'dz'^  which  is 

due  to  the  attraction  of  m  on  m',  is  equal  to  — mm'.Fdf,  the  coordi- 

nates x',  y\  z',  being  the  only  quantities  which  are  supposed  to  vary, 
consequently  df  being  the  differential  of  y  on  the  supposition  that  both 

the  coordinates  x,  y,  z,  and  x',  y',  z',  vary  simultaneously,  the  part  of 
the  function  1.77i(^P.dx-{-Q.dy -h  Ji-dz)  which  depends  on  the  reciprocal 

action  of  m  on  vi'  is  equal  to  —nim'.F.d/i  Therefore  this  quantity  is 
an  exact  differential  when  F  is  a,  function  of  f,  or  when  the  attraction 

varies  as  some  function  of  the  distance,  which  we  shall  always  suppose  ; 

consequently  the  function  1.7n.(P.dx+Q.dy-{-R.dz}  k  an  exact  dif- 
ferential, as  often  as  the  forces  which  act  on  the  different  bodies  of  the 

system,  are  the  result  of  their  mutual  attraction,  or  of  attractive  forces 

directed  towards  fixed  points.  Let  then  d(p  represent  this  differential, 

and  naming  v  the  velocity  of  7n,  t/  the  velocity  of  ni',  &c.  we  shall  have 

I..mv'  =  c  +  2<?.  (R) 

This  equation  corresponds  to  the  equation  (g)  of  No.  S,  it  is  the 

analytical  expression  of  the  principle  of  the  conservation  of  living  forces. 

The  product  of  the  mass  of  a  body  by  the  square  of  its  velocity,  is 

tenned  the  living  force,  or  the  vis  viva  of  a  body.  The  principle  just 

announced  consists  in  this,  that  the  sum  of  the  living  forces,  or  the 

entire  living  force  of  the  system  is  constant,  if  the  system  is  not  b,oIicited 

by  any  forces ;  and  if  the  bodies  are  actuated  by  any  forces  whatever, 

the  sum  of  the  increments  of  the  entire  living  force  is  the  same  what- 
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ever  may  be  the  nature  of  the  curves  described,  provided  that  their  points 

of  departure  and  arrival  be  the  same.* 
However  this  principle  is  only  applicable,  when  the  motions  of  the 

bodies  change  by  imperceptible  gradations.!  If  these  motions  undergo 

abrupt  changes,  the  living  force  is  diminished  by  a  quantity  which  may 

be  thus  determined.  The  analysis  which  has  conducted  us  to  the 

equation  (P)  of  the  preceding  number,  gives  us  in  this  case,  instead  of 

that  equation,  the  following : 

0=  S.w.  ̂ —-.A. -— + -f-.A.  4-+  -—.A. (  dt        dt        dt        dt        dt 
dz 

IF 

q2 
*  What  has  been  demonstrated  respecting  the  mutual  attraction  of  the  bodies  of  the 

system,  is  equally  true  respecting  repulsive  forces  which  vary  as  some  function  ot'  the 
distance;  it  is  true  also  when,  die  repulsions  are  produced  by  the  action  of  springs  in- 

terposed between  the  bodies';  for  the  [force  of  the  spring  must  vaiy  as  some  function  ot 
the  distance  between  the  points,  •.•  in  the  impact  of  perfectly  elastic  bodies  though  the 
quantity  of  motion  communicated  may  be  increased  indefinitely,  stUl  the  living  force  after 

the  impact  is  the  same  as  before ;  indeed  during  the  impact,  the  vis  viva  varies  as  the 

coordinates  of  the  respective  points  vary,  but  after  its  completion,  from  the  nature  of 

perfectly  elastic  bodies  they  resume  their  original  position,  and  consequently  the  value  of 

the  vis  viva  will  be  the  same  as  before,  but  if  the  elasticity  is  not  perfect,  in  order  to  have 

the  value  of  the  vis  yiyaat  an}^  instant,  we  should  know  the  law  of  the  elasticity,  or  the 

relation  which  exists  between  the  compressive  and  restitutivc  force. 

J  WTien  the  motions  of  the  botlies  of  the  system,  are  modified  by  friction,  or  the  re- 

sistance of  the  medium  in  which  the  motion  is  performed,  the  expression  P.dx-\-Q,.dy-\-Rjdz 
is  not  an  exact  differential,  see  note  to  page  34,  and  the  living  forces  must  be  diminished. 

This  is  indeed  evident  of  itself,  for  when  the  bodies  of  the  system  are  actuated  by  no 

other  forces  but  those  of  resistance,  the  sum  of  the  living  forces  must  be  gradually  dimi- 

nished, in  order  to  determine  the  actual  loss  experienced  after  any  time,  we  should  know 

the  law  according  to  which  the  resistance  varies,  which  is  very  difficult  to  be  determined ; 

but  there  is  another  cause  of  diminution  of  the  living  force,  in  which  we  are  able  to  deter- 

mine accurately  the  loss  sustained,  to  wit,  the  case  adverted  to  in  the  text,  when  the 

bodies  undergo  an  abrupt  change  in  their  motions. 

X  The  characteristic  A  designates  according  to  the  received  notation,  the  difference 

which  exists  between- two  consecutive  states  of  the  same  quantity. 
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-^x.m.{PJx-i-QJi/^RJz) ', 

dx  du      ,    dz    ,   .       .      ...rr,  r  dx     dy     dz      r 
A.  —  ,    A.  -^  ,   A.  — — ,  being  the  ditterences  of  — j-t  —r->  —r-,   trom 
dt  dt  dz  *'  dt      dt     dt 

one  instant  to   another ;  differences   which   become  finite,    when  the 

motions  of  the  bodies  undergo  finite  alterations  in  an  instant.     In  this 

The  equation  (/-")  may  be  made  to  assume  the  following  form  : 

in  which  tlie  changes  that  are  produced  in  the  motions  of  the  bodies  composing  the  system,  are 

made  by  insensible  degrees,  as  is  evident  from  the  circumstance,  that  the  differential  of  the 

velocities  is  expressed  by  — — ,  see  note  to  page  30 ;  now,  if  instead  of  this  gradual  di- 

1    •  •  dx        dy 
ininution,  bodies  experience  abrupt  changes  m  their  motions  A.  -^.  A.— -,  &c.  express- 

ing those  changes,  the  preceding  expression  will  be  changed  into  the  following : 

-2.n;.(  P.Sj+  Q.?^  -J-  jR- Jy ; 

dx      Sx 

~di"  It 

dx 

and  as  in  this  case  wA.  — ^    is  the  variation  of  the  force  of  the  body,  on  the  supposition dt 

that  it  is  entirely  free,  and  m.P.dt  is  the  variation  which  actually  takes  place  in  conse- 
quence of  the  action  of  the  bodies  of  the  system,  the  reasoning  in  No.  18  is  applicable  to 

this  case,  consequently  the  preceding  expression  may  be  put  equal  to  nothing ;  and  since  the 

values  of  dx,  dy,  dz,  are  changed  in  the  following  instant  into  rfx+A.tfor,  dy-\-^-dy.  dz+^dz, 

we  shall  satisfy  the  conditions  of  the  connection  of  the  parts  of  the  system,  by  making 

tlie  variations  3x,  iy,  h,  equal  to  these  expressions  respectively ;  and  then  the  preceding 

equation  will  assume  this  form 

f        dx    _     dx  t         dx    ,     (        dy        dy  \         dy 

{ 
dz_      Jz_\         dz^ '   dt"^    dt  ]    ̂'  dt 

2.»n.(P.  ( (ix+A.rfx )  +  Q.  ( rfy-f- A.rf^) + i?.((/z+ A.(/£  ),  =0, 
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equation  we  may  suppose 

Sj:=:dx+A.dx  ;  $y  zz  dy  +  A..dij;  Sz  =  r/^+A.  dz; 

because  the  values  of  dx,  dy,  dz,  being  changed  in  the  following  in- 
stant into  d.T  +  £^.dx,  dy  +  £:i,dy,  dz+A>..dz,  these  values  of  Sx,  Sy,  Sz, 

satisfy  the  conditions  the  connection  of  the  parts  of  the  system  ;  there- 
fore we  shall  have 

\^  dt^        dt  ̂        dt^^dt^       dt  ̂       dt 

C  dz  dz  >        dz  } 

i-dF^  ̂ •~dfy^~di\ 

^  X.m.(P.(.dr+A.dx)  +  Q.(dy+A.dy+B.(dzi-  A.dz)) 

This  equation  should  be  integrated  as  an  equation  of  finite  differences 

relative  to  the  time  t,  of  which  the  variations  are  infinitely  small,  as 

well  as  the  variations  of  ̂,  y,  z,  a/,  &c.  Let  2,  denote  the  finite  inte- 

grals resulting  from  this  integration,  in  order  to  distinguish  them  from 

the  preceding  finite  integrals,  which  refer  to  the  aggregate  of  all  the 

bodies  of  the  system.  The  integral  of  mP/dx  +  A.dx)  is  evidently  equal 
to  JinP.dx  f  therefore  we  shall  have  const.— 

dx*+dy'  +  dz»      ̂ ^      [  ( ̂     dx*  ̂ ,      /       dy*  \      ,      dz\-i* 
^■''-   IP   +^'-'"r^-5F)+^^-ir)  +  (--^)( 

—21.fm.(P'dx  +  Q.dp  +  R.dz) ; 

dx *  In  this  equation,  though  the  value  of  A.  — —  may  be  finite,  still  dx-\-i^.(Ix,  and  the 

variation  of  the  time  may  be  indefinitely  small,  and  V  integrating  with  respect  to  this 

C  dx        dx  "J  dx^ 
quantity,  2,2.»n.  I  ——.A.—  V   =  2.>n.  —j-j-,  or  it  may  be  otherwise  expressed   thus, 

A.(x')  :;^(see  Lacroix  No.  344)  2xh-{-h'^,  and  if /«  be  made  equal  to  Ax,  it  becomes 
2:r.Ax-|-(A.x)*,  •.•  2.  2.Xj;A..r+(A.x)*)  =  2,.(2a:.A.l-l-(Aj;)= )-(-  2,.(Ax)«  —  x^  +  2,.(Ax4), 
consequently,  if  we  multiply  the  preceding  equation  by  two,  and  substitute  dx  in  place  of 

r,  and  then  integrate,  we  obtain  the  expression  which  has  been  given  in  the  text. 
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therefore  v,  v,  v"  denoting  the  velocities  of  m,  m',  in!',  &c.  we  shall 
have 

s.^.'=const.-E,2.«.UA.^r+  { A.^r4-  u.^xx '  (^       dt  f         \        dt  S         '-       dt  S    i 

+  2I.j:m.{P.dx+Q.dj/  +R.dz'). 

The  quantity  contained  under  the  sign  Z^,  being  necessarily  positive, 
we  may  perceive  that  tlie  living  force  of  the  system  is  diminished  by  the 
mutual  action  of  the  bodies,    as  often  as   during  the   motion,  any  of 

the  variations  A.— — ,A.— ̂ ,   &c.  are  finite.     Moreover,  the  preceding Civ  at 

equation  affords  a  simple  means  of  determining  the  quantity   of  this 
diminution. 

At  each  abrupt  variation  of  the  motion  of  the  system,*  the  velocity 

*  At  every  abrupt  change  in  the  motion  of  the  system,  the  velocity  is  not  always  di- 
minished for  every  body,  but  the  expression  which  is  here  given  may  be  considered  as 

general,  by  supposing  that  when  the  velocity  is  increased,  a  negative  portion  of  it  has  beeti 

destroyed,  and  the  square  of  the  velocity  after  the  shock  is  equal  to 

^■'"'  dt'' 
and  as 

^     2.dxi\.dx  +  '2{A.dxY  +  2.dy^.dy  +  2{A.dyy  +2dz:^.dz+2{A.dz)*, 

=0,  by  subtracting  this  equation  from  the  preceding,  we  obtain  the  square  of  the  velocity 

after  the  shock,  equal  to 

.„    (dx'+dy'+dz-)         ^___    (S.dx)^MM>/y-^(^-^=:)' 
dt''  —  "•   •  dt' 

and  as  the  square  of  the  velocity  before  the  shock  is  equal  to  l.mv''  = 

2.W.  — ^ — ■^   ^,  the  square  of  the  velocity  lost  by  the  shock  =2.ot.  F* 

_v«  Jj^±y±{±_clyy+(A.dz)_' . 

dt'  
' consequently  the  loss  which  the  living  forces  experierjce,  is  equal  to  the  sum  of  tlie  living 

forces,  which  would  belong  to  the  system,  if  each  body  was  actuated  by  that  velocity 

which  it  loses  by  the  shock. 
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of  m,  may  be  conceived  to  be  resolved  into  two  others,  of  which  one  v 

subsists  in  the  following  instant,  the  other  V  being  destroyed  by  the 

action  of  the  other  bodies,   but  the  velocity  of  vi  before  the  decomposi- 

.      ,    .       \/dx*  +  dy*-{-dz*,         ■,    ,        .        n 
tion  being   -^   ,  and  changing  afterwards  into 

dt 

it  is  easy  to  perceive  that 

(       dt  S        t       dt  S         c        dt  S    ' 

consequently  the  preceding  equation  may  be  made  to  assume  the  fol- 
lowing form, 

2.m'«  =  const.— 2^.2.7??.  V'—2.1.fm.{P.dx  +  Q.di/  +  .dz),* 

*  The  variation  of  the  vis  viva  of  the  system,  is  equal  to  22m,{P.dx-{-Q,.di/+  R.dz) 

consequently  when  this  expression  vanishes,  i.  e.  when  f/.2.(mt'*)  vanishes,  the  vis  viva  of 

the  system,  equal  to  2.()??u=),  is  a  maximum,  or  a  minimum;  but  it  appears  from  the 

principle  of  virtual  velocities,  that  2m.(P.Sx-[-  Q.?!/-\-R.h)  is  equal  to  nothing,  when  the 

forces  P,  Q,  R,  P",  constitute  an  equilibrium ;  and  since  the  differentials  dx,  dy,  dz,  may 

be  substituted  for  the  variations  'hx,  tij,  S^,  when  they  are  subjected  to  satisfy  the  condi- 
tions of  the  connection  of  the  parts  of  the  system,  l.m.[P.dx-\-  Q,.dy-\-R.dz)  is  equal  to 

nothing,  in  the  same  circumstances ;  •.•  when  the  forces  P,  Q,  R,  Pi,  constitute  an  equi- 
librium, the  vis  viva  of  the  system  is  a  maximum  or  a  minimum. 

And  as  it  appears  from  note  to  page  96,  that  the  positions  of  equiUbrium  of  a  system 

of  heavj'  bodies,  correspond  to  the  instants,  when  the  centre  of  gravity  is  the  highest  or 
lowest  possible,  the  sum  of  the  living  forces  is  always  a  maximum  or  a  minimum  when  the 

centre  ceases  to  ascend,  antl  commences  to  descend,  and  when  it  ceases  to  descend  and 

commences  to  ascend.  The  value  of  the  vis  viva  is  a  minimum  in  the  first  case,  and  a 

maximum  in  the  second,  for  'Zm.{P.dx-\-Q.dy-{-R.dz)  corresponds  to  the  expression  S.Ji-f- 

S'.Ss'-f  S'''3i''''-|-&c.  in  page  96,  and  •.•  by  substitution  we  have  Imv'^  =  c-\-s,.S'^m.  con- 
sequently 5.?)!ii»  is  a  maximum  or  minimum,  when  s,  is  a  maximum  or  minimum.  When 

S.mii* .  is  a  maximum,  the  equilibrium  is  stable ;  when  a  minimum,  the  equilibrium  is  in- 
stable. For  from  the  definition  of  stability,  (see  No.  28)  it  appears  that  if  the  system  is 

only  agitated  Sy  one  sole  species  of  simple  oscillation,  the  bodies  composing  it  will  perpe- 
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20.  If  in  the  equation  (P)  of  No.  18,  we  suppose, 

Sxf  =z  Sx-\-ix/  ;  Sy'  =  Sy-\-Sy;  ;  Sz'  zz  Sz-\-Sz;  ; 

tually  tend  to  revert  to  the  position  of  equilibrium,  consequently  their  ve'ocities  will  di- 

minish according  as  their  distance  from  the  position  of  equilibrium  is  increased,  and  •.- 

tlie  sign  of  the  second  differential  of  ̂   will  be  negative,  consequently  2 wd^.  will  be  a 
maximum  in  this  case  ;  and  it  may  be  shewn  by  a  like  process  of  reasoning,  that  the  vis 

viva  of  the  system  is  a  minimum,  when  the  equilibrium  is  instable. 

From  a  comparison  of  this  observation  with  the  note  to  page  96,  it  appears  that  in  a 

system  of  heavy  bodies,  when  the  vis  viva  is  a  maximum,  the  centre  of  gravity  is  the 

lowest  possible,  and  highest  when  the  vis  viva  is  a  minunum. 

This  may  be  more  strictly  demonstrated  thus :  if  the  system  be  disturbed  by  an  indefinitely 

small  quantity  from  the  position  of  equilibrium,  by  substituting  for  P,  Q,R,  P',  &c.  their  values 
in  terms  of  the  coordinates,  and  then  expanding  the  resulting  expressioninto  a  series  ascend- 

ing according  to  the  variations  of  these  coordinates,  the  first  term  of  the  series  will  be  the 

value  of  tp,  when  the  system  is  in  equUibrio  ;  and  since  it  is  given,  it  may  be  made  to  coalesce 

with  the  constant  quantity  c,  which  was  introduced  by  the  integration ;  the  second  term  va- 

nishes by  the  conditions  of  the  problem ;  and  when  2.»nv" .  is  a  maximum,  the  theory  of  max- 
ima and  minima  shews  that  the  third  term  of  the  expansion  may  be  made  to  assume  the  form 

of  a  sum  of  squares,  affected  with  a  negative  sign,  see  Locrobc,  No.lSl;  the  number  of  terms 

in  this  sum,  being  equal  to  the  number  of  variations,  or  independant  variables ;  the  terms 

whose  squares  we  have  assumed,  ai'e  linear  functions  of  the  variations  of  the  coordinates, 
and  vanish  at  the  same  time  with  them ;  they  are  therefore  greater  than  the  sum  of  all 

the  remaining  terms  of  the  expansion.  The  constant  quantity  being  equal  to  the  sum  of 

c,  and  of  the  value  of  'S.mv'^.  when  the  forces  P,\Q,  R,  P',  &c.  constitute  an  equilibrium, 
it  is  necessarily  positive,  and  may  be  rendered  as  small  as  small  as  we  please,  by  dimi- 

nishing the  velocities ;  but  it  is  always  greater  than  the  greatest  of  the  quantities  whose 

squares  have  been  substituted  in  place  of  the  variations  of  the  coordinates ;  for  if  it  were 

less,  this  quantity  being  negative,  would  exceed  the  constant  quantity,  and  therefore  render 

the  value  of  S.mi)'.  negative,  consequently  these  squares,  and  the  variations  of  the  coordi- 
nates, of  which  they  are  linear  functions,  must  always  remain  very  small,  v  the  system  will 

always  oscillate  about  the  position  of  equilibrium,  and  this  equilibrium  will  be  stable.  But  in 

the  case  of  a  minimum  it  is  not  requisite  that  the  variations  should  be  always  constrained  to 

be  very  small,  in  order  to  satisfy  the  equation  of  living  forces  when  <p  is  a  minimum ;  this, 

indeed,  does  not  prove  that  there  is  no  limit  then  to  these  variations  which  is  necessary, 

in  order  that  the  equilibrium  may  be  instable ;  in  order  to  shew  this  we  should  substitute 

for  these  variations,  their  values  in  functions  [of  the  time,  and  then  shew  from  the  form 

of  these  functions,  that  they  increase  indefinitely  with  the  time,  however  small  the  primi- 



PART  L— BOOK  I.  121 

ix"  =  Jx  +  Sx',' ;  Sy"=Sy+hj,"  j^s''^ Sz  +  Sz;'  •* 

&c.  by  substituting  these  variations,  in  the  expressions  of  the  variations 

Sf,  Sf',  Sf,  &c.  of  the  mutual  distances  of  the  bodies  composing  the 
system,  the  vahies  of  which  have  been  given  in  No.  15;  we  shall  find 

that  the  variations  Sx,  Sy,  Sz,  will  disappear  from  those  expressions.  If 

the  system  be  free,  that  is,  if  it  have  none  of  its  parts  connected  with 
foreign  bodies,  the  conditions  relative  to  the  mutual  connection  of  the 

bodies,  will  only  depend  on  their  mutual  distances,  and  therefore  the 

variations  S^,  Sy,  Sz,  will  be  independent  of  these  conditions ;  conse- 

quently when  we  substitute  in  place  of  Sx',  Sy',  Sz',  Sx,",  &c.  their  pre- 
ceding values  in  the  equation  (P),  we  should  put  the  coefficients  of  the 

R 

live  velocities  may  be.  For  a  complete  solution  of  the  problem  of  the  small  oscillations  of 

a  system,  the  reader  is  referred  to  the  Mechanique  Analytique  of  Lagrange,  5th  and  6th 

section,  seconde  partie,  where  the  important  problem  of  coexisting  oscillations  is  discussed 

in  all  its  generality,  and  all  difficulties  are  cleared  up ;  see  also  Notes  to  No.  23  and 
SO,  of  this  book. 

*  It  is  ahvays  possible  to  make  these  substitutions,  for  it  in  fact  comes  to  transferring 
tlie  origin  of  the  coordinates  to  a  point  of  which  the  coordinates  are  equal  to  x,  y,  z,  res- 

pectively ;  as  the  expression  for  y, 

_  (j;'—x).(g.r'—?x}+0/— »)■(?/— ?;y)+(z'—z).'  iz'—2z) ~  
f 

equal  by  substituting  for  x',  y' ,  r',  Ix' ,  h/,  h',  their  values, 

f  ^ 

f 

consequently  as  3x,  Sy,  Js,  disappear  from  the  expressions  of  the  variations  \f,  If',  and 
as  when  the  s3stem  is  at  liberty,  the  conditions  relating  to  the  mutual  connexion  of  its  parts, 

depend  only  on  their  distance  from  each  other,  the  variations  Jx,  Sy,  Sz,  will  be  inde- 

pendent of  these  conditions,  ■.•  substituting  for  Sx',  5y',  ̂z'  in  the  equation  (PJ,  the  values 
which  have  been  just  given  for  them,  the  coefficients  Ix,  ly,  ̂z,  must  be  put  equal  to 
nothing. 
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variations  Sx,  Sy,  Sz,  separately  equal  to  nothing ;  which  gives  the  three 
following  equations  : 

Let  us  suppose  that  A',  Y,  Z,  are  the  three  coordinates  of  the  centre 
of  gravity  of  the  system  ;  by  No.  15  we  shall  have, 

■y_s.nix  _    -^  _   T.V11/  s..mz -A   j     X    —     ;    ii  =   .    ; 
•s-.m  s.m  s.m 

consequently 

0  =  ̂ _^f!£  .    o  =  ̂'^_^-^Q  .  o   =  ̂      s.?«-R      ̂  
(If         S.??2     '  </f         S.TO   '         ~     df        '~'s..m      ' 

therefore  the  motion  of  the  centre  of  gravity  of  the  system  is  the  same 

•  By  actually  substituting  for  Sx',  Sy,  "^J,  Iz",  &c.  in  the  equation  (P)  we  obtain  0=. 

+•■'■>'■  {■'^-^\^--'':-{'-^- p} 

the  terms  in  this  expression  which  are  multiplied  by  Sx,  Sy,  Sz,  respectively,  are  by  adding 

them  together 

and  being  independent  of  the  conditions  of  the  connection  of  the  system,  they  must  be  put 

ieverally  equal  to  nothing. 

t  SuiceX=   ,  Y=   —,  &c.  -r5-  =  2.7W.-—  =    , 
2.WJ  2.m  di'  dt-  2.?k 

2to because 

^.m.-—^ — 2m.P=0. 
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as  if  all  the  bodies  m,  m',  &c.  were  concentrated  in  this  point,  the  forces 
which  solicit  the  system  being  applied  to  it. 

If  the  system  is  only  subjected  to  the  mutual  action  of  the  bodies 

which  compose  it,  and  to  their  reciprocal  attractions,  we  shall  have 

0  =  -z.mP ;  0  =  -z.mQ ;  O  =  -z.mR  j 

for  p  designating  the  reciprocal  action  of  m  on  m',  whatever  its  nature 

may  be,  and  y' denoting  the  mutual  distance  of  these  two  bodies  ;  we 
shall  have,  in  consequence  of  this  sole  action, 

„  (x — x)  „  (y — y')      p  [z — z') 
mP=.p.^^—^ — -;  mQ=p.    ̂ -     .     '•,mR=p.  - — ■, — -  ; 

mF  =  p.  ~     .       ;  mQ=p.   '--^     •^- ;  mR=p.   ̂   ; 

from  which  we  collect 

Oz=mP+m'P' ;  0=mQ  +  m'Q ;  0-mR  +  m'R';  * 

and   it   is   evident  that   these   equations   obtain,    even   in  the  case  in 
It  2  V 

•  / — X,  y — ■)/,  z' — z,  being  the  coordinates  of  nt  relative  to  the  new  origin  of  the  forces, 
and  the  action  of  p  being  directed  along  the  line 

the  part  of  mP,  which  corresponds  to  the  force  p  resolved  parallel  to  the  axis  of 

x=p  —   ,  the  analogous  parts  of  otQ,  and  mR,  axe  p.   \.       >p-  respectively, 

in  like  manner  the  forces  soliciting  m'  parallel  to  the  coordinates,  arising  from  the  action  of  p, 

-p.    J    ,P-  J-  'P-  f  > 

.-.  when  the  sole  force  soliciting  tn  and  m'  arises  from  p,  which  expresses  the  reciprocal  action 

•f  m  on  m',  we  have  mP-^-m'P',—p\JI'     '  —  =0. 

Action  being  equal  to  reaction,  and  its  direction  being  contrary  thereto,  when  two  bor 
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which  the  bodies  exercise  on  each  other,  a  finite  action  in  an  instant. 

Their  reciprocal  action  disappears  from  the  integrals  ̂ .mP,  ̂ .mQ,  'Z.mR, 
and  consequently,  these  expressions  vanish,  when  the  system  is  not  so- 

licited by  any  extraneous  forces.     In  this  case  we  have 

and  by  integrating 

X^a  +  bt:  r~a'-{-b't;  Z=a"+b"t;* 

a,  b,  a',  b',  a",  b",  being  constant  arbitrary  quantities.  By  eliminating 
the  time  t,  we  shall  have  an  equation  of  the  first  order,  between  either 

X  and  Y,  or  X  and  Z ;  consequently  the  motion  of  the  centre  of 

gravity  is  rectilinear.     Moreover,  its  velocity  being  equal  to 

v/{?F^  If  F^  {f  }■ 

or  to  v'  b     b'--^b'\  it  is  constant,  and  the  motion  is  uniform. 
It  is  manifest,  from  the  preceding  analysis,  that  this  invariability  of 

the  motion  of  the  centre  of  gravity  of  a  system  of  bodies,  whatever  their 

mutual   action    may  bc,t   subsists   even  in   the  case  in  which  any  one 

dies  concurring,  exercise  on  each  other  a  finite  action  in  au  instant,  their  reciprocal  action 

will  disappear  in  the  expressions  S.jwP,  5.mQ,  &c.  in  fact,  as  we  can  always  suppose  the 

action  of  the  bodies  to  be  effected  by  means  of  a  spring,  interposed  between  them,  which 
endtavours  to  restore  itself  after  the  shock,  the  effect  of  tlie  shoclc  will  be  produced  by  force* 

of  tlie  same  nature  with  ;;,  which,  as  we  have  seen,  disappear  in  the  expressions  'S.mP, 
S.otQ,  S.mii. 

♦  By  integrating  once  we  get  —  =  b, .:  dX:z  bdt,  and  X~  ht+a;  the  constant  quantities 
Clt 

a,  a',  a",  are  equal  to  the  coordinates  of  the  centre  of  gravity  when  /  ■=.  0,  and  b,  V ,  b",  are  equal 
to  the  velocity  of  the  centre  of  gravity  resolved  parallel  to  the  coordinates.  See  notes  to  pageSl. 

■\  In  fact,  from  what  has  been  observed,  in  the  note  to  page  116,  it  is  evident  that  the 

principle  of  D'Alembert  is  true,  whether  the  velocities  acquired  by  the  bodies  be  finite, 
after  a  given  time,  or  indefinitely  small,  or  whether  the  velocities  be  partly  finite, 

and  partly  infinitely  small,  such  as  arise  from  the  action  of  accelerating  forces,  and  both 
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of  the   bodies   loses  in  an   instant,    by  this  action,  a  finite  quantity  of 

motion.* 
21.  If  we  make 

Sjif-=z  ̂    +  Sx  ;  Sx  =^   h^<  ;  &c. y  y 

Sy=   +  Sy/,Sij'=   +  Sy  ;  Sy'=   +  Sy;' ;  &c.  t y  y  y  , 

tiie  variation  J'.r  will  again   disappear   from  the  expressions  iJ/,  ̂ ',  ̂ f", 
&c.  ;  therefore,   by  supposing  the   system  free,    the  conditions  relative 

before  and  afler  the  impact,  we  have  0=  Trj->  0=  -rr^t  *c.  and  also  —  .  S.m  = (/<»   '  df^    '       '  dt 
dx  .  .  .  ■ 

2.m.  — ,  &c,  =  the  quantity  of  motion,  and   sinc^' '  by   hypothesis  the  quantity  of  motion 

dx lost,  equal  to  the  difference  between  Sm.—  before  and  after  impact,  should  be  =  to  nothing, 

such  as  would  cause  an  equilibrium  in  the  system,  it  follows  that -t^.S.jb.  before  and  after 

impact  must  be  the  same,  but  2.?n  being  given,  —  equal  to  the  velocity  of  tlie  centre  of 

gravity,  will  be  the  same  before  and  after  impact. 

*  As  the  centre  of  gravity  of  a  system,  moves  in  the  same  manner  as  a  body  equal  to  the 

sum  of  the  bodies  would  move,  if  placed  in  the  centre  of  gravity,  provided  that  the  same 

momenta  were  communicated  to  it,  which  are  impressed  on  the  respective  bodies  of  the 

system,  the  motion  and  direction  cf  the  centre  of  gravity,  may  be  always  determined  by  tlic 

law  of  composition  of  forces. 

If  the  several  bodies  of  a  system  were  only  subjected  to  their  mutual  action,  then  they  would 

meet  in  the  centre  of  gravity,  for  the  bodies  must  meet,  and  the  centre  of  gravity  remains  at  rest. 

t  The  fractional  part  of  these  expressions  for  Sy,  Sx'/,  Sy,  ?/,  Sj/'^,  &c.  arises  from  the  ro- 
tatory motion  of  the  system  about  an  axis  parallel  to  z,  for  it  appears  from  Nos.  22  and  25, 

that  when  the  direction  of  the  impulse  does  not  pass  througli  tiie  centre  of  gravity,  the 

body  acquires  both  a  rotatory  and  rectilinear  motion,  now  if  the  only  motion  impressed  on  the  ' 
system  was  that  of  rotation,  then  the  element  of  the  angle  described  by  the  body  m,  is  equal 

to  the  variation  of  the  sine  divided  by  the  cosine  =-  —   ^.  Sj,  the  elementary  angle  de 
scribed  by 
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to  tlie  connection  of  the  parts  of  the  system  will  only  influence  the  va- 

riations Sf,  Sf"  &c.  ;  the  variation  Sx  is  independent  of  them,  and 
entirely  arbitrary  ;  thus  by  substituting  in  the  equation  (P)  of  No.  1 8, 

in  the  place  of  Sx,  $x",  Sx"\  &c.  Sy,  Sy",  Sf,  &c.  their  preceding  values. 

=  \/£2+^       ̂ '^J''+^/'    .   _"^^-'^"'+.y'* 

.  ix- .'.  the  variation  of  j^  will  be  equal  to 

t:.^.. 

v^'g'^-)-y'~  v'  V  ̂ '  — ,  Sj,=-  .  dx  the  same  may  be  proved  of  the  other  variations  ix',  3x'' 

y      ̂ /x'^^-y^       y  ^    ̂   ' 

^^ '  +y'  =  the  distance  of  m  from  the  axis  of  r,  .*.    ,  ,-   is  equal  to    the   sine 

of  tlie  angle  which  Vx^+i/'  makes  with  y.     If  the  expression  — i— — -^   be     consi- 
y 

a: 

dered  with  respect  to  the  cosine^,  the  variation  o_y  =  — ?x.     ~     "^-^     .        y  Vx^'+^: 
          ix.X    „        ,             . 
  )  tor  the  variation  of  the  cosme  is  equal  to  the  variation  of  the  arc  affected  with 

a  negative  sign,  and  divided  by  the  sine,  and   as  the  variation  of  the  angle  described   hr 

,   \/x--\-y"'  ...  .  .  Vx^^'+Z'^ "'  -^   .  ox,  this  expression  being  referred  to  the  cosine  is  equal  to   -^ — .• 

.  3x.=   .  3x. 

If  in  the  expression 

we  substitute  for  ̂ x',  ̂ .i",  Sj/,  Sy',  Sy ,  &-c.  their  values,  it  becomes 

f 

3(i/''ix        xi/.ox  , »    .     »         ,  »    ,        »    ,        y'x.'.dx       y.x''^x   .   y'xHx 
y  y  y  y  y 

~-—+yhl—y-h!~y  h.^y^yrrf^   j^   
therefore  the  variation  Jx  disappears  from  the  expressions  "if,  "if,  &'C. 

Making  the  same  substitutions  in  the  equation  (P)  it  becomes 
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we  should  put  the  coefficient  of  Sx  separately  equal  to  nothing,  which 

gives 

0='SM.  ̂ ^   ̂ ~~^—^-+-z..m.  {Pt/ — Qx)  ; 

from  which  we  deduce  by  integrating  with  respect  to  the  time  t, 

c=z.m.  C-^^i^— -V^-^)  -|-s>?.(Py— Qx).  dt; 

c  being  a  constant  arbitrary  quantity. 

In  this  integral,  we  may  change  the  coordinates  y,  i/,  &c.  into  z,  s', 
provided  that  we  substitute  in  place  of  the  forces  Q,  Q,  &c.  parallel  to 

the  axis  of  ̂ ,  the  forces  B,  R',  2)arallel  to  the  axis  of  z,  which  gives, 

d  =  z.m.  (^dz-zclj/)  ̂   s/.m.(P3— i?^).  di ; 

<f  being  a  new  arbitrary  quantity.     In  like  manner  we  shall  have 

c"=x.m.   C3/^~— 3^^V)  +s,f,m.(Qz—Ry).  dt; 
1 

c"  being  a  third  arbitrary  quantity. 

o-,4.,.g-P^-i.4S-«}+/..{--p.| 

  I  "*■    I    d- —    !'+'"•  \      J    \—mPy\-mQ,x—m'P'i/^m'Q^3/,&c. 

therefore  if  tliis  expression  is  extended  to  all  the  coordinates,  it  will  become 
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Let  us  suppose,  that  the  bodies  of  the  system  are  only  subjected  to 

their  mutual  action,  and  to  a  force  directed  towards  the  origin  of  the 

coordinates.  Let  ̂ ;  denote,  as  before,  the  reciprocal  action  of  m  on  m', 
wc  shall  have  in  consequence  of  this  sole  action, 

0-m.(Pij—Qx)  +  7n'.{Fy'—Qx') ; 

thus  the  mutual  action  of  the  bodies  disappears  from  the  finite  integral 

^.nu(^P7/ — Q.r).  Let  5'  be  the  force  which  solicits  m  towards  the 
origin  of  tlie  coordinates  ;  in  consequence  of  this  sole  force,  we  shall 
have 

P-      .    -^'^     -:     Q=  -'^^^ 

consequently  the  force  S  disappears  from  the  expression  Pi/ — Qx,  thus, 

in  the  case  in  which  the  different  bodies  composing  the  system  are  only 

solicited  by  their  action  and  mutual  attraction,  and  by  forces  directed 

towards  the  origin  of  the  coordinates,  we  have 

c  =  ̂ .m.— — - — - — ~ ;   c  —s.m.-^   ;   -;  c  =l.m.  -^   ^^^ dt    .  dt  dt 

If  we  project  the  body  m,  on  the  plane  of  :r  and  of  3/,  the  differential 

— "^^    — ,  will  represent  the  area  which  the  radius  vector,   drawn  from 

the  origin  of  the  coordinates  to  the  projection  of  m,  describes  in  the  time 

dt ;  consequently  the  sum  of  the  areas,  multiplied  respectively  by  the 

masses  of  the  bodies,  is  proportional  to  the  element  of  the  time,  fron.i 

which  it  follows,  that  in  a  finite  time,  it  is  proportional  to  the  time.  I( 

is  this  which  constitutes  the  principle  of  the  conservation  of  areas.* 

♦  When  the  bodies  are  only  subjected  to  their  reciprocal  action, 

2.OT.(Py— Qr)=w.(Py— Qx)+m'.  (F/— QV)+  &c.  — 

by  substituting  for  m  P,  m  Q,  their  values,  given  in  page  122, 

^{il/—x't/—)/l-\-xi/)  4.  .ry— r;/— ya'-f-j'y)  7  _^ 
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The  fixed  plane  of  x  and  of  y  being  arbitrary,  this  principle  obtains 

for  any  plane  whatever,  and  if  the  force  S  vanishes,  i.  e.  if  the  bodies 

are  only  subjected  to  their  reciprocal  action  and  mutual  attraction,  the 

origin  of  the  coordinates  is  arbitrary,  and  may  be  in  any  point  whatever. 
Finally,  it  is  evident  from  what  precedes,  that  this  principle  subsists, 
even  when  by  the  mutual  action  of  the  bodies  composing  the  system, 
they  undergo  sudden  changes  in  their  motions. 

There  exists  a  plane,  with  respect  to  which  c  and  c"  vanish,  and 
which,  for  this  reason,  it  is  interesting   to  know,  for  it  is  manifest  that 

see  preceding  number.     If  the  bodies  are  solicited  by  forces   directed   towards  a   fixed 

point,  then  making  this  point  the  origin  of  tlie  coordinates, 

consequently  this  force  will  also  disappear  from  the  expression  Py — Qx,  .•.   in  these  two 
,                           xdii — udx  xdii — iidx  ,  .  ,      ,  .        „ 

cases  we  nave  c  =  2  m.  —          ,  ac  ;  —        — -  iz  the  area  wluch  the  projection  of 

the  radius  vector  on  the  plane  ■  of  x,  y,  describes  in  the  time  dt,  see  notes  to  No.  6, 

page  27.  Z.m.{Py — Qx)  ~  0,  also  when  F  and  Q,  &c.  vanish,  i.  e.  when  the  system 

is  not  actuated  by  any  accelerating  force,  but  only  moved  by  an  initial  impulse;  .•.  the 
principle  of  the  conservation  of  the  areas  obtains  in  these  three  cases;  1st.  when  the 

forces  are  only  the  result  of  the  mutual  action  of  the  bodies  composing  the  system;  2ndly, 

when  the  forces  pass  through  the  origin  of  the  coordinates  ;  and  3dly,  when  the  system 

is  moved  by  a  primitive  impulse.  In  the  first  and  last  case,  the  origin  of  the  coordinates 

may  be  any  point  whatever.  If  there  is  ajixed  point  in  the  system,  the  equations  {Z)  are 

•  only  true  when  this  point  is  made  the  origin  of  the  coordinates,  any  other  point  being 

made  the  origin,  the  moment  Py — Qx  will  not  disappear,  see  notes  to  No.  3,  page  12  ; 

if  •.■  in  these  circumstances  the  bodies  are  solicited  by  forces  directed  towards  a  given 
centre,  this  centre  coincides  with  the  fixed  point  of  the  system,  when  the  equations  (Z) 

obtain  ;  if  there  are  two  fixed  points  in  the  system,  only  one  of  the  equations  (Z)  will  sub- 

sist, to  wit,  that  which  contains  those  coordinates,  the  plane  of  which  is  perpendicular  to 

line  joining  the  given  points,  the  origin  of  the  coordinates  may  be  any  point  whatever  in 

tliis  line,  see  notes  to  No.  15,  page  88. 

The  constant  quantities  c,  d,  c",  may  be  determined  at  any  instant,  when  the  velocities 
and  the  coordinates  of  the  bodies  of  the  system,  are  given  at  that  instant. 

* 
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the  equality  of  c'  and  c"  to  nothing,  ought  to  simpUfy  considerably  the 
investigation  of  the  motion  of  a  system  of  bodies.  In  order  to  de- 

termine this  plane,  we  must  refer  the  coordinates  .v,?/,^,  to  three 

other  axes  having  the  same  origin  as  the  preceding.  Let  there- 

fore 9  represent  the  inclination  of  the  required  plane,  formed  by 

two  of  the  new  axes,  with  the  plane  of  a:'  and  oiy,  and  ̂   the  angle  which 
the  axis  of  x   constitutes  with  the   intersection   of  these   two  planes, 

so   that   S  may  be  the  inclination  of  the  third  new  axis  with  the 

plane  of  x  and  of  y,   and   ^  may  represent  the  angle  which   its 

projection  on  the  same  plane,  makes  with  the  axis  of  x,  ir  being  the  semi 

periphery. 

In  order  to  assist  the  imagination,  let  us  suppose  the  origin  of  the 

coordinates  to  be  at  the  centre  of  the  earth  ;  and  that  the  plane  of  x  and 

of  y  coincides  with  the  plane  of  the  ecliptic,  and  that  the  axis  of  z  is  the 
line  drawn  from  the  centre  of  the  earth  to  the  north  pole  of  the  ecliptic  : 

moreover,  let  us  suppose  that  the  required  plane  is  that  of  the  equator, 
and  that  the  third  new  axis,  is  the  axis  of  rotation  of  the  earth,  directed 

towards  the  north  pole  ;  0  will  represent  the  obliquity  of  the  ecliptic,  and 

4  will  be  the  longitude  of  the  fixed  axis  of  x,  relative  to  the  moveable 

equinox  of  spring.  The  two  first  new  axes  will  be  in  the  plane  of  the 

equator,  and  by  calling  (p,  the  angular  distance  of  the  first  of  those 

axes  from  this  equinox,  <p  will  represent  the  rotation  of  the  earth  rec- 

koned from  the  same  equinox,   and  —-{-?>  will  be   the  angular  distance 

of  the  second  of  these  axes  from  the  same    equinox.     We  will  name 

these  three  new  axes,  principal  axes. 

Let.r,,_y^,  2,  represent  the  coordinates  of  m  referred,  first  to  the  line 

drawn  from  the  origin  of  the  coordinates,  to  the- equinox  of  spring ;  x 

being  reckoned  positive  on  this  side  of  the  equinox  ;  2dly,  to  the  pro- 

jection of  the  third  principal  axis  on  the  plane  of  x  and  of  y  ;  Sdly  to 
the  axis  of  z,  we  shall  have 
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xz=.xi.  COS.  ̂ -\-y,.  sin.  4* » 

y=j/,.  COS.  v|/— T^  sin.  4/  ;• 

»  ̂  */• 

Let  j,^  y,t,  Zii,  be  the  coordinates  referred,  1st  to  the  line  of  the  equi- 

nox of  spring  ;  2dly,  to  the  perpendicular  to  this  line  in  the  plane  of 

the  equator  ;  Sdly,  to  the  third  principal  axis  ;  we  shall  have 
^1  =  x„  \ 

y,  =  y,!.  cos.  %-\-Z/,.  sin.  6  ; 

z^  =  Zi,.  cos.  6—3/,,.  sin.  6. 

Finally,  let  x,„,  y ̂^„  ̂ „,,  be  the  cooordinates  of  m,  referred  to  the  first, 
•  s  2 

•  As  the  axes  of  the  coordinates  .r,,  y.,  exist  in  the  plane  of  x,  y,  and  as  the  angle 

wliich  the  axis  of  x  makes  with  the  axis  of  x_,  is  equal  to  -i^,  we  have  by  the  knowii  formula; 
for  the  transformation  of  one  system  of  rectangular  coordinates,  into  another  system  existing 

in  the  same  plane, 

x=x,.  cos.  ■\'-\-yi-  sin.  •4'  ;yr:_y,.  cos.  -i^ — x.  sin.  ij/ ;  and  because  the  axis  of  2  coincides  with 
the  axis  of  s ,  we  have  z=z.  Comparing  the  coordinates,  *  ,^,,z,,  with  the  coordinates  x^,y^^,z^, 

it  appears  that  the  axis  of  .Ty  coincides  with  the  axis  of  x^,,  and  consequently  x,=t//  ;  and  as 

the  axis  of »/,  is  in  the  plane  of  the  ecliptic,  perpendicular  to  the  line  of  equinox  of  spring,  and 

aa  the  axis  of  ̂ ,,  exists  in  the  plane  of  the  equator  perpendicular  to  the  same  line,  it  is 

manifest  that  the  angle  formed  by  these  axes  is  equal  to  the  angle  i,  the  inclination  of  the 

two  planes,  and  that  these  two  lines  and  the  axes  of  z^  and  z^^,  which  are  respectively 

perpendicular  to  those  planes,  exist  in  the  same  plane,  consequently  we  have,  as  before, 

yr^Vii'  '^o*'  ̂ -\-'^ir  s'"-  *>  -/=-//•  cos.  i.  — _!/„  sin.  i.  Lastly,  it  appears  that  the  axis 
of  z,i  coincides  with  the  axis  of  s,,^,  and  consequently  that  z,,'=z,i,, ;  and  as  the  axis  of 

x„  and  2/,„  and  of  x,,^  and^„,  are  in  the  plane  of  equator;  and  as  by  hypothesis,  ij)  is  equal 

to  the  angle  which  the  axis  of*,,,  makes  with  the  line  of  equinox  of  spring,  which  line  is 

supposed  to  coincide  with  the  axis  of  x^,,  we  have  x^,=x^„.  cos.  <p — ;y„^.  sin.?;  yi,=y,„. 

COS.  ip4-^,„-  *'"■  ?•  %  substituting  for  x^  y^,  x,^  y,„  their  values,  we  obtain  x=x,. 

cos.  ■>H".y/-  sin-  ̂   =  (-r//-  cos.  ■^■^y,,-  cos.  6.  sin.  ilz+z,,.  sin.  «.  sin.  4-)  =  (r„,.  cos.  *. 

COS.  •vj/ — ly,^^.  cos.  -vj/.  sin.  <p-\-y„,-  cos.  i.  sin.  ̂ .  cos.  (p.  4"^,„>  cos,  t.  sin.^/.  sin.  (f  -[-z,,,. 

sin  6.  sin.  4"),  •."  by  concinnating  we  obtain  *=x„^(cos.  t.  sui.  4'.  sin.  ip+cos.  (p.  cos.  ■^) 

-\-y„,  (cos.  i.  sin.  4'.  cos.  ip. — cos.  4'-  sin.  ?)-J-z^,^.  sin.  i.  sin.  i^,  which  is  the  expression 
given  in  the  text ;  by  a  similar  process  we  could  derive  values  for  y  and  z. 
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second,  and  third  principal  axes  ;  we  shall  have 

x^  =  x^^.  COS.  (p — 1/ , .  sin.  ip  ; 

From  which  it  is  easy  to  deduce 

X  =  «'/^/.(cos.  9.  sin.  vf/.  sin.  ip  +  cos.  ̂ .  cos.  (p)  + 

y^^,.{cos.  6.  sin.  ■^.  cos.  ip — cos.  vj/.  sin.  ip) 

5;^,/.  (sin.  0.  sin.  4^)  ; 

«/  =07/^^.  (cos.  6.  cos.  ■]>.  sin.  (p — sin.  \|/.  cos.  (p)  + 

^//^.(cos.  G.  cos.  4/.  cos.  9  +  sin.  i}/.  sin.  (f) 

+z^^^  (sin.  6.  cos.  ̂ '); 

z  =  z,^.  COS.  0 — j/j,^.  sin.  6.  cos.  <p — o:*^^^  sin,  9.  sin.  (p.* 

If  we  multiply  these  values  o{  :r,  y,  z,  by  the  respective  coefficients  of 

♦  If  any  line  x  is  drawn  from  the  origin  of  the  coordinates  x,,,,  y^^,  z,,^,  and  if  A,  B,  C, 

represent  the  cosines  of  the  angles  which  a-  makes  with  z_,,,  ̂ /,^,,  2,,,,  respectively,  then 

X  =  Axiii-\-Byiii  +  C'2„^,  for  if  a  perpendicular  erected  from  the  extremity  of  x  meets  a 
X 

line  r,  whose  coordinates  are  x,^,,  y,,,,  s,,,,  then  —  is    equal    to   the   cosine  of  the  angle 

which  X  makes  with  r,  and  — ^,     ̂ ^,     ̂ ^,  are  equal  to  the  cosines  of  the  angles  which r  r  r 

r  makes  with  x„,,  ̂ ,,„  z„„  •.•  we  have  by  note  to  page  7,  —  =  ̂ .  — '  +  B.  — r  r  r 

z 

+  C.-^,  :•  x=zAx^i^-\-By^^^+Cz^^^.     Consequently  we  infer  that  the  coefficients  of  x^^^, 

Villi  ''■IIP  '**  ̂ ^  expression  given  in  the  text  for  x,  y,  z,  are  equal  to  the  cosines  of  the 

angles  which  the  axis  of  x,  y,  z,  make  with  the  principal  axes  respectively ;  therefore  sin. 

t.  MD.  >}',  is  equal  to  the  cosine  of  the  angle  which  the  axis  of  2„,,  makes  with  the  axis  of 
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■Xw,  in  the  preceding  expressions  ;  we  shall  have,  by  adding  them  toge- 
ther, 

x^^^  =  a:. (COS.  9.  sin.  4/.  sin.  p+cos.  v|/.  cos.  <p)  + 

3/.(cos.  9.  COS.  vj/.  sin.  <p — sin.  v}/.  cos.  <p) — z,  sin.  9.  sin.  <p. 

By  multiplying  in  like  manner  the  values  of  x,  y,  z,  by  the  respec- 

tive coefficients  of  i/,„  in  the  same  expression,  and  afterwards  by  the  co- 
efficients of  5,„,  we  shall  have 

z/,,y  =  a;.(cos.  9.  sin.  v}/.  cos.  ̂ — cos.  vf/.  sin.  ip.)4- 

X,  :•  equal  to  the  cosine  of  the  angle  which  the  plane  of  ?/,,,,  j  ̂ ,  makes  with  the  plane 
y,  z;  in  like  manner  sin.  S.  cos.  ip,  is  equal  to  the  cosine  of  the  angle  contained  between 

the  axis  of  z^^^  and  of^,=the  cosine  of  the  inclination  of  the  plane  a;,,^,  y,^^  to  the  plane 

s,  z,  also  sin.  i.  sin.  ip,  sin.  6,  cos.  (p,  cos.  i.  are  equal  to  the  cosines  of  the  angles  which 

the  axis  of  z  makes  with  the  axes  of  x,„,  i/,„,  and  z,„,  respectively,  see  No.  27. 

We  may  observe  that  in  the  general  expressions  for  the  transformations  of  one  system 

to  another  of  rectangular  coordinates,  which  are  of  the  following  form : 

^  =  ̂ x,„-\-Bt/,„+Cz„„ 

z=  A„.x,i,-\-B/j.y,„-\-C„.z,,„ 

there  are  six  equations  of  condition,  i.  e. 

A*  +  A,^  +  A,/,=l  AB+A,B,+A,yB// =0, 

B^  +B,'  +  B,/,  =1  A  C+Af,+A,,C„  =0, 

C^  +  C;  +  C,,/,=l  BC+B,C,-\-B,,C„=:0, 

■which  are  derived  from  the  identity  between  the  expressions  a;*  +y^  +z»,  and  x,,,''  H-i/,„--|- 

z,,,*,  for  they  are  respectively  equal  to  the  square  of  the  distance  of  the  same  point,  from 
the  common  origin  of  the  coordinates,  •.•  three  of  the  nine  coefficients  which  are  intro 

duced  by  the  transformation,  may  be  regarded  as  undetermined;  these  three  undeter- 

mined quantities  are,  in  fact,  the  angles  6,  ij/,  and  (p  ;  for,  by  substituting  in  the  six  preceding 

equations  of  condition  for  A,  B,  C,  A,,  &c.  their  values  in  functions  of  the  angles  6,  4^,  and  (p, 

the  resulting  equations  will  become  identical,  and  there  arises  no  relation  between  f,  4^,  and  p. 
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^.(cos.  0.  COS.  \J/,  COS.  ̂   +  sin.  \|/.  sin.  (p)^z.  sin.  0.  cos.  ̂  ;  s 

«„,  =*.  sin.  0.  sin.  ̂ ^+2/-  sin.  0.  cos.  tj/. +  2.  cos.  6. 

These  different  transformations  will  be  very  useful  hereafter,  we  will 

obtain  the  coordinates  corresponding  to  the  bodies  m,  m",  &c.  :  by 
placing  one,  two,  &c.  marks  above  the  coordinates  x^,  y^,  z,^^,  y ̂^^  z,,.* 

•  If  we  actually  perform  this  operation  we  shall  obtain 

r.(cos.  «.  sin.  4-.  sin.  (p  +  cos.  4-  cos.  ?i)=x,^,.(cos.  -6.  sin.  s^-.  sin.  2^+cos.  ̂ ■^,  cos.  V  + 
2  cos.  d.  sin.  T^.  COS.  ̂ .  sin.  ip.  cos.  (p.) 

■\-t/f,f.(coa.  'e.  sin.  -•vj'.  sin.ip.cos.  ip+cos.«.sin.  4-.  cos  4.  cos.*^ — cos.  ̂ .sin.i^.  cos. 4'.  sin.  V 
— cos.  '■4-  s'"^-  'P-  cos.  Ip.) 

-f-z,,,.(siii.  6.  cos.  (I.  sin.  '-4/.  sin.  (p  +  sin.  6.  sin.  ■<}/.  cos.  •vj'.  cos.  <p) ; 

^.(cos.  6.  cos.  4.  sin.  ? — sin.  if.  cos.  *.) 

;ex^„.(cos,   <.  COS.  '4/.  sin.  *<fi+sin.  ̂ ^.cos.  "(p — 2(cos.  6.  sin.  4/.  cos.  ■4'-  sin.  ?.  cos.  $) 

+y„,.(cos.  *6,  cos.  'i^.  sin,  ̂ .  cos.  ip+cos.  «.  sin.  -vf-  cos.  ■vj'.  sin.  •<? — cos.  i,  sin,  ■vj/.  cos,  -i-. 
cos.  "<p — sin.  ̂ ■^.  sin.  ̂ .  cos.  <p.) 

-j-s„^.(sin.  6.   cos.  «.  cos.  'i^-  sin.  $> — sin.  6.  sin.  ■i|'.  cos.  4-.  cos.  ̂ ) 

— r. sin.  I.  sin.  <p=  — 2,,^.  sin,  d.  cos.  d.  sin.  ip+y„,,  sin.  *1  sin.  <p.  cos.  ̂ +x,,,.  sin.  s^.  s;n.  '^ ; 

adding  these  three  equations  together,  and  making  the  terms  which  are  at  the  right  hand 

side  to  coalesce,  we  shall  get  the  coefficients  of  J',,,=  to  cos.  '<».  sin.  ":p+cos  '?.+  sin.  '*. 

sin.  'ip,  (=sin.  ̂ ip — sin.  ̂ 6.  sin.  ̂ ^  +  cos.  '(f+sin,  ̂ 6.  sin.  *V)  =1>  t'le  coefficients  of  y^,, 

will  be  equal  to  cos.  ̂ 6.  sin.  (p.  cos.  $r-sin.  ip.  cos.  ̂ -j-sin.  ̂ $.  sin.  ij.  cos.  ip:=0,  in  like 
manner  the  coefficient  of  z^^  =sin.  6.  cos.  6.  sin.  (p — sin.  6.  cos.  d.  sin.  tp^O  ;  the  terms  at 

the  other  side  are  those  which  have  been  given  in  the  text.  In  like  manner  to  obtain  the 

value  of  y^,i,  a  corresponding  multiplication  gives 

x.(cos.  (.  sin.  ■^.  cos.  ̂  — cos.  i^.  sin.  f)  = 

x^,^.(cos.*^.  sin.  *4/,sin.  ̂ .cos.  ?i-j-cos.  *.  sin.  4/.  cos.  4.  cos.  'f — cos.  6.  sin,  4.  cos. -v^.  sin.  *f— 
cos,  'if-  sin.  (p.  COS.  (p) 

•]-yf,J[cos,  "e.  sin.  ̂ T^.  COS.  '(p-J-cos.  ̂ •4,  sin.  -?i— 2.  cos.  6.  sin.  4.  cos.  ̂ .  sin.  f.  cos.  ̂ \ 

+  z,„(sin.  ).  cos.  e.  sin.  ̂il'-  cos.  <p — sin   6.  sin.  ■4'.  cos.  •4-.  sin.  (?) 
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From  what  precedes,  it  is  easy  to  conclude,  by  substituting  c,  C,  c",  in 

place  of 

dt  dt  dt         * 

t/.(cos.  e.  COS.  ip-  COS.  <p-|-sin.  ̂ |'.  sin.  ip) 

=  :c,„(.  COS.  H,  COS.  ̂ ^z.  sin.  ̂ .  cos.  <p — cos.  6.  sin.  ■v^.  cos.  %//.  cos.  ̂ ^  -j-cos.  6,  sin.  4''  cos.  i^. 
sin.-^ — sin.  ̂ .  sin.  <p.  cos.  <p) 

+y„,(cos.  ̂ .  cos.  'if',  cos.  'ip+sin.  ̂ .  sin.  'ip  +  2.  cos.  9.  sin.  (p.  cos.  ̂ .  sin.  4".  cos.  ■vf-) 

-f-«,„'  sin.  *.  cos.  i.  cos.  -i^.  cos.  if+sin.  6.  sin.i/^.  cos.  i|/.  sin.  f.) 

— z.  sin.  S.  cos.  ip=r 

— 1,„.  sin.  i.  cos.  S.  cos.  ip+y/,/-  sin.  ̂ i.  cos.  "ip+x,„.  sin.  ̂ 6.  sin.  ̂ .  cos.  ?, 

-aJding  those  quantities  together,  and  concinnating  as  before,  we  obtain 

j.(cos.  i.  sin.  ■4'-  cos.  (p — cos.  ■4'.  sin.  ̂ )4-^-(cos.  6,  cos.  tp.  cos.  p  +  sin.  •\^.  sin.  9) 

— z.  sin.  ̂ .  cos.  ip— 

«,„.(cos. ^t.  sin.  Ip.  cos:  ip — sin.  (p.  cos.  <l>-{-sin.  ̂ 6.  sin.  (p.  cos.  9)=0, 

+j/„^(cos.  2^.  cos.  *?i+sin.  ̂ ^-f  sin.  ̂ i.  cos.  *(p)=r^„,, 

+  r„,.  (sin.  9.  cos.  *.  cos.  <p — sin.  «.  cos.  i-  cos.  ip)=.0. 

Fw  the  value  of  a,,^,  by  performing  similar  operations,  we  obtain  x.  sin.  i.  sin.  4"= 

c,„.(sin.  6.  COS.  4.  sin.  ̂ .  sin.  (p-{-gin.  0.  sin.  ij/.  cos.  4'*  cos-  f ) 

+y//,.(sin.  t.  COS.  <.  sin.  ̂^J'*  cos.  $ — sin.  e.  sin.  ■^.  cos.  i^.  sin.  ip) 

+£^„.(sin.  ̂ *.  sin.  ̂i/'' 

y.  sin.  #.  cos.  \f'=: 

«„,.(sin.  i.  cos.  *.  cos.  ̂ .  sin.  ip — sin.  0.  sin.  i^.  cos.  i^-  cos.  ip) 

+^///'(sin.  «.  COS.  (.  cos,  24,.  cos.  9  +  8in.  «.  sin.  4.  cos.  ij/.  sin.  ̂ )-f.a,_^(8in.  '*.  cos.  '-vf-.) 

«.  cos.  6=.  — X,,,.  sin.  e.  cos.  ̂ .  sin.  <p — ^,,,.(sin.  6.  cos.  ̂ .  cos.  ?+«;,,•  (cos.  *»), 

<,*.  adding  tlie  corresponding  quantities  together,  we  obtain 
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that  zm.'"  •^^"'~~^^"'  •'""'■  =c.  cos.  6 — c'.  sin.  «.  cos  ij^  +  c".  sin.  t.  sin  4' ; dt 

X  .dz  . — z  .dx 
sm.  -^^^^ — '"  ,    "^ — ^  =c.  sm.  fi.  COS.  (?  * dt 

■    X.  (sin.  i.  sin.  ■4')+^'  sin.  i.  cos.  4"  +-•  cos.  «= 

*,,^.(sin.  i.  COS.  C.  sin.  ?) — sin.  ̂ .  cos.  i.  sin.if).)=0, 

H-y,„.(sin.  ̂ .  COS.  i.  COS.  ip — sin.  C.  cos.  i,  cos.  ?>)=0,  +3„,.(sin.  s^.+cos.  -«)=3„^. 

*  When  we  substitute  for  the  expression  Xndym — yuM^u,'  the  respective  values  of  jr„,, 

'i^iii'y,,!'  ̂ Viii'  "^  functions  of  *,  dx,y,  dy,  and  of  the  angles  6,-^,  and  (p,  it  is  not  ne- 
cessary to  take  into  account  any  expression,  in  which  the  variable  part  is  the  product  ot 

a  coordinate  into  its  own  differential,  because  this  expression  occurs  again,  affected  witl% 

a  sign,  the  opposite  to  that,  with  which  it  was  affected  before.  By  performing  the  pre- 

scribed multiplication  of  the  value  of  a:,,,  into  the  value  of  c/y,,,  of  y,,^  into  dx„,  we  obtain 

x„_-dy  ii,-=xdy.[cos.  -6.  sin.  -ij/.  cos  »|/.  sin.  <p.  cos.  $-}-cos.  6.  sin.  "■•p-  sin.  '<?  "h  cos.  i. 
cos.'i^.  COS.  ̂ ^+sin.  i|/.  cos.  4'.  sin.  (p.  cos.  (f), 

-J-y.(/x.(cos.  "6,  sin.  i|^.  cos.  ■vf-.  sin.  ip.  cos.  <p — cos.  6.  cos.  ̂-vj/.  sin.  '^ — cos.  ). 

sin.  ̂i)/-  cos.  ̂ ?i-|-sin.  i|/.  cos.  ■<i^.  sin.  ip.  cos.  ̂ ), 

— z.c?x.(sin.  6.  COS.  ̂ .  sin.  ij/.  sin.  ?>.  cos.  (p — sin.  6.  cos.  ̂ f/.  sin.  "ip), 

— 3.rfy.(sin.  ̂ .  COS.  6.  COS.  ij'.  sin.  ifi.  cos.  ?>  +  sin.  «.  sin.  ■4'.  sin.  '<p), 

— j.t/z.(sin.  6.  COS.  «.  sin.-|.  sin.  (f>.  cos.  ?)-j-sin.  6.  cos.  •J',  cos.  -ip), 

— y.dz.{siu.  6.  cos.  S.  cos.  ■^.  sin.  ̂ .  cos.  (p — sin.  6.  sin.  t^.  cos.  "if), 

y^^,.rfr,„.rr«.rf_y.(cos.  2«.  sin.  il/-  cos.  il/.  sin.  (p.  cos.  ip — cos.  6.  sin.  s-J..  cos.  *ip — cos,  t.  cos.  yvf^. 
sin.  -.p+sin.  i^,  cos.  i^.  sin.  (p.  cos.  ip), 

-}-y.rfx.(cos,  2«.  sin.  ij/,  cos.  -J/,  sin.  (p.  cos.  <p-f-cos.  6.  cos. '4-  cos. -ip -J- cos.  i. 
sin.  24.  sin.  2(p-|-sin.  i^.  cos.  if'-  sin.  (p.  cos.  ?), 

— ^z.</j;.(sin.  S.  cos.  6.  sin,  if- sin.  (J.  cos.  (p-fsin.  6.  cos.  4''C0S.  ̂ ^), 

— z.dy.(sm.  6.  COS.  tf.  cos.  4.  sin.  ip-  cos.  9 — sin.  «.  sin.  4.  cos.  ̂ ^), 

— x.rfr.(siii.  6.  COS.  «.  sin.  1^.  sin.  9.  cos.  <fi — sin.  6.  cos.  if/,  sin.  *ip), 

— ■y.rf2.(sin.  «.  cos.  e.  cos.  4- sin.  (p.  cos.  <p-f  sin.  6.  sin,  4-.  sin.'^); 
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c'.  (sin.  ̂ .  sin.  ̂ +cos.  6.  cos.  x)/.  cos.  <p)+c^''.  (cos.  \f/.  sin.  p — cos.  8.  sin.  4'. 

COS.  <p)  J   '^^■^'"'^^'"•—^"''-^■!^^  =  —c.  sin.  9.  sin.  <p. 

+c'.(sin.  4-.  COS.  (p-^cos.  S.  cos.  i)/.  sin.  <?) 

+c".  cos.  ̂ '^  COS.  9  + cos.  9.  sin.  ̂ .  sin.  (p). 

If  we  deteiinine  4^  and  6,  so  that  we  may  have  sin.  9.  sin.  i|/ 

c"  — c'  ,     . 
=    ,^ — 1=7=^ ;  sin.  9.  cos.  J/  =  ~>~;      ,„  —  ,  which  gives 

c 
COS.  9  =     /  „       .,       .,,  we  shall  have  * 

3c,.dii  . — y„,'dx ,  ,    . 

2WJ.  dt  '■  =  \/c*^c'*-^c"*  + 

•/  subducting  x,iidyi,,  from  y„,.t/x,„,  and  making  the  terms  whose  variable  parts  are  the 
same  coalese,  we  obtain  ̂ m-dyn, — .y/„.rfa;,„  =  (x.rfy — y.dx).  cos.  «-{-  (xdz — zdx),  sin.  #. 

COS.  i//-|-(^.t?2 — ^z.dly),   sin.   6.  sin.  •vf/;  and  substituting  for  x.dy — y.dx,  s.dz — z.dx,  &c. 

their  values  d ,c" ,,  we  obtain  c.  cos.  i   d.  sin.  «.  cos.  -^/^-^fd'.  sin.  ̂ .  sin.  4';  =x„,.f^y,„ — 

ViiA^iiii  ̂ y  ̂  similar  analysis  we  arrive  at  the  expressions  for  Xm-dz^,! — z^^-dx^^,,  ym-dz^i, — 
~iii-^y,i,>  which  are  given  in  the  text. 

c"«  J.  c"       ' 

*  For  sin. '  6.  sin.*  i^  -f  sin.  *  6. cos.  *  i|/=  sin.  -  «  =  vTv  a  j.'X'a'  **'  ''°^' ' ^'~^ — *'"'  *  * 

c^+d^+d" 

f  For  substituting  in  place  of  cos.  6^,  sin.  6.  cos.  xj',.  sin.  S.  sin.  •vJ/„  these  values,  we 
shall  have 

rf< 

:=  V  c*4-c'--|-c'S  and  if  we  substitute  for  c,  c',  c",    their  values,    ■\/c^-J-c'^-f  c*", 

cos.  «,  — 'V^c*+c'*-j-c"*,  sin.  «.  cos.  4".  +v^c2+'c*-f-"c»,  sin.  «.  sin.  ■!•,  the  expression 

"•"'•  ill   ~"  will  become  v6'-\-c^-{-c',  (sin.  6.  cos.S.  cos.i?, — sm.^.sm.if. 
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^^^^    x„,dz„r-z,Ar,„  ^  0 ;  ̂ .ILid^H^j:^,  =  0  ; dt  dt 

,'.  the  values  of  c'  and  c"  vanish  with  respect  to  the  plane  of  x^,,  and  ̂ „,, 
determined  in  this  manner.  There  exists  only  one  plane,  which  pos- 

sesses this  property,  for  supposing  that  it  is  the  plane  of  x  and  i/,  we 
shall  have 

Z;«.  "'-^-^--^-•^"-  =  c.  Sin.  9.  COS.  ,  ;  Im.  y'-d^''^-'-^^'"  = dt  _  dt — c.  sin.  9.  sin.  ip  ; 

If  these  two  functions  are  put  equal  to  nothing,  we  shall  have  sin. 

9=0,  which  shews  that  the  plane  of  a-,,,  and  y,,,,  then  coincides  with 
V    dii       1!  •  dx 

the  plane  of  x  and  y.     Since  the  value  of  "Zm.   '  '"'      " fji    "' — ~ 

is  equal  to  \/c*+c*  +  c"*,  whatever  may  be  the  plane  of  x  and y,  it 

follows  that  the  quantity  c*  +  c'*+c"«  is  the  same,  whatever  this  plane 
may  be,  and  that  the  plane  of  x„  and  y,„,  determined  by  the  preceding 

,    ,    ,     p       .  X    dy  — y  .dx 

analysis  is  that,  with  respect  to  which  the  function  s/h.    '"   '^"'       " — - 

is  a  maximum  ;  therefore,  this  plane  *  possesses  these  remarkable  pro- 

cos.  ■\.  sin.  (J) — sin.  i.  cos.  ̂ .  cos.  --i^.  cos.  <?)-l-sin.  i.  sin.  -^  -f  cos.  ■^.  sin.  (p — sin.  (i.  cos.  C. 

sin.  '\f/.  cos.  ip)   =  ̂c^-t-c^'-f-c"'',  (sin.  «.  cos.  d.  cos.   $ — sin.    i.  cos.  S.    cos.  if)  =  0 

the  same  is  true  respecting  the  expression  2.jb.  -=   —   :   . 

*  As  the  cosines  of  the  angles  which  the  axes  of  z„,  maizes  with  the  axes  z,  y,  x,  i,  e. 

the  cosines  of  the  angles  which  the  plane  x^„.  ?/,„,  makes  with  the  planes  x,  y;  x,z;y,z, 

(see  note  to  page  1 33, )  ai-e  equal  to  cos.  6,  sin.  (t.  cos.  ■4',  sin.  6.  sin.  ■^,  it  follows  that  when  we 

have  the  projections  c,  c',  c",  of  any  area  on  three  coordinate  planes,  we  have  its  pro- 
jection 2M.(a:„,.(/y,„ — y,i,-^^ii^  °n  ̂ ^^  plane  a;„/y,„  whose  position,  with  respect  to  the 

three  planes   x,y ;  x^ ;  y,z,  is  given.     In   like  manner  it  follows  from   the   exression, 

2.n!.  -{  -J'JlJjiJ    y'"    '  ̂"  V  ,  which  has  been  given  in  the  text,  that  for  all  planes  equally 

inclined  to  the  plane  on  which  the  projection  is  the  greatest,  the  values  of  the  projection 

of  the  area  are  equal,  for  supposing  the  plane  of  x,  y  to  be  the  invariable  plane,  then 

(  xdu — y.dx  (.,,,,                           ., ,              (■  xdz — z.dx  \ 
2.m.  ■{  —    /t~~'  f  '  '"''"  ̂ ^  *"^  greatest  possible,  2.m.  I        j- , 
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perties — first,  that  the  sum  of  the  areas  traced  by  the  projection  of  the 
radii  vectores  of  the  respective  bodies,  and  multiplied  by  their  masses, 
is  the  greatest  possible ;  secondly,  that  the  same  sum,  vanishes  relative 

to  any  plane,  which  is  perpendicular  to  it,  because  the  angle  ip  is  unde- 
termined. By  means  of  these  properties,  we  shall  be  able  to  find  this  plane 

at  any  instant,  whatever  variations  may  be  induced  in  the  respective  positions 

of  the  bodies  by  their  mutual  action ;  we  can,  in  like  manner  very  easily 

T  2 

2.7n.    -J  ~ — T   —  \  ,  are  respectively  equal  to  nothing,  V  2.m.  <  ''    '     —  > 

  --^    >.  COS.  6, 
dt  j 

Since  c,  c',  c",  are  constant  quantities,  and  proportional  to  the  cosines  of  the  angles  which 
the  plane  on  which  the  projection  of  the  area  is  a  maximum,  makes  with  the  coordinatfe  planes, 

it  follows,  that  the  position  of  this  plane  is  always  fixed  and  invariahle ;  and  as  the  quantities 

c,  c',  c",  depend  on  the  coordinates  of  the  bodies  at  any  instant,  and  on  the  velocities 
dx 
-J—,  &c.  parallel  to  the  coordinates,  when  these  quantities  are  given,  we  can  determine 

the  position  of  this  invariable  plane ;  we  have  termed  this  plane  invariable,  because  it 

depends  on  the  quantities  c,  c',  c'',  which  are  constant  during  the  motion  of  the  system, 
provided  that  the  bodies  composing  it  are  only  subjected  to  tliis  mutual  action,  and  to  the 

action  of  forces  directed  towards  a  fixed  point.    (See  page,  128.) 

Since  the  plane  ̂ ,  ̂   is  indetermined  in  the  text,  we  conclude,  that  the  sum  of  the 

squares  of  the  projections  of  any  area,  existing  in  the  invariable  plane,  on  any  three 

coordinate  planes  passing  through  the  same  point  in  space  is  constant ;  consequently,,  if 

we  take  on  the  axes  to  any  coordinate  planes  y,  z;  x,z;  x,  y,  lines  proportional  to 

c,  c',  cu,  then  the  diagonal  of  a  parallepiped,  whose  sides  are  proportional  to  those  lines, 
will  represent  the  quantity  and  direction  of  the  greatest  moment,  and  this  direction  is  the 

same  whatever  three  coordinate  planes  be  assumed,  but  the  position  in  absolute  space  is 

undetermined,  for  the  projections  on  all  parallel  planes  are  evidently  the  same.  The 

conclusions  to  wliich  we  have  arrived,  respecting  the  projections  of  areas  on  coordinate 

planes,  are  in  like  manner  applicable  to  the  projections  of  moments,  since  as  has  been 

observed  in  Note,  page  28,  these  moments  are  geometrically  exhibited  by  triangles  of  which 

the  bases  represent  the  projected  force,  the  altitudes  being  equal  to  perpendiculars  let  fall 

from  the  point  to  which  the  moments  are  referred,  on  the  direction  of  the  bases. 

When  the  forces  applied  to  the  different  points  of  the  system  have  an  unique 

resultant,  V;  then  smce  the  sum  of  the  moments  of  any  forces  pr<jjected  on  a  plane 

is  equal   to  the  moment  of  the  projection  of  their  resultant,  it  follows  necessarily,  that 
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find  at  all  times  the  position  of  the  centre  of  gravity  of  the  system,  and 
for  this  reason  it  is  as  natural  to  refer  the  position  of  the  coordinates  x 

and  y  to  this  plane,  as  to  refer  their  origin  to  the  centre  of  gravity.* 
22.  The  principles  of  the  preservation  of  living  forces,  and  of  areas, 

obtain  when  the  origin  of  the  coordinates  has  a  uniform  rectilinear 

motion  in  space.  To  demonstrate  this,  let  X,  Y,  Z,  represent  the  co- 
ordinates of  this  origin,  supposed  to  be  in  motion,  with  reference  to  a 

fixed  point,  and  let  us  suppose 

X  =  X-\-x;,  y  =  Y-\-y,\  z  =  Z-\-z;y 

x'  =  X+x;;y'^  Y+y/,  z  =  Z+z/,  &c. 

j\,  7/,,  z^ ;  x^,  &c.  will  be  the  coordinates  of  m,  ?«',  &c.  relative  to  the 

the  unique  resultant  V  and  the  point  to  which  the  moments  are  referred,  must 

exist   in   the   invariable  plane ;  *.*    the    axis  "of   this  plane   must  be  perpendicular   to 

this  resultant,  and  as  —p-,  -p,  — ,  are  equal  to  the  cosines  of  the  angles  which  F  makes 

with  the  coordinates,  and  as 

c  c'  c" 

sJc--^d^-\-c"'^'    x^c-'  +  c^+c"^  '   ̂ c^  +c'»  +  c"', 

are  equal  to  the  cosines  of  the  angles  which  the  axes  to  the  invariable  plane  makes  witii 
the  same  coordinates,  we  have 

cP+c'Q+c//R 
^-^^  =:  0,  V  cP+c'Q+c^R  ~  0.   (See  note  to  No.  1,  page  7.) 

\/c^-\-c'^+c'^' 

*  Besides  the  advantages  adverted  to  in  the  text,  it  may  be  observed,  that  our  inves- 
tigations are  considerably  simplified  by  the  circumstance  of  two  of  the  constant  arbitrary 

quantities  c,  c,  c',  vanishing  when  we  make  the  plane  of  projection  the  invariable  plane. 
It  may  also  be  remarked  that  this  plane  always  subsists  when  the  bodies  composing  the 
system  are  not  solicited  by  any  forces  beside  those  of  mutual  attraction,  and  of  forces 

directed  towards  fixed  points ;  nor  is  the  position  of  this  plane  affected  in  any  respect 
when  two  or  any  number  of  bodies  impinge  on  each  other ;  for  as  we  have  before  ob- 

served, these  impacts  dont  cause  any  change  in  the  expressions  Py — Qx,  &c. — on  the 
equality  of  which  to  nothing  depends,  the  principle  of  the  conservation  of  areas,  and  the 
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moveable  origin.     We  shall  have  by  hypothesis, 

d*X=  0;  f/*F=  0;  d*Z=  0; 

but  we  have  by  the  nature  of  the  centre  of  gravity,  when  the  system  is 
free 

O  =  z»j.(c?*Z+  d*x,)—^m.P.dt*  ■* 

0  =  zm.(rf»  Y-\-d*y}~-^m.Q-dP  ; 

0=-s,)n.(d'-Z+d^z,)—^m.R.dt'; 

position  of  tliis  invariable  plane.  The  practical  rule  for  the  determination  of  this  plane  is 

gi^'en  in  the  exposition,  Du  Systeme  du  Monde,  page  207,  the  investigation  of  this  rule 
will  be  given  in  No.  62,  of  the  second  book. 

We  shall  see  in  No.  26,  chapter  7,  that  the  consideration  of  this  plane  is  of  great 

service  in  the  determinations  of  the  motions  of  a  body  of  any  figure  whatever. 

*  0  =  'S..m.d^x—lM.P.dt^  ;  o  =  '2..m.d^ij—-S..m.Q_.dt- ;  0  =  ̂ .m.dz^—'S.m.R.dt'  ; 

substituting  in  place  of  d'x,  d\i/,  d'z,  we  obtain  the  expression  in  the  text;  and  since 

d^X  is  by  hypothesis  equal  to  0,  tlie  expressioi\  0  i:  ̂ .m.(d^x,+d^X — ^.P.dt"^)  =  2.w. 

rf*i,-}-rf»X.  2.JB. — ^.m.P.dt  ̂   = 'S.m.dx,^ — X.m.Pdf,-,  &c.  ;  in  like  manner,  substituting 
for  ix,  3_y,  &c.  in  the  equation  (PJ,  we  obtain 

0  =  2.m.  I  SX+Jx,  }  -^  _  p.j  +2.,«.(?y+  5^,  I  g—  Q.j  +  &c.  = 

but    as  by  the  nature  of  the  centre  of  gravity 

2.  m.     <  -j-^         f  '  ̂•'"'  i  "^T   ^'  i  '  ̂^'   ̂ ^  respectively  equal   to   noo 

thing,  and  also  d'x  =  rf*j,  d-ij  —  d'-t/,  &c.  the  preceding  expression  becomes 

0  =  2...S. .  {  £^  _P.  ]  +  2.n..3,,  {  4;f  -Q.  }  &c. 
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and  by  substituting  SX+Sx^,  jY+S^i/,,  SZ+Sz^,  &c.  in  place  of  J'.r,  ii/,  fz, 
&c.  the  equation  (P)  of  No.  18,  will  also  become 

.  \     t*      -«.  -w-\  f 

+  xmJz.  i—r-^  —  Ry-, '  (  dt*  r 

which  is  precisely  of  the  same  same  form  as  the  equation  (P),  if  the 

forces  P,  Q,  R,  P\  depend  only  on  the  coordinates  ^^,  3/^,  z^,  x',  he. 
Therefore  by  applying  to  it  the  preceding  analysis,  we  can  obtain  the 

principle  of  the  preservation  of  living  forces  and  of  areas,  relative  to 

the  moveable  origin  of  the  coordinates. 

If  the  system  is  not  acted  on  by  any  extraneous  forces,  its  centre  of 

gravity  will  move  uniformly  in  a  rectilinear  direction  in  space  as  we 

have  seen  in  No.  20 ;  therefore,  by  fixing  the  origin  of  the  coordinates 

X,  y  and  %  at  this  centre  these  principles  will  always  have  place,  X,  F, 

and  Z,  being  in  this  case  the  coordinates  of  the  centre  of  gravity,  by 

the  nature  of  this  point,  we  shall  have 

0  =  's-.mx  ;  O  =  'S.m.y ;  O  =  'zm.z  $ 

consequently  we  have 

(  di  )  dt  dt 

*  S.jn.  \ 
dt 

■2.m.XJY+^mx.dY-\-'Z.m.Xd.y,~^-2.m.x^dy^ 
dt 

l.m.Y.dX — "Z.m.yAX — Im.YJx — 'S.My.dx,  ,       ̂   „  ^     j      -      j —  ■^'    ■^'     '  ,  and  as  ̂ .mx,,  ̂ .my/,  ̂ m.dx,,  ̂ .m.dy^ 

are  respectively  equal  to  nothing  by  the  nature  of  the  centre  of  gravity,  the  preceding 
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2.WJ.    ^-   =    3-     Z.m. 
dt*  df- 

+2.WI. 
dx;-\-dy'+(h\'  7  „ dt  y 

thus  the  quantities  which  result  from  the  preceding  principles  are  com- 

expression  becomes  equal  to 

rff  ^  rf« 

*  2.m.dx^  =-.  2.m.rfX'  +  22.n!^x,.rfX+  2.m.dx,^,  enxdas^dX.  ^.m.dx,  =  0,  we  have 

2.m.rfj;'  _  rfX*.  Z.m+^.in.dx*,  ;• 

dx^+dv-'+dz^     dX'+dY^JUdZ^    ^        ,    „       <&/ +rfy  »+(fc/-  .  „^ 
2.W.      f^z     — =   \nx  ■  "  —  >   2.m  +  2.jn.  — 1— i--^;~I— i_  &c=c+2?. 

If  all  the  bodies  were  concentrated  in  their  common  centre  of  gravity,  X/,  i/j ;  dx^,  dyj ;  would 

vanish,   therefore  the  second  part  of  the  first  members  of  the  preceding  equation  would 

.^       J             ,,,        X.dY—Y.dX                    dX'-  +  dY' +dZ^- 
vanish,  and  we  would  have   2.»».  =  c,    -j-^   '2m~c-^-2<p. 

Consequently,  it  appears  from  what  has  been  established  in  this  number,  that  when  the 

bodies  composing  the  system  are  not  acted  on  by  foreign  forces,  the  quantities  which  are 

concerned  in  the  principles  of  living  forces,  and  of  areas  are  composed  of  quantities  which 

would  have  existed,  if  all  the  bodies  of  the  system  were  concentrated  in  their  centre  of 

gravity ;  and  2dly,  of  quantities  which  would  obtain  if  the  centre  of  gravity  quiesced,  the 

former  description  of  quantities  are  represented  respectively  by    -^    2.w, 

XdY^YdX  ,    ,     ,  ,  dx,^ +di/,^- +dz,^  xdy—y,.dx,,      , 
2m — .   =   ,  and  the  latter  by  S/n   ^   T  J/    t    /       j.„     «,  y    y<  "-^z!.    jj^g dt  ■'  af"  '  dt 

first  indicates  what  obtains  in  consequence  of  the  progressive  motion  of  the  system,  the 

second  what  arises  fi-om  a  rotatory  motion,  about  an  axis  passing  tlirough  the  centre  of  gra- 
vity. (See  No.  25.) 

If  the  origin  of  the  coordinates  x,y,  z,be  transferred  to  a  point  of  which  the  coordinates 

are  A,  B,  C,  the  expression  for    the   projection    of  area    on    the   plane    x,  y,  becomes 

^^_      {x-A)dy^y-B).dx      ̂ ^^(^J>r:y±\     _    A.^m.dy+B.Zmdx    ^^^^  ̂  
dt  \        dt  §  dt  ' 

v      J    t-™   J       jxr^      jxr  „            AY.mdy-\-Bzm.dx  ,                    A.dY4-B.dX  „ 
2m.  dy,  Zm.  dx=d  Y 2m,  dX.  2m ;  —     -^   becomes —      -^   2.)?j. 
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posed,  1st  of  quantities  which  would  obtain,  if  all  the  bodies  of  the 

system  were  concentrated  in  the  centre  of  gravity ;  2dly,  of  quantities 

relative  to  the  centre  of  gravity  supposed  immoveable ;  and  since  the 

first  described  quantities  are  constant,  we  may  perceive  the  reason 

why  the  principles  in  question  have  place  with  respect  to  the  centre  of 

gravity.  Therefore  if  we  place  the  origin  of  the  coordinates  at  this 

point,  the  equation  Z,  of  the  preceding  number  will  always  subsist ; 

I'rom  which  it  follows  that  the  plane  which   constantly  passes  through 
x.dy — ij,dx 

this  centre,  and  with  respcet  to  which  the  function  S.ot.  <  - 

dt 

.'.  the  projection  of  the  area  on  the   plane  x,  y,  with  respect  to  the  new  origin  becomes 
,^       .    B.  dX—A.dY,  ,     .    . 

equal  to  c-j   .  Sw;,  and  similar  expressions  may  be  derived  for  the  pro- 

jections on   the   planes  x,z,y,z,       From   tliis  it  appears,  that  for  aJl  points  in  which 
B.dX—A.dY 

   ."Lin  =  0  the  value  of  c  will  remain  constantly  the  same,  but  it  is  evident 

that  this  equation  will  be  satisfied,  if  the  locus  of  the  origin  of  the  coordinates  be  either 

the  right  line  described  by  the  centre  of  gravity,  or  any  line  parallel  to  this  line,  consequently 

for  all  such  lines  the  position  of  the  invariable  plane  will  remain  constantly  parallel  to  itself; 

however,  though  for  all  points  of  the  same  parallel  the  position  of  the  invarialile  plane  is 

constant,  yet  in  the  transit  from  one  parallel  toanother  the  direction  of  this  plane  changes. 

If  the  forces  which  act  on  the  several  points  of  the  system  are  reducible  to  an  unique 

resultant,  by  making  the  origin  of  the  coordinates  any  point  in  this  resultant,  the  quantities 

c,c',c",  and  therefore  the  plane  with  respect  to  which  the  projection  of  the  areas  is  a 
maximum,  will  vanish,  if  the  locus  of  the  origin  of  the  coordinates  bo  a  line  parallel  to  this 

resultant,  the  value  of  the  projection  of  the  area  with  respect  to  this  line  on  the  plane  ar,_y, 

will  be  constant  and  equal  to  —   '■    .  -^m  for  c  in  this  case  vanishes,  if  the  locus  of 

the  origin  of  the  coordinates  be  a  right  line  diverging  from  this  resultant,   the  expression 
BdX—AdY 

  -J.   •  £»2  IS  susceptible  of  perpetual  increase.      From  these  observations  it  appears 

that  when  the  forces  admit  an  unique  resultant,  that  point  with  respect  to  which  the  value  of 

x/  c*  + 1'  -  c"  -  is  least  of  all  is  a  point  so  circumstanced,  that  the  axis  or  perpendicular 
to  the  plane  of  greatest  projection  passing  through  this  point,  is  parallel  to  the  direction  of 
the  unique  resultant ; 
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is  a  maximum,  remains  always  parallel  to  itself,  during  the  motion  of 

the  system,  and  that  the  same  function  relative  to  every  other  plane 
which  is  perpendicular  to  it,  is  equal  to  nothing. 

The  principles  of  the  conservation  of  areas,  and  of  living  forces, 
may  be  reduced  to  certain  relations  between  the  coordinates  of  the 

mutual  distances  of  the  bodies  composing  the  system.  In  fact,  the 

origin  of  the  coordinates  r,  j/,  z,  being  supposed  always  to  be  at  the 

centre  of  gravity;  the  equations  (Z)  of  the  preceding  number,  may  be 
made  to  assume  the  following  form 

(■  (It \ 

C  dt  S' 

c".^.m  =  ̂ .mm'.  S^y-y)'d^''-dz)j^i^'-zUdy'-^dy)}^^^ 

It  may  be   remarked,  that   the  second  members  of  these  equations 
u 

*  This  expression  is  proved  to  be  true  with  respect  to  three  bodies  in  the  following  man- 
ner and  as  the  same  reasoning  is  applicable  to  any  number  of  bodies  whatever,  it  may  be 

considered  as  a  general  proof 

^   /    <si^—A  {di/—d,'l)—{y'—n).  (dx'—dx)-)  ,,dy  ,    dy'  ,      dy 
C  dt  )  dt  dt  dt 

I      dy  ,  J  dx'  ,  ,  dx\  .da/  .     dx    ,        „    „  di/' 
J^  mm  .  X  ■jr—mmif.  y-  -f  ramV.  —  +  wm'.v-;   mm'y.-rr  -{-mm" .xf'  -^^ 

dt  dt    '        ̂     at  ^  dt  ^  di    '  dt 

~fnm".x.'^jf.-mm".x".^+n,m".x^-mmf'.i/'.  ̂ +  mm".y".^ +mm".y.— 

-mmf'.y  J  +  m".m'.x'.   Jl  -m".m\x'  %-  -m"m'x"  %  +  m'm".x'M- "t  dt  dt  dt  dt 

«.•'„,  ,  //  dx"    ,     „   ,   ji   dx!  ,      „   ,  .     dx"        ,    .,    .  dx' — w  m.y  .--.  +m"nf.y".  -T-+m"fn'y'.   m'm'.y  .  — 
dt  "     dt  ^      dt  ^    dt 
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multiplied  by  dt,  express  the  sum  of  the  projections  of  the  elementary 
areas,  traced  by  each  line  which  joins  the  two  bodies  of  the  system, 
of  which  one  is  supposed  to  move  round  the  other,  considered  as  im- 

moveable, each  area  being  multiplied  by  the  product  of  the  two  masses, 
which  are  connected  by  the  right  line. 

and  by  concinnating  it  comes  out  equal  to 

,      (x'di/ — i/.dx'  )     ,         ,     ( xdy — y.dx~>  ,     Cx'.dij — y'.dx'l ""•  j-^V— }  +  "'"•  {t^  5-"""-  I     d/    } 

\       dt        S  ̂         I  dt         5/^         L     tit       i 

sad  as  in  the  case  of  three  bodies 

„    (  x".  dy"—i/'-  da!'  1            ̂            /      .      ,  .      //^           ̂      f  =^dy—y.dx    \ 
_|.m".  J      dt      \  ■'■  '^'  ̂"'—''  (»»+»»+>»)  ~"^     {  — ^^   \ 

+  ̂ V    ̂ '::f^t^}+m".^   ̂ ^jMlr-^^J^-^   +  m,n'    {^^  ̂  

^,     ix".dy"-y".dx"  \^     ,   „    {J>'.df-f.di!'  \ 
+ «"^'  \—ht — ) + """  { — Jt — r 

By  the  nature  of  the  centre  ofgravity  we  have  w«4- >"''»''+"'"  *"=0  2nd  also  mdy  A- m' dtf 

^td'.dy"  —  0  /.  their  product  vanishes  z,  e,  m''x'Jy+m'^x'di/-\-m."-x".dy"-\-mm'x.dy 

+mm".  x".  (fy-j-  mm'^di/  ■\-m'm".a!'dy'-i-m.m",xdi/'+m"m'.x'.dy"=0  .'.  we  have  m »  x3y 

+m''t^ulj/-\-m''.'-a!'.dy''s=—mm'.x'dy—mm''.x''.dy—mm'.xdy'—m'm"'.x''dy—mmf'j:dif''. 

— m'.m'^di/',  and  by  multiplying  my+m'i/+m"i/',  into  mdx-\-m'dj/-\-ni"dx"; — ot'  ydx 
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By  applying  to  the  preceding  equations,  the  analysis  of  No.  21,  it 

will  appear,  that  the  plane  passing  constantly  through  any  of  the  bo- 

dies of  the  system,  and  with  respect  to  which  the  function 

(  dt  5 

is  a  maximum,  remains  always  parallel  to  itself,  during  the  motion  of 

the  system,  and  that  this  plane  is  parallel  to  the  plane  passing  through 

_fn"  i/.dx'—m"^7/'.  dx"  =  +  mm'.y'.  dx  +  mm"  i/'.  dx  +  mm'y.d^  +  m'm"y"dx! 

+  mml'.ydx!'  ■\-m".m'.y'Jx",  .•.  adding  these  quantities  together  we  obtain 

L  dt  i  l  dt  S  '  X  dt  i 

.-.  if  in  the  expression  for  c{m+m'+  m")  we  substitute  in  place  of  the  sum  of  the 
functions  whicli  are  multiplied  by  the  squares  of  the  masses,  the  quantities  wliich  are 

equivalent  to  theni  we  shall  obtain  c  {m  +  m'  -f  m")= 

-  nun'  \^:i!jii±^  I  _  „„„"  i  f:^^/:^!  _  „„,,  r  ..^^^^  7 (.    dt      }  I     dt     y  \    dt      s 

which  is  equal  to  to  the  expression  which  has  been  given  above  for  the  value  of  Im.rh': 

i  JX'—x)  d,/  —d, /)—,/— y  (dx'—dx  \     ■ I  It  ) 
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the  centre  of  gravity,  and  relatively  to  which,  the  function 

s.ffj.   ̂   '  ■         — '-  is  a  maximum.     It  vpill  also  appear  that  the  se- 

cond  members  of  the  preceding  equations  vanish  with  respect  to  all 

planes  passing  through  the  same  body,  and  perpendicular  to  the  plane 

in  question. t 

The  equation  (Q)  of  No.  19,  can  be  made  to  assume  the  form* 

I  dt 

•z.fmrd.  Fdf;  this  equation  respects  solely  the  coordinates  of  the  mu- 

*  When  there  are  but  three  bodies  S.w.rfx  ̂ =:»iix*  +  »2'<ir'*  +  »n".(fji;",  *  but  by  the 

nature  of  the  centre  of  gravity  we  have  mdx-^m' dx' -\-m" .dx"  —0  and  .•.  m^dx-  -\-m'.^  dx'^ 

+  ?n".^  rfx"'  +  2m.m'.  dx.dx'-\-2mm".  dx.dx"  +  2m'm".  dx'.dx",  =  0,  and   multiplying 

l^.m.dx-  by  2w.  we  obtain,  m^  t/x^-j-m'.^  dx'^  -f  m"r  dx"-  +  mm' dx'-  +  m'm" .  dx'^ 

+  m'm.dx^+m"in  dx''+}nm".dx"^ +m'm".dx",'  if  we  substract  the  previous  equation 

from  this  we  get,  mm'.dx"'  +m.'m".dx^  +m'm.dx'^  -\-m".tn.dx^  +mm"Jx".-  ■¥m'm".dx"' 

—2mm'.  dx  dJ— <2.mm'. dx.dx! '—%n.m''.dx'.dx«~ mm'.  [dx'—dxY  +tn'm"  {dx"—dj/y 

+  mm"{dx'/  —  dx)-  —  2.)?2jn'.  (rfx' — dx)'  =  2.)».  {2m.  (dx^),  and   in   like  manner  we 

derive   'S.nim'  [dy — dy) '  =  2)h.  (2wi.  (/y^),  2.»nm'.  {dz — dz)  ̂  =  2wi.  (2j?z.  dz'), .-.  we  have 

,     ̂   dx'—dxY  +idy'—dy)^  -\-{dz'—dz'^   \  ^      ,^        ,_  ̂        /.        d  r    ,   ̂   , 
SwiTO    -}     A  ,       j-  =  c.  2m  +  2.jn.  (2.  ̂ m.fm.  \P.dx-\-Qdx 

-j-  Qfl^)  =  const.  — 2  2m.  l.fmmfdf,   (substituting  —  2/nw('.y(i/'in  place  of  "S-./m 
(Pdx^Q.dy-\-ndz).  (See  No.  19, page  113.) 

■f  When  the  origin  of  the  coordinates  is  in  the  centre  of  gravity  of  the  system,  the  quan- 

tities c  c'  c ',  are  constant  and  .•.  the  position  of  the  plane,  with  respect  to  which  the  function 

5)n.  ■}  — 5L_jZJ —  V      is  a  maximum,  remains   the  same  during  the  motion  of  the  system, 

.•.  as  the  quantity  2)«,  would  occur  both  in  the  numerator  and  denominator  of  the  expression 

for  the  cosines  of  the  angles  which  the  plane  with  respect  to   which  the  function  S.m.in' 

}  J   LLJl   J-T^j-HSIA   L  >  is  a  maximum,  makes  with  the  three  coordinate 

planes,  it  is  evident  that  the  values  of  the  angles  which  the  invariable  plane  makes  with  three 

coordinate  planes,  is  the  same  in  both  cases,  from  these  considerations  it  appears  that  the 

invariable  plane  may  be  determined  at  each  instant  by  means  of  the  relative  velocities  of  the 

system,  without  a  knowledge  of  their  fliio/if/e  velocities  in  space.  (See  Notes  to  page  139.) 
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tual  distances  of  the  bodies,  in  which  the  first  member  expresses  tlie 

sum  of  the  squares  of  the  relative  velocities  of  the  system  about  each 

other,  considering  them  two  by  two,  and  supposing  at  the  same  time 

that  one  of  them  is  immoveable,  each  square  being  multiplied  by  th<> 
product  of  the  two  masses  which  are  considered. 

23.  If  we  resume  the  equation  {R)  of  No.  19,    and  differentiate  it 

with  respect  to  the  characteristic  <?,  we  shall  have 

l.m  V.  iv=2m.  (P.Sx  +  QJy  +  RSz)  ; 

and  the  equation  (P)  of  No.  18,  will  then  become 

0='Z.m.  \sx.  d.-^-tSjf.  d.  -^  +<?^.c?.  -^\~-L.m.dt.vSv. i.  dt  dt  dt  3 

Denoting  by  ds^  ds'  &c.   the  elements  of  the   curves  described   by 
m,  m  &c. ;  we  shall  have 

vdtzids;  v'dt=ds';kc. 

ds  =  ̂dx^  +  di/*  +  dz';  &c. 

from  which  we  can  obtain,  by  following  the  same  process  as  in  the 
analysis  of  No.  8, 

2.mJ.  (_vds)  =  ̂ .m.  d.  (JlLt±^Ml^Ll^±JL\ . 

By  integrating  with  respect  to  the  differential  characteristic  rf,  and 

making  the  integrals  extend  to  the  entire  curves  described  by  the  bodies 

»2/k',  &c.  we  shall  have 

J..S.fmvds  =  const.  +  2.7».     ̂ ^-S^+dy.Sy  +  dz.Sz
.\ 

in  this  equation  the  variations  Sx,Sy,Sz,  &c  and  also  that  part  of  its  second 
member,  which  is  constant,  refer  to  the  extreme  points  of  the  curves 
described  by  m,m',  &c. 
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From  which  it  appears  that  when  these  points  are  invariablcj,  we 
shall  have 

0  =  iJ.fmvds  ;* 

which  indicates  that  the  function  'L.fmvds  is  a  minimum.  It  is  in 
this,  that  the  principle  of  the  least  action,  in  the  motion  of  a  system  of 

bodies,  consists  ;  a  principle,  which,  as  we  have  seen,  is  only  a  mathema- 

tical result  of  the  primitive  laws  of  the  equilibrium  and  motion  of  bodies. 

It  is  also  apparent,  that  this  principle  combined  with  the  principle  of  living 

forces,  gives  tlie  equation  (P)  of  No.  18,  which  contains  all  that  is  ne- 

cessary for  the  the  determination  of  the  motions  oi  the  system.  Finally, 

it  appears  from  No.  22,  that  this  principle  obtains,  even  when  the  origin 

of  the  coordinates  is  in  motion  ;  provided  that  the  motion  is  uniform,  its 

direction  rectilinear  and  the  system  entirely  free.t 

*  By  substituting  for  ds,  ds  their  values  v.dt^  v'dt^  the  expression  "S-./wds  will  become 

2.y»!D.'«ft,  and  as  ymv-'dt  is  the  sum  of  the  living  forces  of  the  body  m  during  the  motion; 

t.J~mv.^dt  vi'ill  express  the  sum  of  the  living  forces  of  all  the  bodies  of  the  system  during 
the  same  time ;  therefore  the  principle  of  the  least  action,  in  fact  indicates,  that  the  sum  of 

the  living  forces  of  the  system,  during  its  transit  from  one  given  position  to  another,  is  a 

minimum,  and  when  the  bodies  are  not  actuated  by  any  accelerating  forces,  the  velocities 

v,  v,  and  the  sum  of  the  living  forces  at  each  instant,  are  constant,  (see  No.  18,  page  1 1^.  ).■. 

2.  fmv.'^dt=z'2mv,  'J'dt,  and  the  sum  of  the  living  forces  for  any  inteiTal  of  time  is  proportional 
to  this  time,  consequently  in  this  case  the  system  passes  from  one  position  to  another  in  the 

shortest  time.  Since  therefore  the  expression  Yfv.dis  is  the  same  as  I.Jmv^dt  La  Grange 
proposed  to  alter  the  denomination  of  the  principle  of  least  action,  and  to  term  it  the  principle 

of  the  greatest  or  least  living  force,  for  by  contemplating  in  this  manner,  it  is  equally  appli- 

cable to  th(^  states  of  equilibrium  and  motion,  since  it  has  been  demonstrated  in  the  notes 

page  119,  that  incase  of  equilibrium  the  vis  viva  is  either  a  maximum  or  a  minimum  ; 

from  what  precedes  ic  appears  that,  as  La  Place  observes  in  his  Systeme  du  Monde,  the  true 

economy  of  nature  is  that  of  tl;e  living  force,  and  it  is  this  economy  which  we  should  always 

have  in  view  in  the  construction  of  machines,  which  are  always  more  perfect  according  as 

less  living  force  is~c6nsumed  in  producing  a  given  effect'. 
\  W  ith  respect  to  the  extent  of  the  different  principles  which  are  treated  of  in  this  fifth 

chapter,  it  is  important  to  remark,  that  the  principles  of  the  conservation  of  the  motion  of 

the  centre  of  gravity,  and  of  the  constrvation  of  areas  subsist,  even  when  by  the  mutual 

action  of  the  bodies,  they  iindergo  sudden  changes  in  their  motions,  which  renders  these 

■jrii  ciples  extremely  useful  in  several  circumstances,  but  the  principles  of  the  conservation 
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of  the  vis  viva,  and  of  the  least  action,  require  that  the  variations  of  the  motion  of  the 

system,  be  made  by  imperceptible  gradations. 

The  principle  of  the  least  action  differs  from  the  other  principles  in  this,  that  the  other 

principles  are  the  real  integrals  of  the  differential  equations  of  the  motion  of  bodies, 

whereas  this  of  the  least  action  is  only  a  singular  combination  of  these  equations,  in  fact  it 

being  established  that  'S./mv.ds  is  a  minimum  by  seeking  by  the  known  rules,  the  conditions 
which  render  it  such,  and  making  use  of  the  general  equation  of  the  conservation  of  living 

forces,  we  should  find  all  the  equations  which  are  necessary  to  determine  the  motion  of  each 
body. 

The  principle  established  in  this  number  was  first  assumed  as  a  n>etaphysical  truth,  and 

was  applied  by  Maupertius  to  the  discovery  of  the  laws  of  reflection  and  refraction,  however 

it  ought  not  to  be  deemed  ajinal  cause,  for  we  can  infer  analogous  results  from  all  relations 

mathematically  possible  between  the  force  and  the  velocity,  provided  that  we  substitute  in 

this  principle,  in  place  of  the  velocity,  that  function  of  the  velocity  by  which  the  force  is 

expressed,  (see  next  chapter,  page  154,)  and  so  far  from  having  been  the  origin  of  the 

laws  of  motion,  it  has  not  even  contributed  to  their  discovery,  without  which  we  should 

be  still  debating  what  was  to  be  understood  by  the  least  action  of  nature. 
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CHAPTER  VI. 

Of  the  laws  of  motion  of  a  system  of  bodies,  in  all  the  relations 

mathematically  possible  between  the  force  and  the  velocity. 

24.  It  has  been  already  remarked  in  No.  5,  that  there  are  an  infinite 

number  of  ways  of  expressing  the  relation  between  force  and  velocity, 

which  do  not  imply  a  contradiction.  The  simplest  of  all  these  relations 

is  that  of  the  force  proportional  to  the  velocity,  which  as  we  have  ob- 
served, is  the  law  of  nature.  It  is  from  this  law  that  we  have  derived, 

in  the  preceding  chapter,  the  differential  equations  of  the  motion  of  a 

system  of  bodies  ;  but  it  is  easy  to  apply  the  same  analysis,  to  all  relations 

mathematically  possible,  which  may  exist,  between  the  force  and  the 

velocity,  and  thus  to  exhibit  under  a  new  point  of  view  the  general  prin. 

ciples  of  motion.  For  this  purpose,  let  F  represent  the  force  and  v  the 

velocity,  we  have  F  zz  <!>  (y^ ;  (p  (y)  being  any  function  whatever  of  v  ; 

let  <p'  (w)  denote, the  difference  of  <p(y)  divided  by  dv.  The  denominations 
of  the  preceding  numbers  always  remaining,  the  body  tn  will  be  solicited 

parallel  to  the  axis  of  s  by  the  force  <?  (vj.  — -  .  * 

diT         \  dx '} 
In  the  following  instant,  this  force  will  become  (p  (v).  -jz"^  '^•f  f  C"^)'  — r  r 

*  ds  being  the   differential  of  the  line  described  by  the  body,  the   cosine  of  the  angle 
dx 

which  the  direction  of  the  motion  makes  with  the  axis  of  x  is  equal  to  -p,  .-.  the  force  F 

ds 

dx 
or  p  (v)  resolved  in  the  direction  of  the  axis  of  j  ss  <p  (f).-?-  • 



or 
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^M.  $  +d.  C-^  .  ̂  Y  because  ̂   =  f  •    Moreover,  P,  Q,  i?, 
^       ds  \  V         dt  /  dt 

being  the  forces  which  solicit  the  body  m  parallel  to  the  axes  of  the  co- 
ordinates ;  the  system  will,  by  No.  18,  be  in  equilibrio  in  consequence  of 

these  forces,  and  of  the  differentials, 

{^dx    <w)?  \dy    <p{v)\      ,    $  c?s    (fip)\ O.     •<-; — .   f    ,    a.      \  — ;-  •           f   ,     Urn      <  —r-  •      t     , 
\dt       f  J  I  dt         V    S  Xdl        V  S 

taken  with  a  contrary  sign  ;  therefore  in  place  of  the  equation  (P)  of 
the  same  number  we  shall  have  the  following  : 

0  =  ̂ ,m.  \  ix.  d.  Y-1.M^  Pdt  I  +  Sy.  d,  S^y^-:^ i  (dt       V  i      -^        Idt       V 

-  Q.dtl  +  Sz.  dA^.-^^Rdtl;   (S) 

which  only  differs  from  it  in  this  respect,that— >  —  >  — f    are  multiplied  by dt    dt    dt 

the  function  A_i,     which  in  the  case  of  the  force  proportional  to  the 

velocity,  may  be  assumed  equal  to  unity.  However  this  difference  renders 
the  solution  of  the  problems  of  mechanics  very  difficult.  Notwithstand- 

ing, we  can  obtain  from  the  equation  (S),  principles  analogous  to  those 
of  the  conservation  of  living  forces,  of  areas,  and  of  the  centre  of 
gravity. 

By  changing  Iv  into  dx,  Sy  into  dy,  Sz  into  dz,  &c.,  we  shall  have 

2.J«.  V.  dv.  dt.  <p'  (y)  ;  * 
X 

*  Substituting  ds  in  place  of  v.dt,  the  expression 
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and  consequently 

X.fmv.dv.(p'[v)  =  const. -{-l.fm.  (^P.dx+  Q.dy  +  R.dz), 

If  we  suppose  that  I.m.(P.dx-i-Q.dt/  +  R.dz)  is  an  exact  differential 
equal  to  d\  we  shall  have 

i..Jmv.dv.(p'  (t>)  =  const.  +  x  j  (T) 

which  equation  is  analogous  to  the  equation  (i?)  of  No.  19,  into  which  it 

is  changed  in  the  case  of  the  law  of  nature,  or  of  9'  (tr)zzl .  Therefore,  the 
principle  of  the  conservation  of  living  forces  obtains  in  all  laws  mathe- 

matically possible  between  force  and  velocity,  provided  that  we  under- 
stand by  the  living  force  of  a  body,  the  product  of  its  mass  by  double 

the  integral  of  its  velocity,  multiplied  by  the  differential  of  the  function 
of  the  velocity  which  expresses  the  force. 

If  in  the  equation  (5),   we  make  Sx'—Sx-^Sxl,  Sy' =  Sy-\-Syl,   i^= 
Sz  +  iz',  Sx"  =  Sx+^x",j  &c.  we  shall  have  by  putting  the  coefficients  of 
Sx,  iy,  Sz,  respectively  equal  to  nothing 

becomes 

2.«.     {^.  rf.  {  ^.  <p  (V)  J  +dy.  d.  {|.  <p  (v)  }  +  dz.  d.  {J  .  <p{v)  }     } 

and  by  taking  the  differential  it  becomes. 

-•«•     \   ds    1.?(«)-2.«.|   J-p:   ]-d^s4{v)+ 

Z.m.     J   ^  -^  ̂    \  .  d.  (p  (v)~  2.m.  d»  s.  f  («)  —2.  m.  d^s.  ̂   (v)  ̂"Z.m.ds.  d,  (p  (v) 

and  this  last  quantity  is  equal  by  substitution  to  2,m,  v>dtdv.  f '  (v). 
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These  three  equations  are  analogous  to  those  of  No.  SO,  from  which 

we  have  inferred,  the  conservation  of  the  motion  of  the  centre  of 

gravity,  in  the  case  of  nature,  when  the  system  is  not  subjected  to  any 
forces  but  those  of  the  mutual  action  and  attraction  of  the  bodies  of  the 

system.     In  this  case  l.m.  P,  ̂.m.  Q,  "Z.m.  R,  vanish,  and  we  have 
dx  a(v)  .       „      dy  a(v) 

const.    =  l.m.  -—.  -^-i  ;  const.  =  2w«.  -^.  ̂-^^-^ ; dt      V  dt      V 

_     dz  <p(v)       dx  ((i(v)  .  /  \   da: 
const.  z=  2w   .  I^^jjw.— -.  ̂ ^^-^  IS  =:ot.  fflfiy).  -^' 

dt      V         dt      V  ^^  ''    ds 

and  this  last  quantity  is  the  finite  force  of  the  body,  resolved  parallel  to 

to  the  axis  of  x ;  the  force  of  a  body  being  the  product  of  its  mass  by 

the  function  of  the  velocity  which  expresses  the  force.  Therefore  in 

this  case  the  sum  of  the  finite  forces  of  the  system,  resolved  parallel  to 

any  axis,  is  constant  whatever  may  be  the  relation  between  the  force  and 

the  velocity,  and  what  distinguishes  the  state  of  motion  from  that  of 

repose,  is,  that  in  this  last  state,  the  same  sum  vanishes.  These  results  are 

common  to  all  laws  mathematically  possible  between  the  force  and  the 

velocity ;  but  it  is  only  in  the  law  of  nature,  that  the  centre  of  gravity 

moves  with  an  uniform  motion  in  a  rectilinear  direction.  * 

Again  let  us  make  in  the  equation  (iS) 

Sx'=^—  +  9x:iix"='^—  +  Sx"   &c. y  V 

.  xdx  ,  .     .  ,  x'.Sx       »  /     a 
"  if 

the  variation  Sx  will  disappear  from  the  variations  of  the  mutual  distances 

X  2 

•  It  is  evident  that  the  centre  of  gravity  does  not  move  uniformly  in  a  right  line  when 

P,  Q,  R,  vanish,  except  when  -^  is  equal  to  unity,  for  it  is  only  in  this  case  that  we  could 

prove  from  the  expression,  const. —2.W. -J-. -^  ,    that  dX  the  differential  of  the  co- 

ordinate  of  the  centre  of  gravity  is  constant. 
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f,f,  &c.  of  the  bodies  composing  the  system,  and  of  the  forces  which 

depend  on  these  quantities.  If  the  system  is  not  affected  by  extraneous 

obstacles,  we  shall  have,  by  putting  the  coefficient  of  ix  equal  to 
nothing 

o=..„,.|..,(^.^)_,...(^.Ka)|  + 
"s-m.^Py — Q.x)dt,  from  which  we  deduce  by  integrating, 

we  shall  have  in  like  manner  i 

\         at         /      v 

d'  =  z.^.  {^^^=^y  ?^+  z>  {Qz^Ry).dti 

c,  c',  c",  being  constant  arbitrary  quantities. 
If  the  system  is  only  subjected  to  the  mutual  action  of  its  component 

parts,    we  have,  by  No.  21,  Im.  [Py — Qx)  =  0 ;  s»z.  [Pz^-Rx)  =  O 

sw.  CQz — Ry)=0;  also  m]  x  -^ —  y.  —i.'^^    is    the   moment   of C      dt  dti      V 

the   finite  force  by  which  the  body  is  actuated,  resolved  parallel  to  the 

plane  of  x  and  y^  which  tends  to  make  the  system  turn  about  the  axis  of 

z  J  therefore  the  finite  integral  s.w.  J-^fc^^  LfM  is  equal  to  the 

sum  of  the  moments  of  all  the  finite  forces  of  the  bodies  of  the  system 

*  Tlie  integral  of  this  expression  is  equal  to  2.ot    i  x.  -j-  .^^  — /dx.    (-^.  --^^'  \ 

dx  <p{v)        (  dy.dx    (p(u)  -v  1   _  _        xdy—ydx    ip(«) 

'"^*  dt-  V  +-^{,~dt — 7yj  ~^-'"- — It — •~' 
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to  make  it  revolve  round  the  same  axis  ;  consequently  this  sum  is  con- 
stant. It  vanishes  in  the  case  of  equilibrium  ;  therefore,  there  is  the 

same  difference  between  these  two  states  as  there  is  relatively  to  the  sum 

of  the  forces  parallel  to  any  axis.  In  the  law  of  nature,  this  property 
indicates  that  the  sum  of  the  areas  described  about  a  fixed  point,  by  the 
projections  of  the  radii  vectorcs  of  the  bodies  is  constant  in  a  given  time, 
but  this  constancy  of  the  areas  described  does  not  obtain  in  any  other 

law.* 
By  differentiating  with  respect  to  the  characteristic  S,  the  function 

^.Jhi.  (p  {v).  ds  ; 

we  shall  obtain 

S.'z.fm.(p(y')ds  ■=.  'z.fm.(p(y').S.ds-{-t.fm.Sv.(pXv).dS'y 

but  we  have 

sa,^d.Jd.+dvMy+dzMz       l_ W_r^  cl^  dz  ̂ ^     i 
ds  V  idt  dt       -^     dt         S 

therefore  by  partial  integration  we  shall  obtain 

*^  r     f  \  r      T.  fnqiQv)  ̂ dx  .    .  dy  .    ,  dz  ,  1 
V     idt  dt  dt      3 

c  ^dt      V  '       ̂       ̂ dt       V  '  ^dt      V  '  S 

■\-^.JmJv.<p'{v).ds. 

The  extreme  points  of  the  curves  described  by  the  bodies  of  the  system 

*  As  the  factor    is  variable  in  every  other  case  beside  that  of  nature,  it  follows  that 

though  the  quantity  2.m.  -I  '-^^^ —  \  -—^  is  constant  and  equal  to  c,  still  that  part  of  it 
cxdy — y.dx  7   . 

2.W.  i  ~j^f —  f  >s  not  constant. 
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being  supposed  fixed,  the  term  which  is  not  affected  by  the  sign/ must 

disappear  in  this  equation;  therefore  we  shall  have  in  consequence  of  the 
equation  (S), 

i.  z.fm.(f{v).ds  =  x.fm.Sv.(p'{v).ds—^.fmdt{FSx  +  Q.Sy  +  R.iz) 

but  the  equation  (T)  differentiated  with  respect  to  S  gives 

^.Jm.Sv.<f'(v).ds=^.fmdt{PSx-\-Q.Sy-i-R.Sz)  ; 

therefore  we  have 

OzzS.'Z.fm.<p(y).ds. 

This  equation  corresponds  to  the  principle  of  the  least  action  in  the 

law  of  nature.  vi.(p(v)  is  the  entire  force  of  the  body  m,  thus  the  prin- 
ciple comes  to  this,  that  the  sum  of  the  integrals  of  the  finite  forces  of 

the  bodies  of  the  system,  respectively  multipHed  by  the  elements  of  their 
directions,  is  a  minimum,  presented  in  this  manner,  it  answers  to  all 

laws  mathematically  possible  between  the  force  and  velocity.  In  the 
state  of  equilibrium  the  sum  of  the  forces  multiplied  by  the  elements  of 
their  directions  vanishes,  in  consequence  of  the  principle  of  virtual 

velocities,  what  therefore  in  this  respect  distinguishes  the  state  of 

equilibrium,  from  that  of  motion  is  that  the  same  differential  function, 
which  in  the  state  of  equilibrium  vanishes,  gives  in  a  state  of  motion  by 

its  integration  a  minimum. 
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CHAPTER  VII. 

Of  the  motions  of  a  solid  body  of  any  figure  whatever. 

25.  The  differential  equations  of  the  motions  of  translation  and 
rotation  of  a  solid  body,  may  be  easily  deduced  from  those  which  have 

been  given  in  the  fifth  chapter;  but  from  their  importance  in  the 
theory  of  the  system  of  the  world  we  are  induced  to  develope  them  in 
detail. 

Let  us  suppose  a  solid  body  of  which  all  the  parts  are  solicited  by  any 
forces  whatever.  Let  x,  y,  z,  represent  the  orthogonal  coordinates  of  its 

centre  of  gravity,  and  let  x-\-  x',y-\-y\  s+;s',  be  the  coordinates  of  any 
molecule  dm  of  the  body,  then  *',y,  s',  will  be  the  coordinates  of  this 
molecule  with  respect  to  the  centre  of  gravity  of  the  body.  Moreover, 

let  P,  Q,  i2,  be  the  forces  which  solicit  the  molecule  parallel  to  the  axes 
of  X,  of  y,  and  of  ̂ ,.  The  forces  destroyed  at  each  instant  in  the 

molecule,  parallel  to  these  axes,  will  be  by  No.  1 8, 

-S^^pLl^dmArF.dUdm', 

^Y^y^^^\dm\Ci,dUdm', 

—  \   —   ^.dm-\-R.dt.dm ; 

(the  element  dt  of  the  time  being  considered  as  coustant.) 
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Therefore  it  follows  that  all  the  molecules  actuated  by  similar  forces 

should  mutually  constitute  an  equilibrium.  We  have  seen  in  No.  15, 

that  for  this  purpose,  it  is  necessary  that  the  sura  of  the  forces  parallel  to 

the  same  axes,  should  vanish  which  gives  the  three  following  equations 

C      dt»        i  ' 

sY'y+f^'\.dm=S.Qdm; 

S.l±5pl£j^.dm^S.Rdm, 

the  letter  S  being  here  a  sign  of  integration  relative  to  the  moelcule  dm, 

which  we  should  extend  to  the  entire  mass  of  the  body.  The  variables' 
x,i/,  z,  are  the  same  for  all  the  molecules,  therefore  we  can  bring  them 

from  under  the  sign  S ;  thus,  denoting  the  mass  of  the  body  by  m,  we 
shall  have 

o  d^x    J  d'^x     c-    d^if    ,  c?*w     „  d*z    ,  d*z S.   .  dm=7n.  __;  S.  —d,  dm—m.  -JLi  S.  ■— .  dm-=.m   -' 
dt^  dt'  dt*  dt^'       dt*  dt^ 

Moreover  by  the  nature  of  the  centre  of  gravity,  we  have, 

S.x'.dm  =  0  ;  S.j/.dm  —  0 ;  S^.dm  =  o  * 

therefore 

S,  ~.dm-0 ;  S. ^.dm=0 ;  S. ̂ .dm=0  ; di^  dt»  dt* 

^  „   d'^x     ,       d^x    „ ,        d'x      . 
dt*  dt^  di'- 

S«r'.rfm— 0  S.j/*.dm  ̂   0  because  x',  j/,  &c.  are  the  coordinates  of  the  body  referred  to 
the  centre  of  gravity,  see  No.  15,  page  91. 
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consequently  we  shall  have 

m.- — =S.Pdm : 

dt* 

m..^=S.Qdm;      V,.       ̂ j) 

m   -=S.Rdm  : 

dt* these  three  equations  determine  the  motion  of  the  centre  of  gravity  of 
the  body  ;  they  correspond  to  the  equations  of  No.  20,  which  relate  to 

the  motion  of  the  centre  of  gravity  of  a  system  of  bodies. 

We  have  seen  in  No.  15,  that  for  the  equilibrium  of  a  solid  body  the 

sum  of  the  forces  parallel  to  the  axis  of  x,  multiplied  by  their  distances 

from  the  axis  of  s,  minus  the  sum  of  the  forces  parallel  to  the  axis  oiy, 

multiplied  by  their  distances  from  the  axis  of  z,  should  be  equal  to 
nothing ;  thus  we  shall  have 

=5.  [  (0?+/)  Q~(j/+y')-  P-l  'dm  ;  (!•) 

but  we  have 

S.  (x.d^i/—i/.d^x).dm=  m.(x.d''y—y.d*x); 

in  like  manner  we  have 

S.  (Qx — Py).  dm=x.JQdm—yJPdm 

finally  we  have 

S.  {x'.d'-y-i^xd^y'—y.d''x—yd''x'\  dm—d*y.  S.x'dm—d^x.  Sy'dm 

Y 
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by  the  nature  of  the  centre  of  gravity,  each  of  the  terms  of  the  second 
member  of  this  equation  vanishes ;  therefore  the  equation  (1)  will 

become  in  consequence  of  the  equations  A, 

C  dt^  J 

*  By  performing  the  multiplication, 

.  (Qj>— P3»).cfm+S.(Q.«'— P/).cf»", .-.  by  substituting  for 

the  expressions  S.  P.  «?»»,  S.  Q.rfw,  to  which  they  are  respectively  eqtjal  ds  appears  from 

the  equations  {A),  and  freeing  the  quantities  d »«/,  «?^«, «,  y,  from  the  sign  S,  the  preceding 
equation  will  be  changed  into  the  following 

».  &.QL.  dm—y.  SP.  dm  +  ̂̂ .  Sx'Jm  +  «.  ■S-^-<^'«— ̂ -  -V-'^"' 

-y.S.^.dm  +S  i^L^l-fj^X  .  rfm:^. S.  Q.d*-3^.  S.P.rf»«  + 

S  {Q.x*—Py*).  dm,  and  omitting  quantities  which  destroy  each  other,  and  also  those 

which  by  the  nature   of  the  centre  of  gravity,  vanish,   we    will   obtain   the   equation 

this  equation  involves  the  principle  of  the  conservation  of  areas,  for  if  the  forces  which 

s<*cit  the  Tndlecuks  arise  from  their  mutual  action,  and  from  the  action  of  forces  directed 

towards  fixed  points,  S[Qx' — Py.)  dm=0. 
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this  equation  integrated  with  respect  to  the  time,  gives 

S.  S  ""'^y'—if-^^'  \.dm=  S.fiQx'—Py').  dt.  dm ; 

the  sign  of  integration /being  relative  to  the  time  t. 

From  what  precedes  it  is  easy  to  infer  that  if  we  make 

SJ{Q.x'—Pij').  dt.  dm=N-y 

S.J\R!^—Pz').  ̂ t.  dm=  N'i 

S.f{R^—Q.z').  dt.  am=N"i 

we  shall  obtain  the  three  following  equations 

I  dt  S 

S.l   ^.dm=N;y.    ̂ s) 

these  three  equations  contain  the  principle  of  the  conservation  of  areas  j 

they  are  sufficient  to  determine  *  the  motion  of  rotation  of  a  body  about 
its  centre  of  gravity ;  combined  with  the  equations  (A),  they  completely 
determine  the  motions  of  translation  and  rotation  of  a  body. 

Y  2 

*  In  our  investigations  relative  to  the  invariable  plane  in  the  5th  chapter,  we  have  seen 
that  when  a  body  or  system  of  bodies  are  not  solicited  by  any  extraneous  forces,  the  motion 

may  be  distinguished  into  two  others,  of  which  one  is  progressive  and  the  same  for  all  points, 

the  other  is  rotatory  about  a  point  in  the  body  or  system,  the  first  determined  by  the  equation 

{A),  and  the  second  by  the  equation(£) ;  by  thus  distinguisliing  the  motion  into  two  others, 

we  can  represent  with  more  clearness  the  motion  of  a  solid  body  in  space,for  these  two  motions 

are  entirely  independent  of  each  other,  as  is  evident  from  the  inspection  of  the  equations  which 

indicate  them,  so  that  the  equations  (A)  may  vanish,  while  the  equations  (B)  have  a  finite 
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If  the  body  Is  constrained  to  turn  about  a  fixed  point ;  it  follows  from 

No.  15,  that  the  equations  {B)  are  sufficient  for  this  purpose  ;  but  then 

it  is  necessary  to  fix  the  origin  of  the  coordinates  x',  tf,  z',  at  this  point.* 

value  or  vice  versa.  The  centre  of  the  rotatory  motion  may  be  any  point  whatever,  how- 

ever when  we  would  wish  to  determine  these  two  kind  of  motions  it  is  advantageous  to 

assume  for  this  point,  the  centre  of  gravity  of  the  body,  because  in  most  cases  its  motion 

may  be  determined  directly,  and  independently  of  that  of  the  other  points  of  the  body. 

Dividing  the  equations  (^)  by  m,  we  may  perceive  by  a  comparison  of  the  resulting 

expressions,  with  the  equations  of  the  motion  of  a  material  point,  which  have  been  given  in 

No.  7,  page  31,  that  the  motion  of  the  centre  of  gravity  is  the  same,  as  if  the  entire  mass 

of  the  body  was  concentrated  in  it,  and  the  forces  of  all  the  points  and  in  their  respective 

directions  were  applied  to  it ;  this  rectilineal  motion  is  common  to  all  the  points  of  the  body, 
and  the  same  as  the  motion  of  translation. 

*  If  a  solid  body  is  acted  on  by  forces  which  act  instantaneously,  in  general  it 

acquires  the  two  kinds  of  motions,  of  translation  and  of  rotation ;  which  are  re- 

spectively determined  by  the  equations  (^A)  and  {B)  ;  when  the  equations  (/^ )  vanish, 

the  forces  are  reducible  to  two  parallel  forces,  equal,  and  acting  in  opposite  directions, 

when  the  rotatory  motion  vanishes  the  instantaneous  forces  have  an  unique  resultant  passing 

through  the  centre  of  gravity,  see  notes  to  page  143,  when  the  molecules  of  the  body  are 

solicited  by  accelerating  forces,  their  action  in  general  will  alter  the  two  motions  which  have 

been  produced  by  initial  impulse,  however  if  the  resultant  of  the  accelerating  forces  passes 

through  the  centre  of  gravity  of  the  body,  the  rotatory  motion  will  not  be  affected  by  the  action 

of  these  forces,  this  is  the  case  of  a  sphere  acted  on  by  forces  which  vary  as  the  distance,  or 

in  the  inverse  square  of  the  distance  from  the  molecules,  see  Ne^vtou  prin.Vol.  1 .  Section  1 2,  or 

Book  2,  No.  12,  of  this  work,  consequently  if  the  planets  were  spherical  bodies,  the  motive 

force  arising  from  the  mutual  action  of  the  sun  and  planets  would  pass  through  the  centre 

of  gravity,  and  the  rotatory  motion  would  not  be  affected,  but  the  direction  of  this  force  does 

not  always  pass  accurately  through  this  centre,  in  consequence  of  the  oblateness  of  theplanets, 

therefore  the  axis  of  rotation  does  not  remain  accurately  parallel  to  itself,  however  the 

velocity  of  rotation  is  not  sensibly  affected,  see  Systeme  du  Monde,  Chapter  14,  Book  4, 

and  Books,  No.  7  and  8.  It  is  in  this  slight  oscillation  of  the  axis  of  the  earth  arising  prin- 

cipally from  the  attractions  of  the  sun  and  moon,  that  the  phenomena  of  the  precession 

of  the  equinoxes  and  of  the  nutation  of  the  earths  axis  consist.  (See  Nos.  28,  29. 

If  the  body  be  moved  in  consequence  of  initial  impulses,  the  directions  of  the  forces,  their 

intensities  and  points  of  application  been  given,  we  might  by  the  formula  of  No.  21,  de- 

termine the  principal  moment  of  the  forces  with  respect  to  the  centre  of  gravity,  and  the 

direction  of  the  plane  to  whicli  this  moment  is  referred,  which  would  completely  determine 

the  moment  of  rotation  obout  the  centre  of  gi'avity,  and  it  is  evident  that  the  same  data  would 
be  sufficient  to  determine  the  rectilinear  motion  of  the  centre  of  gravity,  and  consequently 
the  motion  of  translation  of  the  system,  see  No.  29. 
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26,  Let  us  attentively  consider  these  equations,  the  origin  of  the 

coordinates  being  supposed  fixed  at  any  point,  the  same  or  different  from 

the  centre  of  gravity.  Let  us  refer  the  position  of  each  molecule  to 

three  axes  perpendicular  to  each  other,  fixed  in  the  body,  but  moveable  in 

space.  Let  fl  be  the  inclination  of  the  plane  formed  by  the  two  first  axes 

to  the  plane  of  x,  y, ;  let  (p  be  the  angle  formed  by  the  line  of  inter- 

section of  these  two  planes  and  by  the  first  axis  ;  finally,  let  \|/  be  the 

complement  of  the  angle  which  the  projection  of  the  third  axis  on  the 

plane  of  x,  y,  makes  with  the  axis  of  x.  We  will  term  these  three  axes 

principal  axes,  and  we  will  denote  the  three  coordinates  of  the  molecule 

dm,  referred  to  those  axes  by  x',  y",  z", ;  then  by  No.  21,  the  following 
equations  will  obtain 

x'=x".  (cos.  S.  sin.  ̂ .  sin.  ip+cos.  ̂ .  cos.  9)4- 

y".  (cos.  6.  sin.  vj/.  cos.  q> — cos.  ̂ .  sin.  (p)  +  z".  sin.  6.  sin.  ;J/ ; 

y  =  x".  (cos.  9.  cos.  »}/.  sin.  (p — sin.  vj/.  cos.  f)  + 

y".  (cos. 6.  cos.  4'-  cos.  ?>  +  sin.  \J/.  sin.  (p)-\-z".  sin.  6.  cos.  ■^  ; 

a'=  2".  cos.  fi — y".  sin.  9.  cos.  (p—x".  sin.  0.  sin.  (p. 

By  means  of  these  equations,  we  are  enabled  to  develop  the  the  first 

members  of  the  equations  {B)  in  functions  of  9,  4-,  <P  and  their  differentials. 

But  this  investigation  will  be  considerably  simplified,  by  observing  that 

the  position  of  the  three  principal  axes  depends  on  three  arbitrary 

quantities,  which  we  can  always  determine  so  as  to  satisfy  these  three 

equations. 

Say.  dm=  0  ;  S.x"z".dm=^0  ;  S.y"z".dm=^  0,  * 

*  In  deducing  the  values  of  —  N,  —  N',  in  functions  of  6,  t^,  ip,  and  the  coordinates 

x",2/",  z",  it  is  assumed  that  there  are  three  axes  possessing  this  property  of  having 

Sy'/z//.dm,  Sx"y".  dm=0,  Sx"z"'.  dm:=0.  However  it  is  afterwards  demonstrated  that 
there  exists  three  such  axes  in  every  body. 

Since  by  hypothesis  the  principal  axes  preserve  their  initial  positions,  being  moveable  in 

space  though  fixed  in  the  body,  while  the  axes  of  x',  y ,  and  z',  are  fixed  in  spuce,  it  follows 
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thai  let  us  make 

S.  (/ --+3"*).  dm=  A ;  S.  (/'» +  z"').  dm=Bi  S.  (^"*+y'*)  dm    Cj 

and  in  order  to  abiidge  let  us  make 

tf(p — cfij/.  COS.  6  =  p.dt ; 

d^,  sin.  6.  sin.  ̂ —d9.  cos.  ip  =q.dt ; 

d^,  sin.  6.  COS.  (p+d^.  sin.  (p=  r.dt. 

The  equations  {J5)  will,  after  all  reductions,  be  changed  into  the  three 
following ; 

A.q.  sin.  0.  sin.  q>  +  Br.  sin.  6.  cos.  (p'—Cp.  cos.  fl  =  — N  ; 

Cos.  i)/.  [Aq.  cos.  0.  sin.  <p-\-Br.  cos.  0.  cos.  (p  +  Cp,  sin.  0] 

+  sin.  4^.  [  Br.  sin.  ?> — Aq.  cos.  <p]  =  —  N' ;  ^i  (Q 

Cos.  ij/.  [£r.  sin.  (p--Aq.  cos.  ?>} 

— sin.  ̂ .{Aq.  COS.  fi.  sin.ip+jBr.  cos.6.  cos.  (p+Cp.  sin.S]  =  — iV^"  , 

that  the  coordinates  «",  y ,  z",  are  constantly  the  same  for  the  same  molecule,  and  vary  only 
in  passing  from  one  molecule  ̂ o  another,  but  the  coordinates  s!  i/  ̂  vary  witli  the  time  .•.  they 

are  fiinctions  of  the  time,  as  are  also  the  angles  6,  ■]/,  <p,  since  they  depend  on  the  position  of 

the  principal  axes  with  respect  to  the  fixed  axes  .-.  when  we  take  the  differentia!  of 

jt',  t/',  and  j/,  with  respect  to  the  time  in  terms  of  x"  y"  z"  and  the  angles  d,  ifj  'Pi  we  should 
not  take  the  differentials  of  x",y' ,  s",  it  may  likewise  be  observed  that  we  can  omit 
the   consideration  of  those  quantities  of  which  one  of  the  factors  is   the  product  of  tvvo 

different  coordinates,   for  such  quantities  disappear  from  the   expression  s/dy — y'dx',   as 
they  occur  in  the  two  parts  of  it  affected  with  contrary  signs,  these  considerations  enable  us 

x'dj/   i/dif 

to  abridge  considerably  the  investigation  of  the  value  of  —       ,  intermsof«"y'2" 

and  fiinctions  of  the  angles  6, 4",  ̂,  for  we  shall  not  take  into  account,  those  terms  which 

would  eventually  disappear  in  tfae  expression 
x'dy' — y'.daf 

7t 

•  dt!=  —  x".[—d).  sin.  i.sm.  i^sin.  ?-f<f4-  cos.  4»  cos.  i.  sin.  ̂  

-f  (/<?.  cos.  (p.  sin.  4-  cos.  ( — cfi^.sin.  ■^.  cos.  ? — d(p.  sin.  ̂ .  cos.  i^) 
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tltese  three  equatdons  give  by  differentiating  them  and  then  'supposing 
4/  =  0,  after  the  differentiations,    which  is   equivalent  to  assuming  the 

j^y"  ( — rfj.  sin.  i.  sin.  tJ/.  cos.  ?+ d-<|'>  cos.  4'.  cos.  ip.  cos. « 

— rf<p,  sin.  ?.  sin.  4'.  cos.  H"<^'4'  sin.  ■v}'.  sin.  <p — rfip.  cos.  ip.  cos.  ij^) 

+2".  (c?«.  cos.  «.  sin.  4  +  rfj/.  cos.  -i^  sin.  «); 

dj/zzx''.{ — dK  sin.  tf.  cos.  ̂ .  sin.  ip — rfil/.  sin.  4'.  sin.  <p.  cos.  i 

•{■dip.  cos.  ̂ .cos.  4.  COS.  6 — di}/.  cos.  4-  cos.  <p-f-c/ip.  sin.  <p.  sin. 4) 

+  y  ( — dS.  sin.  *.  cos.  4.  cos.  (p — c?^-  sin.  4''  cos.  ?>.  cos.  S 

—d^.  sin.  (p.  cos.  •4'.  cos.  6-{-d-^.  cos.  4'-  sin.  tp  4-  rf(p.  cos.  9.  sin.  4) 

-^'.{dt.cos.  6.  COS.  ■4'— d-^'  sin.  4-  sin.«) 

«?/=:  — !i'.dl.6\n.6—fy".  di.  COS.  6.jeos. :q>+y".  dif>.  sin.  p.  sin.  4 

— y.  cf«,  cos.  6.  sin.  ip — a".  dip..cas.Jl>.  sin.  « 
/.  ̂ 4/= 

(of',  cos.  S,  sin.  4'.  sin.  ̂   4"  ̂^  oos..4'-  cos.  9+;y '•  cos,  *.  sin.  4'.  cos.  ip 

— .y.  cos.  4*.  sin.  ip+z".  sin.  6.  sin.  4)  X 

<— *"'rf<. sin.  e,  COS.4.  sin,  ̂ — «".  rfif"  s™-  'J'-  sin.  <p.  cos.  6  +  af'  d<p.  cos.^.  cos.  4-  cos.  6 

— or"  ̂ 4-  cos.  4- COS.  ip+x"  rfip.  sin.  (p.  sin.  4 

— -y .  d6.  sin.  S.  COS.  4-  cos.  (p — ^".  d4.  sin.  4-  cos.  9.  cos.  i 

— ;y".  «f^.  sin.  Ip.  cos.  4-  COS.  ̂ +y.  ̂ 4-  cos.  4.  sin.  <p-{-y".  d(p.  cos.  (p,  sin.  4 

-f-z",  cf^.  COS.  «.  cos.  4 — «"•  ̂ 4-  sin.  4-  sin.  6)  :r: 

— /'.*  6?^.  sin.  tf.  COS.  6.  sin,  4.  cos. 4.  sin.*  (p — jf'.'^di.  sin.  }.  cos.  ̂   4-  sin.  ̂ .  cos.(p 

— «".*rf4'  sin.  '4'  sin.  *<p.  cos.  ̂ 6. — x".*  d4.  sin.  4  cos.  4-  sin.  (p.  cos,  9,  cos.  « 

-}-x".'  d(p.  sin.  ̂ .  cos.  <p.  sin,  4.  cos.  4-  cos.  'S-\-x".^dip.  cos.  ̂ (p.  cos.  *4'  cos.  6 

-^x".^  rf4.  sin.4'.  cos,  f^.isin.  9.  cos.  ̂ .  cos.-< — x''.^d4'.  cos.  *4''  cos.  ̂ <p 

+x",^df.sm.^  (p.sin.  '^.  cos.  «+x".'rf^.  sin.  jp.  cos.  (p.  an.  4*  cos.  4. 

— n/'^.dt.  sin.  i.  cos. «.  sin,  4-  cos,  4'-  cos.  *?i+y.*  rfs.  sin.  «.  cos.  *4'  sin.  ̂ .cos.  ̂  

—y".^d-^.  sin,  *4'«  cos.  '^  cos.  ̂ t.+i/'.^d-^.  sin,  4.  cos,  4-  sin.  <p,  cos.  ̂ .  cos.  t 
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axis  of  x'  indefinitely  near  the  line  of  intersection  of  the  plane  of  x'andt/', 
with  that  (£x'  andy, 

— y'.*  d^. sin.  (p.  COS.  ̂ .  sin.  -i^.  cos.  -i/.  cos.  *^.  +i/".^d<p.  sin.  ̂ (p  cos.  *\{'.  cos.  * 

+y.*rf4'.sin.  4'-  cos.'vl'.  sin.  (p.  cos.  f.  cos.  * — y".  ̂d-^.  cos.  *'4'. sin. '^ 

+  y.*  dp.  cos.  ''^i.  sin.  ̂ ■^.  cos. « — y" .' d(p.  sin.  (p.  cos.  ip.  sin.  -^t.  cos.  ij/ 

'      -f'5'"'*.'^^'  sin.  *.  cos.  ̂ .  sin.  ■\'.  cos.  \J/ — z".^c?4/.  sin.'^vj/.  sin.*fl 

y.cfr'.  = 
(i".  cos.  <.  cos.  ■J-,  sin.  ̂  — x"  sin.  y'.  90s.  <p-f-y .  cos.  *.  cos.  ■^.  cos.  <p 

-f-y".  sin.  -vj/. sin.  (p-f-z'.  sin.  0.  cos.  v|^)  x 

( — s".  rf<.  sin.  J.  sin.  -i^.  sin.  <p  +  x".  rfv}''  cos.  i|'.  sin.  (p.  cos. «-)-«".  c?ip.  cos.  ̂ .  sin.  -i^.  cos.  « 

— b".  cf4'.  sin.'v^.  cos.  <p — al' .d<p.  sin.  <p.  cos.  -i^ 

— y",  di.  sin.  tf.  sin.  ij/.  cos.  <p+y.  d-i^-  cos.  -v^.  cos.  <p.  cos.  « — ;y",  rfip.  sin.  <p.  sin.  -J"  cos. « 

y".  cfij/.  sin.  i^.  sin.  ip — y .  ̂ip.  cos.  <p.  cos.  ■v{/. 

+  2^'.  di.  cos.  <.  sin.  i|/.-f-.~"  d-i^.  cos.  ■4'.  sin.  (1)=: 

— i".*rf(i.  sin.  ̂ .  cos.  i.  sin.il^.cos.  ■vj^.  sin.  -(p — s".^d6.  sin.  «.  sin.  ̂ 4^.  sin.  ip.  cos.  <p 

+«".»  rfij'.  cos.  ̂ ^^^  sin.  'Ip.  cos.  *«— «".  V^-.  sin.  ■4'.  cos.  4'-  sin.  ?.  cos.  tf>.  cos.  * 

"j-jt".  *d^.  sin,  (p.  cos.  Ip.  sin.  \J/.  COS.  ■4'.  COS.  '6,— «".-rf<p.  cos,  '<p.  sin.  '\J/.  cos.  < 

'<f4''  sin.  tJ'.  COS.  i^.  sin.  ̂ .  cos.  ip.  cos.  «  ■(-x".'c?4'.  sin.  '^.  cos.  "^ 

'rf^.  sin.  »<p.  COS.  ̂ •v}'.  cos.  ̂ -f-x".  rfip.  sin.  (p.  cos.  ip.  sin.  \}/.  cos.  i^. 

—y''.'-d6.  sin.  ̂   cos.  «.  sin.  •vJ/.  cos,  4'.  cos.  -<p — j/'.^di,  sin.  «.  sin.  'tI/.  sin.  <p.  cos,  p 

+y,*  d^f.  cos,  '4''  cos.  =^.  cos.  *?i.4-!/''.'e^T^.  sin  ■4'-  cos.  i^.  sin.  (p.  cos.  $.  cos.  i. 

— ^y".*c(<p.sin.  ip.  cos.  ?>.  sin,  ij/,  cos.  4-.  cos.  '(. — y'.'^d'p.  sin.  -0  sin.  'tl'-cos.  « 

4-y  .*rf<|'.  sin.  if"  cos.  4''  sin.  <p.  cos.  ip.  cos.  i-\-y" .'  d-^i •  sin,  *4/.  sin.  ̂ ip 

— ^".*rfip.  cos.  *ip.cos.  *4/.  cos.  ̂ — y.'rfip.  sin.  ?.  cos  ip.  sin.  •\'-  cos.  if) 

4-i".^<f«.  sin.  1  COS.  «,  sin.  if/,  cos.  ■\'-  +^"^(^^|'.  cos.  '4^.  sin.  *«. 
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di.  COS.  6.  {Br,  cos.  9  +  Aq.  sin.  9)  +sm.  6.  d.  {Br.  cos.  (i>+Aq,  sin.  ip) 

— d.  {Cp.  cos.  fi)  =  — cfiV^ ; 

<?>)/.  (£r.  sin.  9 — Aq.  cos.  ?>) — (fO.  sin.  6.  {Br.  cos.  ip  H-  ̂y.  sin.  (p)+cos  9. 

d.  (Br  cos.  <p  +  Aq.  sin.  ip)  +  cf.  (Cp.  sin.  6)  =  —  (fA''' ; 

d.  (Br  sin.  ip — Aq.  cos.  ?>) — d^.  cos.  9.  (£r  cos.  (p+  Aq.  sin.  9) 

— Qj.rf"  4/.  sin.  0  =  --  dN" 
making 

Cp=p'',  Aq=  j'j  5r=/; 
z 

.".  observing  the  terms  which  coalesce  and  those  whicli  destroy  each  other  in  the  expression 

for  y^iy — y^*')  tWs  function_becomes  equal  to 

— x".*  dS.  sin.  I.  sin.  9.  cos.^— «".'rf4''  *'""•  '?•  cos.  ̂ i — x''.^d<J/.  cos.  '^ 

+(«".»  rf^.  cos.  ̂ ip.  COS.  6  +  a/'.*  rf<fi. sin.  '(p.  cos.  «)  =  {xf'.*d(p.  cos.  ».) 

+y.'t/J.sin.  tf.  sin.  <p.  cos.  (f — y".*d-^.  cos.  '<?.  cos.  '< — if' .'^d'^.  sin.  *9 

+(^".*c^ip.  sin.  ̂ (p.  cos  e-\-y".'d<p.  cos.  ̂ <p.  cos. «)  z:  {i/'.*d<p.  cos.  «). 

— 3".V-v^.  sin. ''«. 

This  equation  when  extended  to  all  the  molecules  of  the  body  is  identical  with  the 

equation, 

A.q.  sin.  $.  sin.  (p-\-Br.  sm.  6,  cos.  9 — C.p.  cos.  *.  :£  —  iV; 

taken  with  a  contrary  sign,  for  substituting  in  place  of  A,  B,  C,  p,  r,  q,  their  values,  in 

this  equation,  it  becomes  for  one  molecule 

,  „        ,,,      (    d-l>.  sin.  't.  sin.  ̂ (p) — di.  sin.  i.  sin.  (p.  cos.  (p   ")     , 

(y  +  ̂'Y  I   -^r—   —5  + 
{x"^  +  s"^). 

(d^f'.  sin.  »S.  cos.  "ip  +  tfO.  sin,  <.  sin.  ?>.cos.  ̂ ) — (^"* +«/''*)  (<^ip.  cos.  5 — dif'.  cos.  *«), _ 

equal  by  making  all  the  quantities  by  which  y,*z",'  i",*  are  respectively  multiplied 
coalesce  so  that  they  may  be  respectively  factors  of  these  coordinates 
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these  three  diflPerential  equations  give  the  following  ones  * 

dp'+  \—-j—\q'r'.df=dN,  COS.  ̂ -—dN'.&m.  0; 

dr 

C—B 

CB 

A—C7  „,  , 

dq'+  S  i  .r'p'.dtzz — (dN.  sin.  9  +  dN'.  cos.  0).  sin.  ̂  
-\-dN".  COS.  (p  ; 

h(i>) 
'+  ̂  — j-rii  'P'q'-dt= — (dN.  sin.  6  +  dN'.cosJ).  cos.^. — rfiV^".  sin.  (p. 

y.*rf^  (sin.  ̂«.  sin.  «(fi-|-tos.  *^) — .y.  -dd.  sin.  «.  sin.  ?.  cos.  (p — 7/".  'dip.  cos.  ♦ 

=  i/''^.d4'.  cos.  '<f>.  COS.  -«-}-^",»c?t|'.  sin.'ip — ^"*.  rf«.  sin.  *.  sin.  (p.  cos.  (p~-i/'*.dp.  cos,  # 

r''^.^^".  sin.*^.  sin.*(p — 3"*.c?«.  sin. «.  sin.  ip.  cos.  <p+3"*.c?4'.  sin.»5.  cos.*? 

-\-^'.'di.  sin.  5.  sin.  <p.  cos.  (p  =  s*'.  ̂ d^p.  sin.  'S 

+«"*  .  d4''  sin.^^.  cos.  '^-{•x"^.d6.  sin,  «.  sin.  ip.  cos.  * — 3/'^.dp.  cos.  «-j-x'".(i'-i|'.  cos.'S 

=  a"'.rfT}/.  (sin.  ̂ip.  COS.  *«)4-y  ̂ (/•4/.  cos.  «ifi — x"\d/p.  cos.  e+x"'.d6.sm.  «.  sin.  ip.  cos.  $, 

Since  the  angle  -^  vanishes  after  the  differentiations,  wherever  sin.  ■v^  occcurs  as  a  factor 

tliis  quantity  must  be  rejected,  and  wherever  cos.  ̂ ^  occurs  it  becomes  equal  to  unity,  keeping 

these  circumstances  in  view  it  will  immediately  appear  that  the  expressions  for — dN—dN" 
— dN"  should  be  such  as  are  given  in  the  text. 

*  The  first  differential  equation  being  multiplied  by — cos.  6  becomes  equal  to 

— dS.  cos.  '■6  {Br.  cos.  P  +  Aq.  sin.  ̂ ) — sin.  6.  cos.  0.  d.  (fir. cos.  <P-\-Aq.  sin.  ip) 

+  COS.  (.  d.  {Cp.  cos.  e)  =  dN-  cos.  t 

and  multiplying  the  second  equation  by  sin.  $,  we  have 

d^l/.  sin.  e.{Br.  sin.  (p — Aq.  cos.  (p) — d(,  sin. '«.  (Br,  cos.  p-j-Aq.  sin.  9)+sin.  t.  cos.  i. 

d.{Br.  cos.  ip+Aq.  sin.  ifi)+sin.  S  d.{Cp.  sin.  ()—  — dN'.  sin.  d 

.•.  dN.  cos.« — d.N'.  sin.«= — d6.{Br.  cos.?i+  Aq.  sin.  (p)-\-d->p.  sin.  6,  (Br.  sin.  (p — ^y.cos.^) 

+  cos.»«.  d.  ( Cp) — d6.  sin.  6.  cos.  6.  {Cp)+sin.  *6.  d(Cp)+d6  sin.  6.  cos.  (.(Cp);  = 
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these  three  equations  are  very  convenient  for  determining  the  motion  of 

rotation  of  a  body,  when  it  turns  very  nearly  about  one  of  the  principal 
axes,  which  is  the  case  of  the  celestial  bodies. 

27.  The  three  principal  axes  to  which  we  have  referred  the  angles 
z  2 

by  substituting  for  r  and  q  their  values 

— — B.{di.d-i^.'im.^.  cosJ (p+clS.*  sin.  <p.  cos.  <p) — A-{de.d-^.sm.  ̂ .sin.  '<p — dS.''  sin. (p. cos,  ip) .  ___ 

+  B.(rf'|'.*  sin.  ̂ 6.  sin.  ip.  cos.  (p-j-di^.d).  sin.  6.  sin.  -<?) — /4.(cAJ/.*  sin.  *(i.  sin.  <p.  cos.  (p _ 

—d4^.  dS.  sin.  6,  cos.  *0)  , ,  _    .    +  d.(C.p.)= 

{B — /}.l(r/ij/.»sin.  =  ̂. sin. <p.  cos. <p) — dS. '  sin.tp.  cos.(p+d4'.d6.(sin.  ̂ .sin.  "tp — sin.  6.  cos.  '^) ) _ 

+  d.(C.p.)={B—A).  q.r.dt+dp'  =  -^  .  q'.r'.dt+dp' 

in  like  manner,  multipl3'ing  the  first  of  the  differential  equations  by  sin.  0.  sin.  (p,  the  second 

COS.  6,  sin.  (p.  and  the  third  by— cos.  <p,  and  then  adding  them  together  we  obtain 

— dN.  sin.  6.  sin.  (p — dN'.  cos.  6.  sin.  <p — dN".  cos.  (p=  to 

6?«.  sin.  ̂ .  cos.  6.  sin.  ip.  (Br.  cos.  (p  +  Aq,  sin.  (p)  +  sin.  *«.  sin.  <p.  ̂.  (£r.  cos.  (p+Aq.  sin.  ?) 

— sin.  6.  sin.  (p.  (/.  (C^.  cos.  $) 

-\-d4'-  COS.  tf.  sin.  (p[Br.  sin.  ip — Ag.  cos.  ip) — cf^,  sin.  6,  cos. «.  sin.  (p(Br.  cos.  ip  +  /f  y.  sin.  !p) 

+COS.  =«.  sin.  (p.  d.  [Br.  cos.  (p+.^J'.  sin.  ip)+cos.  6.  sin.  (p.  d.  {Cp.  sin.  «) 

— COB.  <p.  d.  (Br.  sin.  ̂  — /4y.  cos.  ?i)  +  d^.  cos.  «.  cos.  <p.  (Br.  cos.(p+  /4y.  sin.  <p) 

+  C^p.  (f'<|'.  sin.  6.  cos.  (p  =  by  concinnating 

sin.  Ip.  rf.  (Z?r.  cos.  <p-\-Aq.  sin,  (pj^-c^-vj/.  cos.  «.5r — cos.  (p.  d.  (Br.  sin.  (p — y^y.  cos.  (p) 

— sin.  «.  COS.  J.  sin.  <p.  d.(^Cp)  +  £?*.  sin.'S.  sin.  $.  (C/))-|-  sin.  fl.  cos.  S.  sin,  <p.  t/.  (Cp) 

+  de.  cos.  ̂ ».  sin.  (p.  ( Qj.)  +  f  Cp.)  d^^.  sin.  tf.  cos.  ip ; 

=  sin.  ip.  cos.  <p.  c?.  (/?r)  +  sin.  *^.  d.  (Aq)—Br.  d<p.  sin.  '<p.  +  Aq.  dip.  sin.  ip.  cos.  ip. 

+  rf^}'.cos.«.  J5r— sin.ip.cos.ip.  d.(Br)+cos.'(p.d.(Jq) — Br.rf^i.cos.*  ip — Aq.d(p.  sin.(p.cos.f. 

4-  rf^.sin.  ip.(C.p.)+(C/;).  rfvf-.  sin.  «.  cos.  ?i=rf.(^9)— B;■.rflp4-rf•^;'.cos.«.JBr 

-l-d^.sin.lp.((^),+<Z■vJ/.    Cp.sin.  ̂ .cos.ip) 
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S,  p,  4'>  deserve  particular  consideration  ;  we  now  proceed  to  determine 

their  position  in  any  solid  whatever.  From  the  values  oi  of  1/  z',  which 
have  been  given  in  the  preceding  number  we  may  obtain  the  following 
expressions  by  No.  21. 

x"-:z.af  (cos.  6,  sin.  »J/.  sin.  <p  +  cos.  ̂ .  cos.  <p)  +3/'.  (cos.  6.  cos.  »J/.  sin.  p 

—sin.  ̂ .  cos.  9) — z'.  sin.  6.  sin.  cp  ; 

y"  =  x'  (cos.  6.  sin.  if/,  cos.  (p — cos.  ■^.  sin,  9)  +  ?/'.  (cos.  0.  cos.  <|/.  cos.  <? 

+  sin.  i)/.  sin.  (f) — ~'.  sin.  9.  cos.  (p ; 

^"=j'.  sin.  0.  sin.  ̂ ■\-y'.  sin.  6.  cos.  ̂ ^-z'.  cos.  6 ; 

From  which  may  be  obtained, 

x".  cos.  (p — y".  sin.  (p-=x'.  cos.  <|/ — y'  sin.  v)/ ; 

x".  sin.  (p+y.  cos.  (?  =  y.  cos.  6.  sin.  4'+j/'-  cos.  0.  cos.  4- — ^'-  sin*  S ; 
and  making 

S.x'Mm=ia-;  S.y'J" dm=b-;  S.z'.^dm=c-; 

S,  x'y.'dm—J';  S.  x'z',  dm—g  ;  S.  y'z.  dm  —h  ; 
we  shall  have 

COS.  (p.  S.  x"z".  dm — sin.  (p.  S.y"z''.  dm=  (a^'—b^)  sin.  6.  sin.  vf/.  cos.  ̂  

but  by  substitution  d.{Ag)  +  Br.{ — d<p-\-  d-^.  cos.e)+c?«.  sin.ip.  C  p.-\-d^{Cf.)sm.i.  cos.  <p.z= 

,     .  .  — Bd-^. dip.  sin.  6.cos.ip — dip.  dS.sin.(p-{-d^.~sm.6.  cos.  6.  cos.p+d4:di.cos,6.sin.<p. d.(Sq)   

-\-C.(d6.  dp.  sin.  ip  —  df.  d4^.  cos.  6.  sin.(p)4-  C.  d-^. dp. sin.  6.'cos,  p — C.d^.-  sin.  S.cos.C.cos.^. _ 

~{C — B).d<p.d4'. {sin. 6. COS.  p.)-i- {dp.  dS.sin. p)  —  rf-vj/. ̂   sin. «.  cos.  6.  cos. 9 — d6. rfi|/. cos.Ssin.  <p) 
dt 

+d[Aq.)  ~  (C-B).  p.  r.dt  +  d.{Aq.)  -  ̂̂ ^^p'.r'dt  +  dg' 
CB 

by  a  similar  process  we  might  deduce  the  value  of  the  last  difiFerential  equation. 
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-^f.  sin.  e.  (cos.2  v}/ — sin.^v|/) 

-|-cos.  9.  {g.  008.4- — h.  sin.  ̂ )  ; 

sin.  <p.  S.  x'^ z" dm  +  COS.  (p.  S.  7/"z".dm= 

sin.  6.  COS.  9.  (a.^  sm.^+b.^cos.'^—(r  +  2f.  sin.  >}/.  cos.  ̂ )* 

+  (cos.^9— sin.'9;.  (g.  sin. ;}/+/«.  cos.  \j/). 

*  r''.  COS.  $i=x'.  (cos.  *.  sin.  il'-  sin.  <p.  cos.  <p-}-cos.  ■vj/.  cos.  *ip) 

+y .  (cos.  *.  COS.  1^.  sin.  (p.  COS.  <p — sin.  4-  cos.  ̂ <p) — z'.  sin.  ̂ .  sin.  <p.  cos.  (p. 

y.  sin.  (pzzx'.lcos.  6.  sin.  •v}'-  sin.  (p.  cos.  ip — cos.  4'-  sin.  'ip) 

+,y'.  (COS.  6.cos.-<p.  sin.  *.  cos.  ip+sin.4'.  sin.  ̂ (p) — s'.  sin.  0.  sin.  ip.cos.  ip, 

.*.  x".  COS.  <p — y".  sin.  <?=.!/.  cos.  ̂ }' — •?/.  sin.  ■4' 

x".  sin.  <p=x'.{cos.  6.  sin.  ■vj/.  sin.  'iji-j-cos.  •v}/.  sin.  (p.  cos.  $) 

+y  (cos.  ̂.  cos.  4*.  sin.  ̂ ip — sin.  ■^.  sin.  ip.  cos.  ?i) — ~  .  sin.  ̂ .  sin.  -ip. 

y.  cos,  <p=x'  (cos.  6.  sin.  4'.  cos.  *ip — cos.  i^-  sin.  ip.  cos.  ip) 

-j-y.  (cos.  (.  cos.-il'.  cos.  *(p  +  sin.  ■^.  sin.  (p.  cos.  <p) — z'.  sin.  «.  cos.  'ip 

.*.  .t".  sin.  (P-)-^".  cos.  (p=x'.  COS.  ̂ .  sin.  ̂ -{-y'.  cos.  «.  cos.  4 — /.  sin.  tf  ; 

multiplying  the  first  member  of  the  equation  x".  cos.  (p — y" .  sin.  ip=x'.  cos.  4 — y*  sin-  '4" 

by  z"  and  the  second  member  by  the  value  of  z"  we  obtain 

cos.  (p.  x"z" — sin,  ip.y  .z"=:  a'.^  sin.  i.  sin.  •4-  cos.  -^—afj/.  sin.  «.  sin.  '4' 

-f-a^y.  sin,  C.  COS.  ̂ 4 — y-*  sin.  ̂ .  sin.  4-  cos.  4'- 

+2;'.  i'.  COS.  6.  COS.  4^ — s/^'-  COS,  6.  sin.  4'j 

substituting  for  «',*  y',*  j;'y,  z'y,  2'x',  their  values  and  concinnating  we  obtain 

COS.  ̂ .a:"!" — sin.  ip.t/'  z!'z={.x'- — ^").  sin.  S.  sin.4'- cos.4'  +  ̂y- sin.  6.  (cos.  ̂ 4^ — sin.'4'') 

+  2'j'.  COS,  6.  COS.  4 — ^y-  cos.  6.  sin.  4> 

this  expression  being  extended  to  all  the  molecules  of  the  body,  will  give  by  substituting 

for  S-r/^dm  Sj/.^dm,&c.  their  respective  values  a-,b^,/,g,h,  &c,the  expressionm  the  text, 
in  like  manner  sin.  (p.  x"  z" 
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by  equalling  the  second  members  of  these   two  equations  to   nothing, 
we  shall  obtain 

.  /?.  sin.  x|/ — ";.  COS.  J/ 

(a^ — b'^y  sin.  \j/.  cos.  ̂ ■\-J.  (cos.'^ij/ — sin."*  ■i/) 

J  ^.  sin.  il/+/;.  COS.  »|/ 
2"  tan.  2?       „      .,     •    o ,      ,  o        u  ,     ,^  ,.  : — i   x~  ' 
"^  r — a-.  Sin. "4/ — 6  .  cos.-.\}/ — 'ilj.  sm.  »J/.  cos.  4' 

but  we  have  always 
tan.  6 

i  tan.  26  =   
1— tan.-°fl    ' 

by  equalling  these  two  values  of  tan.  29,  and  substituting  in  the  last  ex- 
pression, in  place  of  tan.  S.  its  value,  which  has  been  given  in  a  function 

of  <j/  J  and  then  in  order  to  abridge,  making  tan.  i}/=  z< ;  we  sliall  obtain 

after  all  reductions,  the  following  equation  of  the  third  order.* 

0=(gu+h).  (Jm—gy 

+  [  {a-—h^).  u-vf.  (1— zr) ].  {h(^—Jia'+fg).  u+gb'—gc'-hj] . 

4-C0B.?i.y.z".=:a;''  sin.  6.  cos.  6.  sin.*Aj/+,fy.  sin. «.  cos.  «.  sin.'>}'.cos.4'— s'«'-sm.  =  «.  sm.>J' 

-f-a't/'.  sin.  6.  cos.  6.  sin.  4'-  cos.  ̂ +1/'."  sin.  6.  cos.  6.  cos.  '4'~^!/  *'"■  "*•  cos.  i^ 

+  ;V.  cos.  ̂ 6.  sin.  -^-^z'y'.  cos.  *«.  cos.  ij/— z'.'  sin.  «.  cos.  6  ziz 

sin.  «.  cos.  6.  (a'.'*  sin.  °^+y.»  cos.  '-^ — z'^)+'2x'y'.  sin.  6.  cos.  «.  sin.  ■4'.  cos.  4') 

+  (cos. ««— sin.  ««.)  («'*'.  sin.  T^.-f^Y-  cos.^}..) 

by  extending  this  expression  to  all  the  molecules  and  substituting  a^,i*,  c', /',y5,  &cact. 

tor  Sx'V»K  and  S/ ̂  f/w  &c.  we  shall  obtain  the  expression  which  has  been  given  in  the  text. 

*  The  second  members  are  put  equal  to  nothing  because  by  the  conditions  of  the  problem, 

the  first  members  respectively  vanish,  consequently  we  have  0  = 

(  (flS— 6*).  sin.  ■4.  cos.  4+/.  (cos^^— sin.  ̂ 4)).  sin.  6-\-(g.  cos.  4— /(.  sin.  4).  cos.  < ; 

0*-  sin.  6.  cos.  i.  (a-  sin.  ̂ -\-b?  cos.  ̂  — c2+2/  sin,  ■^,  cos.  4) 

+  (cos. !'«— sin.  H).  (g.  sin.  4+/'-  cos.  -f)  ; 
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As  this  equation  has  at  least  one  real  root  we  may  perceive  that  it  is 

always  possible  to  make  these  two  subsequent  expressions,  and  con- 

sequently the  sum  of  their  squares,  to  vanish  at  the  same  time 

sin.  6  h  sin.  4' — g-  cos.  ̂  

•■•  ̂ ^e"  *^""  *  ~  (««— 6-).  sin.  4..cos.4'+/(cos.2^^— sin.«^J.)' 

sin.  e 

sin.  <■  cos.  9     _  COS.0   ^!^=:  i  tan.  2(»  = 
COS.  *(»— sin.  «*  —  sin.  ̂ 6  l—UmM 

COS.  -i 

g.  sin.  ■^.-\-h.  COS.  -^ 

(? — a.-sin.24/ — 6.2cos.-^J' — 2/ sin.  ̂ .  cos.  i^ 

lhe«e  fractions  being  divided  cos.  ij',  become  by  substituting  u  in  place  of 

sin.  •vj/  hu — g  gu-{-h 

COS. 4''  ((a2_6»).  u-{-f.  (1— u-)).  cos.  4-  '  (  (c-  (l+;r)— «-  tfi—t^—'lfu).cos.-^ 

if  we  call  the  factors   of  cos.ij/  in  the  denominators  of  these  respective  fractions  m  and  n 
we  shall  have 

tan.  «.=     "~^  . .-.  i.  tan.  2«  = 
?w.  cos.  y 

1      C   ̂"-g    1  '  =  m.  cos.>V  -hu-y    ~  «•  c°«-  ̂  •■• 

C_hu-g_l 

(_m.  cos.^^J 

by  reducing  we  obtain 

{hu—g).  »m.  cos.  'i^  =  (gtt+h).  ( .(m  cos\|'f — (Au— f )') 

and  consequently  0  = 

cos.  ̂ .  (m.  (hu—g).  n— (gM+A).>»)+(A«— ̂ ).*  (^«+^,)  now  {hu—g)n.=>. 

by  substituting  for  n,  {c?Q.-\-u^) — a^u^—h^ — 2fu)  and  then  multiplying 

h(~  u+h(?  1^—ha^  uS—hH  u—2fhi^—g(?—gc'  ui+gahi^+glr'+^/gu, 

in  like  manner 
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COS.  (p.  S.  x"^'.dm — sin.  ̂ .  S.  ̂ '.z".dm ; 

sin.  f.  (S.yy.fi^wj  +  cos.  (p.  S.y"z'.dm'^ 

and  this  requires  that  we  should  have   S,  x"z».d'm ;  Sy"z".dm  separately 
equal  to  nothing. 

The  value  of  u  gives  that  of  the  angle  4'j  and  consequently  the  value 

of  tang.  6,  and  of  the  angle  6.  It  is  only  now  required  to  determine 
the  angle  <p  and  this  will  be  effected  by  means  of  the  condition 

S.  x''y".dm  =0,  which  we  have  yet  to  satisfy.  For  this  purpose  it  may 

be  observed,  that  if  we  substitute  in  S.af'x/'.dm  *   in  place  of  x",  y", 

_(g«+A).  w.  =  {-(gu  +  h).{ai-b^).  «-f-/(l-M=)  = 

—a-gu^+gb^u^—gfu+gfus—ha^u+h  b^u—hf-^hfu^  .-. 

the  preceding  equation  becomes,   to  by  making  the  similar  factors  of  ic  and  its  powers  to 

coalesce,  equal  to,  ^_  ' 

{h<?  u.  (1  W)-1'ai  u.  (1  +  ui)-fk.  ( 1  +2i.')-gc?  (l+M2)+/g«,  (!+«') 

iorcos.H.m.ihu-g)  j£^£2:lWlll) 

+  (hu—g)2.  igU  +  h)  = 

(  (a'-b.f  M+/(l-«=)).  {(hc^-ha''+fg).u-/h-gc^+gb'')  )+(hu-g).^{gu+h)^  0, 

which  is  the  expression  given  in  the  text. 

*  x".  COS.  (p — y".  sin.  ip=x'.  cos.  ■<J' — y.  sin.'xj'.  =  P 

i".  sin.  ̂ -j-y.  cos.  (p=x'.  cos.  i.  sin.  ̂ -\-y'-  cos.  6.  cos.  -^^ — z.  sin.  6  =Q 

.'.  «".  cos.  ■*?— y.  sin.  <p.  cos.  <p=s'.  cos.  ■4'.  cos.  (p— y.  sin.  i^.  cos.  (p=P.  cos.  (p 

x".  sin.  ̂ if>+i/'.  sin.  ?>.  cos.  ip  =  x'.  cos.  J.  sin.  ̂ .  sin.  ?-j-y.  cos.  «.  cos.  ̂ .  sin.  f 

— z'  sin.  «.  sin.  ̂   =  Q.  sin.  ̂  

.-,  jr".  =  x'.(cos.  t.  sin. ■\J'.  sin.  <p  +  cos.  if.,  cos.  ip)  +y  (cos. «.  cos.  i|..  sin.  (p— sin.  ̂|',  coe.  p) 

—J.  Bin.  *. sin.  ̂ =  P. cos.  ̂ +  Q.  sin.  ̂  
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their  preceding  values,  this  function  will  assume  this  form,  H.sin  2(p+L. 

COS.  2(p  ;  H  and  L  being  functions  of  the  angles  9  and  ̂ ,  and  of  the 

constant  quantities  a^  b^,  (?,f,  §•,  A,  by  putting  this  expression   equal   to 

nothing,  we  shall  obtain  tan.  2ip  = — —  . 

The  three  axes  determined  by  means  of  the  preceding  values  of  9,  4^  j 

and  <p,  satisfy  the  three  equations, 
A  A 

xM.  sin.ip.  cos.$ — y".  sin.  *(p=x'.  cos. 4'.  sin.  ip — ;y'.  sin.  4'sin.  <p=zP.  sin.(p 

x".  sin.  <p.  COS.  <P-\-^'  COS.  ̂ (p=x'.  cos.  6.  sin.  •J^.  cos.  ̂ -{•y'-  cos.  tf.  cos.  ■^^  cos.  ̂ -:- 

:'  sin.  0.  cos.  9=  Q.  cos,  9 

.'.  y =s'.(cos.  «.  sin.  ̂ .  COS.  $ — cos.  4^.  sin.  (p)-fy(cos.  «.  cos.  if'-  cos.  (f+sin.rj'.  sin.  <p) 

+^'  sin.  «.  cos.  (p=Q.  COS.  ̂  — P.  sin.  <p  ,♦. 

x"y  =  PQ.  COS.  *$ — PQ.  sin.  '<p  +  Q.-  sin.  <p.  cos.  ip — P.*  sin.  <p.  cos.  <p  .'.  if 

Sx/'i/'.  dm  =  0,  we  shall  have 

SPQ.  dm  (cos.  «.p— sm.  ■-?))  +  S(Q'— P»).rfm  sin.  <p,  cos.  <p  =  0.  and    -^l^-H^ 
sin.  (p.  cos.  (f 

cos.  *(? — sin.  2^,  ' 

making  H  =  S(Q'— P«)«?m  and  21,=  S.PQ  rfw  we  shall  have— ^-^^ 

sin.  2^.  --// 
J5   -77;  •'. — zf~  tan.2ipj 2.  cos.  2^         H 

this  equation  determines  a  real  value  for,  tan.  2ip  and  .••  for  (p,  and  as  the  equation  which  de- 

termines the  value  of  u  has  at  least  one  real  root,  tan.  4'  and  .•.  tan.  6,  are  real,  consequently 
we  are  justified  in  assuming  as  we  have  done 

S,x//y'fdm,  Sfil'dm,  Ssf'ti'jdm, 

respectively  equal  to  nothing,  and  therefore  we  shall  have  at  least  one  systenj  of  principal 
axes  existing  in  every  body. 
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S.x'y.dm—0'y  syz".dm=iO'y  &yV.</m=0.* 

The  equation  of  the  third  order  in  it,  seems  to  indicate  three  systems 

of  principal  axes,  similar  to  the  preceding  ;  but  it  ought  to  be  observed 

*  All  the  roots  in  the  equation  which  determines  the  value  of  u  are  real,  and  this  equation 
must  be  of  the  third  dimension,  for  in  the  investigation  of  the  angles  (,  il',  <p,  there  is  no 

difference  between  tlie  principal  axes,  nor  is  there  any  condition  to  determine  which  of  the 

three  principal  planes  we  assume,  ••.  the  solution  must  be  applicable  equally  to  the  angle 
contained  between  the  axes  of  a/,  and  either  of  the  three  intersections  formed  by  the  plane 

of  jr',  y ,  with  the  three  principal  planes  of  the  body  respectively,  consequently  the  roots  of 
the  equation  must  be  all  real,  it  also  follows  that  there  is  only  one  system  of  principal  axes  in 

every  body,  for  as  each  system  would  give  three  values  of  u,  the  dimension  of  the  resulting 

equation  which  determines  the  value  of  u,  should  be  equal  to  three  multiplied  into  the  number 

of  systems,  but  the  equation  does  not  transcend  the  third  order,  .•.the  number  of  systems  is 

only  one,  indeed  if  the  equations  which  give  the  values  oi  i  -^  and  ̂   are  identical,  tlie  number 
of  principal  axes  is  infinite,  tliis  will  evidently  be  the  case  where  the  tierms  which  compose 

the  equation  in  u  vanish  without  supposing  any  relations  existing  between  the  terms  i,  e,  when 

a  * — i  ̂ =c  * ,  andyj  g,  h,  respectively  vanish  we  shall  have  for  the  coordinates  a/,T/,ii,  S.x'i/.  dm 

=;0,  S./cVf/m— 0,  S.y  ̂  .dm=.0  .'.  they  are  principal  axes,  and  as  in  this  case  tan.  (zz  — ,the 

position  of  these  axes  is  entirely  undetermined  .-.  all  systems  of  rectangular  axes  are  prin- 
cipal axes  and  their  number  is  infinite ;  from  the  expression  for  tan.  6  it  appears  in  like  man- 

ner, that  this  angle  is  100°,  when  a^z^b*  and_/— 0,  and  consequently  that  the  plane  of 

the  axes  of  ;/'  and  x'  must  pass  through  the  axis  of  z". 
For  all  bodies  symmetrically  constituted,  one  of  the  principal  axes,  is  the  axis  of  the  figure 

i,  e,  a  line  perpendicular  to  the  plane  dividing  the  bodies  into  two  parts  perfectly  equal  and 

similar,  for  supposing  this  plane  to  be  that  of  x,  y,  then  if  we  take  two  equal  molecules,  similarly 

situated  ̂ vith  respect  to  tliis  plane,  it  is  evident  that  if  the  coordinates  of  one  molecule  be 

X,  y,  z,  the  coordinates  of  the  other  will  be  jr,  y, — z,  and  the  indefinitely  small  elements  of  the 

integrals  S,xz.dm,  S._y2.f/n!,  which  correspond  to  these  molecules  will  be  a;z.rf»?, — xz  dm,yz.dm 

— yzAm,  .•.  the  sum  of  all  the  indefinitely  small  quantities  xz.dm, — xz.dm,  yzJbn — -yzydm, 
at  one  side  of  the  plane  will  be  equal  to  the  sum  of  the  indefinitely  small  quantities  at  the 

other  side  affected  with  a  contrary  sign,  .  ■ .  their  resjiective  aggregates  S.xzdm,  S.yz.dm  are 

equal  to  nothing,  .'.  the  axis  of  z  is  a  principal  axis,  and  if  the  molecules  of  the  body  be 

sjTnmetricaUy  arranged  with  respect  to  a  plane  passing  through  the  axis  of  z'  perpendicular 

to  the  first  mentioned  plane,  we  shall  have  S.xy.dm  =:0  .-.  the  axes  of  x,y,  z,  will  be  prin- 

cipal axes. 
What  has  been  established  in  the  preceding  note  is  of  great  importance,  as  the  investi- 
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that  u  is  the  tangent  of  the  angle  formed  by  the  axis  of  .r',  and  by  the 

intersection  of  the  plane  of  :v'  and  3/'  with  the  plane  of  x'''  and  y",  and  it 

is  evident  that  one  of  the  three  axes  of  of',  of  y",  and  of  z"  may  be 
changed  in  another,  since  the  three  preceding  equations  will  be  always 
satisfied  j  therefore  the  equation  in  u  ought  to  determine  indifferently, 

the  tangent  of  the  angle  formed  by  the  axis  of  of,  with  the  inter- 

section of  the  plane  ̂ ',  3/',  either  with  the  plane  x"  y  \  or  the  plane  ocf\  z'\ 
or  finally  with  the  plane  y",  z",.  Thus  the  three  roots  of  the  equatiffii 
in  ic  are  real,  and  they  belong  to  the  same  system  of  axes. 

It  follows  from  what  precedes,  that  generally  a  solid  has  only  one 

system  of  axes,  which  possess  the  property  in   question.      These  axes 
AA  2 

gation  of  tlie  position  of  the  principal  axes  is  considerably  facilitated  by  making  one  of  them 

to  coincide  with  one  of  three  coordinates  x'  t/  z',  whose  position  is  entirely  arbitrary,  for  sup- 
posing the  axis  of  x"  to  coincide  with  the  axis  of  xf,  then  since  (p:=the  angle  which  the 

intersection  of  the  plane  of  x"  and  y",  with  the  plane  3^,1/,  makes  wiih  the  axis  of  «', 

and  since  -^  =  tlie  complement  of  the  angle,  wliich  the  projection  of  the  third  axis  on  the 

plane  of  x'  and  y'  makes  with  the  axes  of  *',  these  angles  are  severally  equal  to  notliing 

tan.  i ^.  sin.  -J/ — g.  cos.  1^ 

(a' — 6 »)  sin.  ̂ .  cos.'vj/-j-y;(cos.  ̂ -^ — sin.'^) 

becomes  equal  to 

_llandi  tan  2«-— S:iiili±i:i^!^:i       -  _^lj_ 

/'  J-       •      —   c»_a2.  cos.^4— 6^sin.'i^— g/sin.  1^.  cos.  i^    ~  c'*— i'«  ' 

n  which  (/,  6',/',  g',  A' indicate  what  c,  i,7>^j  Aj  become  when  a;' coincides  with  x",  and 
as  tan.  2[S  +  100)— tan.  (2(1+200)  =  tan.  2«,  it  follows  that  the  other  two  axes  must  be 

taken  in  the  plane  y,  2',  one  making  the  angle  i  and  the  other  the  angle  fl  -f  100  with  the 

axis  of  y,  now  if  we  made  the  axes  of  y",  and  s",  to  coincide  with  the  axes  of  y  and  z' 

respectively,  6,  and  .•.  /;'  would  vanish,  and  consequently  S{y'z'.)dm  would  be  equal  to 
nothing.    But  if  h'  remaining  equal  to  nothing,  b'  and  c'  would  be  equal  to  each  other  then 

//  0 

tan.2«  =  — — p-j  would  be  equal  to  —  .•. «  would  be  indeterminate  and  every  line  in  the 

plane  y'  z',  and  passing  through  the  origin  of  the  coordinates  would  be  a  principal  axis,  see 
notes  to  page  184. 
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have  been  named  principal  axes   of  rotation,  on  account  of  a  property 
which  is  peculiar  to  them  and  which  will  be  noticed  in  the  sequel. 

The  sum  of  the  products  of  each  molecule  of  the  body,  into  the 

square  of  its  distance,  from  an  axis,  is  called  the  momeiit  of  inertia  of  a 

body  with  respect  to  this  axis.  Thus  the  quantities  A,  B,  C,  are  the 
moments  of  inertia  of  the  solid,  which  we  have  considered,  with  respect 

to  axis  of  -f",  of  1/",  and  of  ̂ '.  Naming  C  the  moment  of  inertia  of 
the  same  solid  with  respect  to  the  axis  of  z',  by  means  of  the  values  of 

y,  y,  and  z*,  which  are  given  in  the  preceding  number,  we  shall  find 

C  =  A.  sin.*  9.  sin.«  (p+B.  sin.*  9.  cos.*  ip+C.  cos.*  6.  * 

The  quantities  sin.*  0.  sin.*  <p,  sin,*  9,  cos.*  <p,  cos.*  9,  are  the  squares 
of  the  cosines  of  the  angles,  which  the  axes  of  x^^,  of  y,  and  of  z'', 

make  with  the  axis  of  z' ;  hence  it  follows  in  general  that,  if  we  mul- 
tiply the  moment  of  inertia  relative  to   each  principal  axis  of  rotation, 

*  Since  &(j/'^+y24-j5"2).(^m=:S.(x'^+y^+2'^).  dm  by  substituting  the  value  of  ̂'r  in 
terms  of  a.-",2y,2~".-  and  observing  that  S^'y"Jm,  Sx"z".dm,  Sj/'z".din,  are  equal  to 
nothing,  we  have 

Si!'.''dm^S^'.'dm-!(.Sz".-dm=S^'?dm-\-S.y'.^dmJ{.S.x!'.^  sin.^^.sin.  ̂ (p  dm 

-\-S.y" .-  s.m.-6.co%.-^.dm+Sz!' ? coih.dyn  .:  Sx"%l—sin.-6.  sm.'<p)dm 

+Sy".  (l_sin.2«.  cos.-p).dm+ 

S.:^'.^(l—cos.^e).dm  =  S{t/^-\-t/^).dm  .-.  =  S.a/' .^ (cos.^d+sm.\ cos.^<p).dvi 

+Sy.\cos.^6+sm.^6.  sm.^(f>)dm 

+S.Z//.*  sin.*tf.  sin.2<p  dm  +  S.«".*sin.2«.  cos.-Um 

and  making  the  like  factors  coalesce  we  obtain  C 

S.{y".^+^y  sm\sm.^<p.dm+S.{3/'^+z"^).sm.^6.  cos.'<p.dvi+ S  (x"^+f^).cos.H.  dm  i,  e, 

C  =  A.  sm.^6.  sin.^i^+£.  sin.^«.  cos.*<p+C.  cos.''«.; 

sin,  6.  sin,  tp,  sin.  6,  cos.  (p,  cos.  6,  are  equal  to  the  cosines  of  the  angles  which  the  axes  of 

x",  of  y  and  of  z"  make  with  the  axes  of  z',  see  Note,  page  132. 
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by  the  square  of  the  cosine  of  the  angle  which  it  makes  with  any  axis, 
the  sum  of  the  three  products,  will  be  the  moment  of  inertia  of  the 
solid,  relative  to  this  last  axis. 

The  quantity  C"  is  less  than  the  greatest,  and  greater  than  the  least  of 
the  three  quantities  *  A,  B,  C, ;  therefore  the  greatest  and  least  moments 
of  inertia  appertain  to  the  principal  axes,  t 

*  Let  A  be  the  greatest  and  C  the  least  moment  of  inertia,  the  value  of  C '  may  be  made 
to  assume  the  following  form 

C'=  A  +  {B—A).  sm.'^d.cos.^(p-\-{C—A).cos.% 

.  ■ .  since  the  moments  of  inertia  are  always  affirmative,  the  two  last  terms  of  the  second 

member  of  this  equation  will  be  negative,  consequently  C  is  less  than  A,  let  C  be  the 

greatest  moment  of  inertia  and  the  expression  for  C  will  become 

C  +  (A—C).  s.ia.-6.  sin.  ̂ (f>+(B— C).  sin.^«. cos.2(p, 

in  this  case  also  the  two  last  terms  of  the  second  member  are  negative, .  • .  C  is  less  than  C ; 
the  moment  of  inertia  C  is  greater  than  the  least  of  the  three  principal  moments,  for  if  A 

be  the  least  of  the  three  moments  which  refer  to  the  principal  axes,  we  have  as  before 

C'—A  +  {B—A).  sin.s«.  cos  ■><!>  +  (€— A).  cos.2«, 

and  as  the  differences  are  on  the  present  hypothesis  affirmative,  C  is  greater  than  A,  let  C 

be  the  least  of  the  three  moments,  and  we  have 

C'=C+(/l-^C).  sin.^O.sin.'?!  +  (B—A).sin.\  cos.V, 

the  terms  which  compose  the  second  members  are  always  affirmative,  .  ■ .  we  conclude  that 
C  is  greater  than  the  least  of  the  three  moments,  A,  B,  C, 

From  what  has  been  established  in  the  preceding  note,  it  appears  that  when  the  three 

principal  moments  of  inertia  are  unequal  there  is  only  one  system  of  principal  axes,  for  let 

there  be  another  system  and  make  A',  D',  C,  the  moments  of  inertia  relative  to  these 

axes,  then  we  shall  have  at  the  same  time  A  "^  A'  and  A'  "^  A  which  is  impossible,  see 
note  to  page  178. 

t  For  S{J—XY.dm^Sx'.^dm—2X.Sx'.dm-\.X^m—S3;.^dm—21!^-\-X^mM  Sx'.dm  = 

X.m.  and  as  the  quantity— w.  (X^+  Y^)  is  essentially  negative,  the  moment  of  inertia  witli 
respect  to  the  centre  of  gravity  must  be  less  than  the  corresponding  moment  for  any  axis  not 

passing  through  the  centre  of  gravity.  If  the  moments  are  referred  to  an  axis  passing 

through  a  point  different  from  the  centre  of  gravity  and  of  which  the  coordinates  are  a,  b,  c. 
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Let  X,  Y,  Z,  be  the  coordinates  of  the  centre  of  gravity  of  the  solid, 

relatively  to  the  origin  of  the  coordinates  which  we  fix  at  the  point  about 

which  the  body  is  subjected  to  revolve,  if  it  is  not  free  ;  x'-^X,  y' —  Y, 
z'—'Z,  will  be  coordinates  of  the  molecule  of  the  body,  with  respect  to 
the  centre  of  gravity ;  therefore  the  moment  of  inertia,  relative  to  an 

axis  passing  through  the  centre  of  gravity,  and  parallel  to  the  axis  of  zf 
will  be 

s.^(x'-x)*+0'—Yy  } 
dm: 

but  from  the  nature  of  the  centre  of  gravity,  we  have  S.  x'.dm=mX, 

S.y'.dm=mYi .'.  the  preceding  expression  will  be  reduced  to 

Consequently  we  shall  have  the  moments  of  inertia  of  the  solid,  with 

respect  to  an  axis  passing  through  any  point  whatever ;  when  these 
moments  are  known  for  axes  passing  through  the  centre  of  gravity. 

At  the  same  time  it  appears  that  the  minimum  minimorum  of  the 

moments  of  inertia  appertains  to  one  of  the  three  principal  axes,  passing 

through  this  centre. 
Let  us  suppose  the  nature  of  the  body  to  be  such,  that  the  two  moments 

of  inertia  A  and  B  are  equal,  then  we  shall  have 

C'=^.  sin.  *e+C.cos.'6: 
* 

the  value  of  the  moment  of  inertia  with  respect  to  this  point  is  equal  to 

It  is  evident  from  an  inspection  of  their  values,  that  the  greatest  moment  of  inertia  with 

respect  to  any  point,  is  less  than  the  sum  of  the  other  two  moments. 

*  When  A=B  the  moment  of  inertia  with  respect  to  any  other  axis  =  A .  sin.^f  +  C.  cos.^l, 
and  as  neither  4-  or  (p  occur  in  this  ejcpression,  the  moment  of  inertia  for  all  axes  making 

the  same  angle,  with  the  axis  of  z  are  equal,  and  if  «  be  a  right  angle  C-:z.A,  therefore  in 
this  case  there  is  an  indefinite  number  of  principal  axes,  but  they  have  all  a  common  axis  z\ 

when  «=100*  we  have  a^=-h^  and/=  0  i,  e,  Sx'MmzzSi/.-dm  and  Sxy.dm=0  this  also 
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and  by  making  S  equal  to  a  right  angle,  wluch  will  render  the  axis  of  ̂  per- 

pendicular to  the  axis  of  z",  we  shall  have  C=A  ;  therefore  the  moments 
of  inertia  relative  to  all  axes  situated  in  the  plane  perpendicular  to  the 

axis  of  z''  are  then  equal  to  each  other.  But  it  is  easy  to  be  assured  that 

we  have  in  this  case  for  the  system  of  the  axis  of  z^',  and  of  any  two 
axes  perpendicular  to  each  other,  and  to  this  axis, 

S.  afy'.dm=  0  ;  S.  afz«,dm=  0  ;  S.i/'2^'.dm=  0  ; 

for  if  we  denote  by  x"  and  y  the  coordinates  of  a  molecule  </m  referred 

to  the  principal  axes,  taken  in  the  plane  perpendicular  to  the  axis  of  2", 
and  with  respect  to  which  the  moments  of  inertia  are  supposed  equal,  we 
shall  have 

or  simply  S,x'.*dmz=.S.  y"*.dm;  but  by  naming  i  the  angle  which  the  axis 
of  z  makes  with  the  axis  of  af',  we  have 

x'=^  x'l.  cos.  £+y.  sin.  i ; 

y  =  yi'.  cos.  e — :>/'.  sin.  t. ; 

consequently  we  have 

S.  x'y'.dm  =  S.  x"y".dm  (cos.»£ — sin.'  i) 

4.  S.  (j/"«— .or"^).  dm.  sin.  i.  cos.  1  =0 

we  shall  find  in  like  manner  .S".  .rV.rf?w  =  0;  S.T/sf.dm-^O'f  therefore 
all  axes  perpendicular  to  the  axis  of  z",  are  in  this  case  principal  axes ;  and 
in  this  case  the  solid  has  an  infinite  number  of  similar  axes. 

follows  from  the  equations  x':=x".  cos.  e  +  ̂°  sin.  e,  y  =r  y".  cos.  i — x  '  sin.  s  for  S.  x'Mm  ■=. 

S.{x" ? cosS-\- Sy". -  sm..^i). =S.x"?dwz:Sy'. -dm,  since  Sx"y".dm-=zO,  in.  the  case  of  an 
^ipsoid  generated  by  the  revolution  of  an  ellipse  above  its  minor  axis,  we  have  always 

two  of  the  principal  moments  of  inertia  equal,  the  moment  which  is  the  greatest  is  referred 
to  the  minor  axis. 
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If  we  have  at  the  same  time  A  =  B=C;  we  shall  have  generally 

Cz=.A  ;  *  that  is  to  say,  all  the  moments  of  inertia  of  the  solid  are 
equal,  but  then  we  have  generally, 

S.x'y'.  dm=0;  S.x^.dm=0 ;  S.i/'z.dni=  0  ; 

whatever  may  be  the  position  of  the  plane  of  x'  and  of  i/' ;  so  that  all 
the  axes  are  principal  axes.  This  is  the  case  of  the  sphere,  and  we  shall 

see  in  the  sequel  that  this  property  belongs  to  an  infinite  number  of 

other  solids  of  which  the  equation  will  be  given. t 

*  Since  by  hypothesis  ̂ =i?=C,  Sxff.-din=Sy"Mm=SzV.2dm,  .-.  if  in  the  expression 

for  2'2  in  terms  of  :r//,°y',- zV  and  of  the  angle  6,4'><P,  we  take  this  into  account  and 

also  observe  that  S.x'y". dm,  Sx"z".dtn.  S.if"z".dm,  are  equal  to  nothing,  we  shall  find 

S.z^  dm=  Sz'.'dm  for  z'=z". cos.  6— y".  sm.  ̂ .  cos.  <p—x".  sin.  6.  sin.  :p  .-.  z'^  =  z".- 

cos.^«+y'."sin.^«.  cos.^(p-{-x'.-  sin.^^.  sin."(p=(when  x"'  =y'-  =2"^)  z'?  the  same  is  true  re- 

$pecting  y'^  and  x^  on  the  other  hand  if  we  equate  z"^  and  its  value  in  a  function  of  x  y,  z 

and  the  angles  ̂ ,  ̂,  ̂,  and  also  satisfy  the  equations  Sx'.^ dm=Sy'.~ dm^Sz'dm,  we 

must  equate  Sx'y'.dm,  Sx'z'dm,  Sy'z'dm  to  notliing.  (See  Book  V.  Chap.  I.  No.  2.) 

t  x''  y"  z"  being  the  coordinates  with  respect  to  the  principal  axes  of  any  point  of  the 
solid,  if  we  transfer  the  origin  to  a  point  of  which  the  coordinates  are  a,  b,  c,  then  the 

coordinates  relative  to  the  new  origin  will  be  «" — a,y" — b,  z" — c,  now  if  we  suppose  that 
the  three  principal  moments  of  inertia  with  respect  to  this  new  origin  are  equal,  then  all 

rectangular  axes,  and  .•.  the  axes  of  ««' — a,y" — b,  z — c,  will  be  principal  axes,  consequently 
we  shall  have 

2.(a/'— a)  (y"—b).dm  -  l..x"y".dm—a  2.y".d7n—b  ̂ .x"dm  +  a  b  2(/»!  =  0 

2.(x"—a).{J'—c).dm  =  ̂ x"z".din—a  2.z".f/»i— c  ̂ x".dm  4-  a  c.  2c?jh  =0 

,     2.(y'— 6).(2"— c).rfTO  =  2.y".z".dm—b  2.z".d»i—c  2.y".dm+bc  2dm— 0 

now  if  we  suppose  the  origin  of  the  coordinates  x",y",  z",  to  be  at  the  centre  of  gravity 

the  preceding  equations  will  be  reduced  toab.  2dm=0,  a  c.Zdm=0,  be.  l,dm=0  .  •.  two  of 

the  preceding  quantities  must  vanish,  let  b,  c,  be  equal  to  notliing  and  a  will  be  unde- 

termined, .•.  the  point  required  wll  be  at  a  distance  equal  to  a  from  the  origin  by  a  fore- 

going note  the  moments  of  inertia  with  respect  to  this  point  will  be  A,B-\-ma-,  C'-j-?Ha'and 
by  the  conditions  of  the  problem   they   are  supposed  to  be  equal  .•.  we   have  a=  + 

\I'A—
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28.  The  quantities  p,  q,  r,  which  we  have  introduced  in  the  equations 

(C)  of  No.  26.  ha  e  this  remarkable  property,  that  they  determine  the 
position  of  the  real  and  instantaneous  axis  of  rotation  with  respect  to 

the  principal  axes.  In  fact,  we  have  relatively  to  all  points  situated  in 

the  axis  of  rotation,  ̂ /a.' =  0 ;  c?y=:0 ;  dz'  =  0;  if  we  difference  the 
values  of  x',  y',  z',   of  No.   26,  and  then  make  sin.  4'  =  0  after  the  dif- 

B  B 

opposite  sides  from  the  centre  of  gravity,  but  a  is  also  equal  to  V  .•.  in  order  that  these 

two  values  of  a  should  be  possible,  it  is  requisite  that  B  should  be  equal  to  C,  .',  when 

A  B  C  axe  unequal  there  is  no  point  vi^hich  satisfies  the  required  conditions  and  when  two 
of  the  moments  are  equal,  the  tliird  must  be  greater  than  either  of  them,  and  in  this  case 

the  point  required  is  situated  on  the  axis  relative  to  which  the  principal  moment  of  inertia  is 

the  greatest,  when  the  tliree  moments  of  inertia  are  equal  the  two  points  are  concentrated 

in  the  common  centre  of  gravity.     Wlien  BzzC  we  have  S.y".''dmzzS^'*dm. 

In  an  ellipsoid  generated  by  the  revolution  of  an  ellipse  of  an  ellipse  round  its  minor  axis 
two  of  the  three  principal  moments  relative  to  the  principal  diameters  are  equal, 
and  the  greatest  moment  is  relative  to  the  minor  axis,  see  note  page  181,  .-.  we  shall  have 
two  points  existing  on  this  axis  relatively  to  which  all  the  moments  of  inertia  are  equal,  it 
is  easy  to  shew  that  the  distance  of  those  points  from  the  centre  of  the  ellipsoid  is  =  to  the 
square  root  of  the  fifth  part  of  the  difference  between  the  squares  of  the  semi-axes,  and  .-. 
they  may  be  within  the  ellipsoid,  at  its  surface,  or  finally  without  tliis  surface. 

We  might  have  inferred  a  priori  that  there  is  an  axis  with  respect  to  which  the  moment  of 
inertia  is  a  maximum  and  a  minimum,  for  from  their  nature  all  moments  of  inertia  are 

positive  and  have  a  finite  magnitude,  and  most  authors  deduce  the  properties  of  principal 
axes  from  the  moments  of  inertia  which  are  the  greatest  and  least,  the  general  expression 

for  S.[i"^  -\-y"').dm  in  terms  of  x'  i/  and  z!  is  equal  to 

SJ^.  dm.  COS.  '■i  sin.  ■■^-\-S.x'^dm.  cos.  '■■^-{■S.i/^dm  cos.  ̂ L  cos.  •^■i-Su\^dm  sin.  '^ 

+  S.z'^.dm  sin.  'rf  -(-2  Sx'i/dm.  cos.  ̂ 6.  sin.  i^.  cos.  i^ 

— 2S.x'i/'.dm.  sin.  i^-  cos.-4/ — ^S.z'x'.dm  sin.6.  cos,6,  sin.\f/— 2 S-z'^/dm.  sin.  i.  cos.  i.  cos.  if. 

When  the  law  of  the  variation  of  the  density  and  the  equation  of  the  generatino-  curve 

of  a  solid  of  revolution  are  given,  the  value  of  S.(x' *+?/'').  dm  may  be  computed  by  a 
method  similar  to  that  by  which  the  centre  of  gravity  of  a  body  is  determined ;  the  value 

of  S(x'-j-y*).rfm  is  computed  for  the  earth  in  Book  V.  Chapter  1.  No.  2. 
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ferentiations  which  we  are  permitted  to  do,  since  the  position  of  the 

axis  of  x'  on  the  plane  of  x,  y',  is  indeterminate,  we  shall  have 

dx'=x",\d^.  COS.  6.  sin.  <f — d(f.  sin.  (f)+y".  {d^.  cos.  6.  cos,  9 

•^d(p.  COS.  (p\  -\-z".  d-^.  sin.  6=0  ; 

di/'^x".  \d(p.  COS.  8.  COS.  9 — d^.  sin.  6.  sin.  (p — d^.  cos.  ̂ ] 

+  y.  \d^.  sin.  <p — d(!).  cos.  G.  sin.  <p — rf9.  sin.  0.  cos.  (p\ 

+  z".  </fl.  cos.  6  =  0  ; 

d^  =  — x".(^dL  COS.  9.  sin.  (p  +  d<p.  sin.  6.  cos.  ip) 

— y*  C*^^'  cos.  9.  COS.  (p—d(p.  sin.  6.  sin.  (p) — 3".r/9.  sin.  6=0. 

If  we  multiply  the  first  of  these  equations  by— sin.  9  ;  the  second  by 

COS.  9.  cos.  p,  and  the  third  by —  sin.  6.  cos.  <p  ;  we  shall  have  by  adding 
them  together, 

Multiplying  the  first  of  the  same  equations  by  cos.  p  ;  the  second  by 

cos.  6.  sin.  (p,  and  the  third  by — sin.  6.  sin.  <p,  and  then  adding  them 

together  we  shall  obtain 

0=pf — rz". 
Finally,  if  we  multiply  the  second  of  those  equations  by  sin.  6,  and  the 

third  by  cos.  6,  and  then  add  them  together,  their  addition  will 

give  *  . 

0=qj/' — rx." 
*  In  taking  the  differentials  of  dxf,  dt/,  d^,  we  may  omit  those  quantities  in  which  sin.  4- 

occurs  after  the  differentiations,  and  where  cos.  ■^  occurs,  we  may  substitute  unity ;  multi- 

plying the  value  of  dx'  which  results  by — sin.  <p,  it  becomes 

— ttc'.  sin.  9  =  — x".(rf4'-  COS.  0.  sin.  ̂ <p — d<(i.  sin.  *(p) — y" .{(l-^.co&,  t,  sin.  ̂   cos.f 

—d<p.  sin.  9.  COB.  9}— z".  d-^.  sin.  k  sin.  <; ; 
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This  last  equation  evidently  results  from  the  two  preceding ;  thus  the 

three  equations  dx'=0,  dy'^=0,  dz'  =  0  reduce  themselves  to  these  two 
equations  which  belong  to  a  right  line,   forming  with  the  axes  of  x^\ 

B  b2 

and  in  like  manner  multiplying  dt/  and  its  value  by  cos.  6.  cos  f,  we  liave 

di/.  COS.  ).  COS.  i?3:a"(rfip.  cos.  "6.  cos,  *^ — dS.  sin.  4.  cos.  isaa.  f.  cos.  (p — d^'.  cos.  *.cos.  *?) 

-\-i/'.(d-^.  sin.  (p  COS.  ̂ .  cos.  i — d<p.  cos.  "-(.  sin.  ?.  cos.  (p—d6.  sin.  L  cos.  6,  cos.  *f ) 

+2;".rf«.  cos.  '«.  COS.  ̂  

and  the  multiplication  of  dz!,  and  its  value  by — sin.  6.  cos.  (f,  gives 

— «?z'.  sin.  6,  COS.  ip  =  x"{dS,  sin.  ̂ .  cos.  ̂ .  sin.  ̂ .  cos.  (p+t^^'Sin.  'tf.  cos.  'ip) 

+  y  (rffl.  sin.  i.  cos.  fl.  cos.  ̂ (p — dip.  sin.  *^.  sin.  (p.  cos.  ̂ )  +  a".  rf«.  sin.  *e.  cos.  ip 

adding  these  quantities  together  and  making  the  factors  of  the  differentials  of  C,  ̂'i  9)  which 

belong  to  the  same  coordinates  coalesce  we  obtain 

— x".(dyp.  COS.  e-[-d<p)-\-2f'.(de.  cos.  ̂  — rf'4'«sin.  «.  sin.  <fi)s:  0  = 

(by  substituting  p  and  q  instead  of  their  values)  x''.  p — z''.  y ;  multiplying  the  first  equation  by 
COS.  <5.  the  second  by  cos.  6.  sin.  ̂ ,  and  the  third  by — sin.  6.  sin.  (p,  we  obtain 

dx'.  COS.  (p=jt".(rf\J/.  cos.  6.  sin.  9.  cos.  ̂  — d(p.  sin.  (p.  cos.  ip) 

4-y'((fiJ/.  cos.  «.  cos.  '^ — tfip.  cos.  ''ip)+z".rf4/.  sin.  6.  cos.  <p 

oiy.  cos.  i-  sin.  ?i,  =  jc"  (rf(p.  cos.  ̂ «.  sin.  (p.  cos.  ̂  — rfl  sin.  t.  cos,  «.  sin.  ̂ <p 

— dy^.  sin.  9.  cos.  <p.  cos.  ̂ ) 

•\-tf'{d-^.  sin.  *<p.  COS.  ̂  — d<p.  cos.  -d.  sin.  '<p — d6.  sin.  ().  cos.  6,  sin.  ip.  cos.  ̂ ) 

-j-s".  rf«.  COS.  *«.  sin.  <p 

— dz!.  sin.  «.sin.  tp=x".(d(.  sin.  d.  cos.  tf.  sin.  *^-\-d(p.  sui.  -tf.  sin.  (p.  cos,  ip) 

•\-y".(d6.  sin.  d.  cos.  6.  sin.  <p.  cos.  (p — d(p. sin.  '^  sin.  'ip)+a".  rfd.  sin.  *d.  sin.  ̂  

adding  and  concinnating  as  before  we  obtain 

i/'.(d4'.  cos.  6, — t/ip)4-«".(rf4'«  sin.  6.  cos.  <p -{-</«.  sin.  ip)=0=:  —j/'p  +«".r 
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of  y"  and  of  £',  angles  of  which  the  cosines  are 

  q    r  p 

's/p'  +  q'  +  r*      s/p^  +  q^+r^   '    s/p'+g^+r' 

multiplying  the  second  equation  by  sin.  6,  and  the  third  by  cos.  6,  we  obtain 

dy.  sin.  (:=3/'.{d<p,  cos.  (p.  sin.  (i.  cos.  S—dl.  sin.  ̂ 6.  sin.  (p — di^.  sin.  6.  cos.  ̂ ) 

•j-y.^d-^.  sin.  «.  sin.  (p — d<p.  sin.  6.  cos.  0.  sin.  i?>~rf«.  sin.  ̂ $.  cos.  ip)+^".  £/«.  sin.  l.  cos.  I. 

rfi:'.  cos.  6=  —  x".(d6.  cos.  ̂ 6.  sin.  ?>  -(-  rfip.  sin.  $.  cos.  «.  cos.  ip) 

— i/'.{di.  COS.  ̂ ^.  cos.  ip — rfip.  sin.  6.  cos.  «.  sin.  ip) — i".  c?«.  sin.  «.  cos.  9 

/.  adding  and  concinnating  we  have 

— x".{d6.  sin.  (p  +  d^:  sin.  1  cos.  (p)—y".{dL  cos.  <>— ff-v}/.  sin.  «.  sin.  ?)=  — x'V-f-y'.  y. 

*  The  equations  p/'—y2"—0—&c.  are  the  equations  of  the  projections  of  the  line, 

relatively  to  which  dx'  dy'  are  equal  to  nothing  at  any  instant,  on  the  planes  x"  z" ,  y"  je", 

&c.  .*.   the  cosines  of  the  angles  which  this  line  makes  with  the  axes  areVespectively 

For  these  cosines  are  equal  to 

9^'
 

P 

I        1         I         T  ~ 

P  P' and  the  same  is  true  of  the  other  cosines. 

From  the  preceding  analysis  it  follows,  that  the  locus  of  all  the  points  whose  velocity  is 

nothing  at  any  given  moment  is  a  right  line,  whose  position  with  respect  to  the  principal 

axes  is  determined  by  p,  q,  r,  :.  the  preceding  equations  both  evince  the  existence  of  such 

a  line  and  indicate  its  position,  and  a  body  revolving  about  a  fixed  point  may  be  considered 

as  revolving  about  an  axis  determined  in  this  manner,  but  as  in  general;;,  q,  r,  vary  from  one 

instant  to  another,  being  functions  of  the  time,  the  position  of  this  axis  will  also  vary,  and 

hence  it  is  that  this  axis  has  been  termed  by  some  authors  the  axis  of  instantaneous 

rotation  ;  whenp,  q,  r,  are  constant,  the  axis  of  rotation  will  remain  immoveable  during  the 

motion  of  the  system. 
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Therefore  this  right  line  quiesces,   and  constitutes  the  real  axis  of 

rotation  of  the  body.  * 

*  The  values  which  have  been  given  for  px" — jz",  pi/" — rz",  qy" — rj",  enables  us  to 

determine  the  linear  velocity  of  each  point  resolved  parallel  to  the  axes  of  x'  y  and  d  for 
if  we  multiply  the  first  of  the  preceding  equations  by  cos.  i.  cos.  (f.  the  second  by  cos.  i. 

sin.  f.  and  the  third  by  sm.  i.  we  shall  obtain  by  adding  them  together 

— dJ .  cos.  i.  sin,  ip.  cos.  ip  ■\-dy'.  cos.  '^i.  cos.  '<f — dz.  sin.  i.  cos.  1  cos.  '^^ 

■^dx'.  cos.  «.  sin.  ip.  cos.  ip  +  f/y'.  cos.  ̂ ^.  sin.  2|> — rfz'.  sin.  i.  cos.  ̂ .  sin.  2(p  +  ay.  sin.  ** 

4-rfi'.  sin.  i.  cos.  «=:(//  — (px" — ^z').  cos.  «.  cos.  <P  +  {py" — rz").  cos.  «.  sin.  ip 

-]-(qii/" — rx"),  sin.  «  ;  if  we  multiply  px" — g^'  by — sin.  <p  and  ;;_/' — ra" 

by  cos.  ?  we  shall  obtain 

(/c'.  sin.  -? — rfy.  cos.  e.  sin.  if>.  cos.  ip  +  rfs'.  sin.  6.  sin.(p.  cos.ip..^«''  cos.  *^ 

+  rfy.  cos.  «.  sin.  (Ji.  COS.  (p-—dz.  sin.  d.  sin.  ip.  cos.  ip  =  dx' 

=—{px"—  gz").  sin.  ip+(  pi/' — rz" ) .  cos.  ? ;  multiplying  px" — jaf '  by — sin.  «.  cos.  9, 

pi/' — rz"  by — sin.fl.sin.ip.  and  qy" — rx"  by  cos.^, 

we  shall  obtain 

dx'.  sin.  6.  sin.  <p.  cos.^ — ay  sin.  6.  cos.  S.  cos.  ̂  ip  -{-rfz'.  sin.  -*.  cos.  ̂ <p 

— cfx'.  sin.  j.sin.  (p.cos.  ̂  — dt/.sin.  t.cos.^.sin.  ̂ <p  +  d^.sin.  'e.sin.*f-\-dy'.sin.e.cos.6. 

+rfa'.cos. " )=d!/— — (px"— jz".)sin.  6. cos.* — {py" — rzf').  sin.  6.  sia.f  +  {qy" — rx").cos.«  ; 

we  might  in  like  manner  obtain  the  value  of  the  accelerating  forces  resolved  parallel  to  the 

axes  of  x'  y'  and  z',  by  taking  the  differentials  of  dz',  dy',  dz',  and  of  their  respective  values. 

Since  as  has  been  observed,  in  note,  page  166,  the  coordinates  of  x'',  y",  z',  do 
not  vary  with  the  time,  and  as  the  angles  6,  -i^,  ?,  are  functions  of  the  time,  it  follows  that  when  we 

take  the  differential  of  x"y'and  z"  respectively  in  terms  of  the  coordinates  i! ,i/,  z',  and  of 

the  angles  6,  ■^,  <p,  the  sines  and  cosines  of  these  angles  must  be  considered  as  constant,  ,*. 

keeping  this  in  view  and  also  that  sin.  4'=^0  after  the  differentiations  we  shall  obtain 

dJ'z=.d3l.  COB.  <f-\-dy.  cos. «.  sin.  <p — dyl.  sin. «.  sin.  if ;  d)f'-=i  — dx' •  sin.  <f-\-dy,  cos.  i.  cos.  f 

— dz' ,  sin.  «.  cos.  P;  rfa"—  d-tf .  sin.  «+rf/.  cos.  i ; 
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In  order  to  determine  the  velocity  of  rotation  of  the  body,  let  us 

consider  that  point  of  the  axis  of  z''y  of  which  the  distance  from  the 
origin  of  the  coordinates  is  represented  by  a  quantity  equal  to  unity. 

We  shall  have  the  velocities  parallel  to  the  axes  of  x  of  y'  and  of  z',  by 

making  x"  =  0,  y"  =  0,  ;:"z=  1,  in  the  preceding  expressions  of  da^,  dy\  dz', 
and  then  dividing  them  by  dt,  which  gives  for  these  partial  velocities 

-r-,  sm.  6 ;  — .  cos.  6 :   ■,  .  sin.  6 ; 
dt  '  dt  dt 

therefore  the  entire  velocity  of  the  point  in  question, is  y/d^*  +  cfvj/^.sin.  *S 
di 

or  \/^*+?'*,  and  dividing  this  expression  by  the  distance  of  the  point 
from  the  instantaneous  axis  of  rotation,  we  shall  have  the  angular 

velocity  of  rotation  of  the  body ;  but  this  distance  is  evidently  equal  to 

the  sine  of  the  angle,  which  the  real  axis  of  rotation  makes   with   the 
P 

axis  of  z",  and  the  cosine  of  this  angle  is  equal  to  —  —  ; 

/ 

but  it  is  evident  from  what  precedes  that  the  second  members  of  these  equations  are  equal 
respectively  to 

we  have 

dx"  ill/'  rfz" 

consequently  the  quantities  p,  q,  r,  which  determine  the  position  of  the  axes  of  rotation, 

give  also  for  any  other  point  the  linear  and  angular  velocities  of  the  different  points  of  the 

body  resolved  parallel  to  the  coordinates  x",  y",  and  z". 
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therefore  s/p*-{-q*-\-r*  will  be  equal  to  the  angular  velocity  of 

rotation.  * 

It  appears  from  what  precedes  that  whatever  may  be  the  rotatory 

motion  of  a  body,  about  a  fixed  point,  or  a  point  considered  as  fixed  ; 
this  motion  must  be  considered  as  a  motion  of  rotation  about  a  fixed  axis 

during  an  instant,  but  which  may  vary  from  one  moment  to  another. 

The  position  of  this  axis  with  respect  to  the  principal  axes,  and  the 

angular  velocity  of  rotation  depend  on  the  variables  p,  q,  r,  the  de- 
termination of  which  is  most  important  in  these  investigations,  and  as 

they  express  quantities  independent  of  the  situation  of  the  plane  of  x' 
and  y,  are  themselves  independent  of  this  situation. 

29.  Let  us  proceed  to  determine  these  variables  in  functions  of  the 

time,  in  that  case  in  which  the  body  is  not  solicited  by  any  accelerating 

forces.  For  this  purpose,  let  us  resume  the  equations  (Z))  of  No.  26, 

existing  between   the  variables  p',  q,  r,  which  are  in  a  given  ratio  to 

=  the  cosine  of  the  angle  which  the  axis  of  a"  makes  with  the  instantaneous  axis  of 

rotation  .*. 

p«   yz+r- 

is  equal  to  the  square  of  the  sine  of  the  same  angle,  and  since  i"  is  by  hypothesis  equal  to 

unity  we  have  the  perpendicular  distance  of  the-point  in  question  from  the  axis  of  rotation 

equal  to    this  sine,  .-.  dividing   \/  (f+r^  by  this  distance  the  quote  will   be  equal  to 

's/  j^-\-q^^r^,  and  as  the  axisduiing  an  instant  may  be  considered  as  fixed  the  angular 
velocity  of  all  points  during  this  instant  will  be  the  same,  the  selection  of  the  point  so 

circumstanced  that  x"=iO,^'=0,  2"=il  is  made  in  order  to  simplify  the  calculus,  .-. 
it  appears  from  an  inspection  of  the  value  of  the  angular  velocity,  that  it  is  constant  when 

p  q  and  r  are  constant,  i,  e,  when  the  axis  of  rotation  is  immoveable,  but  the  converse  of 

this  proposition  is  not  true  for  it  is  possible  that  the  function  ̂   pii^q^i^s  si,ould  be  con- 

stant, while  at  the  same  time  its  component  parts  may  vary,  see  page  197. 



192  CELESTIAL  MECHANICS, 

the  variables  p,  q,  r,.*  In  this  case,  the  differentials  dN,  dN',  dN"  waxiish, 

and  tliese  equations  being  multiplied  by  ;/,  </',  and  r'  respectively  and 
then  added  together  give 

0=p'.dp'  +  q'.dq'  +  r'.dr'  j 

and  integrating  them  we  shall  obtain 

k  being  a  constant  arbitrary  quantity. 

If  we  multiply  the  equations  (Z))  by  A B.p,  BC.q,  and  AC.r',  and 
then  add  them  together,  we  shall  obtain  by  integrating  their  sum, 

AB.f-^  BC.q'"'  +  AC.r'-  =.  H"- ; 

/Z  being  a  constant  arbitrary  quantity ;  this  equation  involves  the  prin- 

ciple of  the  conservation  of  living  forces,  t     By  means  of  the  two  pre- 

*  p:  p' ::  1  :  C  ::  1:  S{s"^+i/"%dm,  but  this  is  a  constant  ratio,  because  the  position 

of  the  principal  axes  being  given,  the  quantity  S{x"^-\-y"^).  dm  is  constant,  and  when  no 

exterior  forces  act  on  the  body,  the  quantities  N,  N',  N",  are  constant  and  /.  dN  dN'  dN" 
vanish. 

-]-  For  substituting  for  p',  /,  /,  their  values,  we  obtain 

A.B.C(Cp^+Aqi  +  Br')-m,.:S{x"^+y"-)dm.p'-+S(y"'-i-z"')dm".q^ 

+  S(x"  +  s"M(/m.  r'= 

a  constant  quantity,  now  we  have  seen  in  a  preceding  note,  that  the  velocity  of  any  point 

resolved  parallel  to  the  axes  of  Jt"  of  ̂ ''  and  of  sf'  is  equal  tof «"— js",  pf—r~J',  qy"—rJ' 

and  the  sum  of  the  squares  of  these  quantities 

the  square  of  the  velocity  of  the  point  whose  coordinates  are  x",  tj' ,  z", .:  this  expression 

multiplied  by  dm  equals  the  living  force  of  this  molecule,  now  as  the  quantities  p,  q,  r,  are 

the  same  for  all  molecules  at  the  same  instant,  the  sum  of  the  Uving  forces  of  all  the 
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ceding  integrals  we  shall  obtain 

.^_  AC.k"—H'+A.(B—C).  p'  ̂ 
^  -  C.  {A—B) 

'2_  i/ —  BC.Ir-B.(A—C).p" ^  ~  C(A—B) 

thus,  we  shall  have  q'  and  r  in  functions  of  the  time,  when  p'  will  be 
determined,  but  from  the  first  of  the  equations  (D)  we  have 

^^      {A—B).q'r.    ' 

consequently c  c 

molecules  will  be  equal  to 

P'  •.  A" '  +y" '  )-'^»«  +  9  Y(y"  *  +z"f.dm-{-r.lfx"^+z''s)^m 

—2pg/x"z".dm—2prfi/'s^'.dm—2qrfi/':^'.dm, 

but  these  latter  quantities  vanish,  x",t/",  z",  belonging  to  the  principal  axes  consequently 

j^f{x"^+y"%dm  +q-/ij"^4-z9^)dm+t^f{x''^+z"^).dnt 

is  equal  to  the  sum  of  the  living  forces,  and  being  constant  as  has  been  just  shewn,  it  fol- 
lows that  the  expression 

AB.p'^+BC.  q'^+AC.  /'~H% 

involves  the  principal  of  the  conservation  of  living  forces. 

^   'o     ,«      «      ,          m—AB.j/^—BC.g'^ *  r^=:P—j/'—g'i=    ■—■   i— 

.-.  AC£—ACf-—AC.c/^  =  H^—AB.p'-—BC.  /^  therefore  g''  = 

AC.k-—H^+  A.{B—C)p  ̂  
C.(A—B) 

the  value  of  /^  is  derived  in  a  similar  manner. 
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ABC.dp' dt= 
s/  \AC.Ic^H?  4-  ̂ .(ii— C').y'i .  {H'—BC./c'—B.(A—C).p"]  * 

*  When  A-B,  dt=      ,         ̂̂ ^■"'PJ 
,y{AC.Jr—H-+  A\A—C)p'').  (H-—AC/c'—A(A—C}.j/*) ABC.dp'   ^ 

  ABC.  dp' 
A  Ck''—tr^+A{  A—V).p'^ 

and  it  may  be  made  to  assume  the  form 

a--  dp'    ,  ̂   ,_.^^         ,  ̂   ABC 

ACh^—H-" A.{A—C) and  a'  being  equal  to  - 

and  the  integral  of  this  expression  =  t=C^.  (arc  tangent=y  to  radius=  a, 

the  constant  quantity  is  equal  to  nothing  because  t=0  at  the  same  time  with/>'. 
When  A=.C  the  expression  for  dt  becomes 

  AB.Cdp'   
^{A-  k-—H-  +A.{B—A)iP).  {H''—BAIr) 

this  expression  may  be  reduced  to  the  form 

C,- — 1 — ^^  ( in  which  C,  is  equal  to   -  \ 
'  ̂ 1F+^^  '     ̂   A^B-A).{m-BA.k    ) 

Ak^—H2 
and  a-=- A.{B—A) 

the  integi-al  =  C,.  log  (/+  ̂ /  a2+;.« 

If2?=Cthenc/^.  ^^'^P'  _c.—±^PL 
'/(ACJ.^—H'^j(W—B-k'—Bi(A—B)).p^  '  s^ a^—p'* 

and  the  integral  will  be  arc  sine  =p'  rad  =  a 

^,    ̂   .  ,   AB' C,  Dem£;  equal  to  "  /  • 
'         ̂     ̂   <^AC/c^—hK(H^—B''k^) 

and  a^  =  iJCIf-H%  jlP-m^ —B.(A—B) 

if /lC.4*  =  fl2theo 
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this  equation  is  only  integrable  in  one  of  the  three   following  cases, 

B=A,  B=C,  A=C. 

The  determination  of  the  three  quantities  p',  q,  r',  involves  three 

arbitraiy  quantities,  H.\  Ji^  and  that  which  the  integration  of  the  pre- 
ceding differential  equation  introduces.  But  these  quantities  only  give 

the  position  of  the  instantaneous  axis  of  rotation  of  the  body,  on  the 

surface,  /",  e,  with  respect  to  the  three  principal  axes,  and  its  angular 
velocity  of  rotation.  In  order  to  have  the  i-eal  motion  of  the  body, 
about  the  fixed  point,  we  must  also  know  the  position  of  the  principal 

axes  in   space ;  *  this  should   introduce  three  new  arbitrary  quantities 
c  c  2 

,o      A.{B—C).p'2       ,^  ABC  dp' 

^         t{A—B)  ^  A(,B—C)if\H'i—BClr—B.[A-C)iy- 

^adv 

=  c,:t     - — 
in  which  2C - 

AEC 

V  (/i{B—C)  H'—  BC.  /c^^ 

~         —B,(A—C) 

its  integral  will  be  equal  to  C,,  log.  ̂     v  "  —p 

a  +  sja^ — i)" 
See  Lacroix,  page  256,  No.  174..  and  if  m=BC.lc^  then 

dt^   -'^^•^/''   
\/  ACIfi—H^+A{B~C)pfi)[—B{A—C)p'^) 

^^   and  t=  C.  W.  '^'^W^a 
=C,.    and  t~  C,.  log. 

the  constant  quantities  vanish  for  these  integrals,  because  as  has  been  already  mentioned 

p'=0  when  t  vanishes.  The  value  of  dt  cannot  be  exhibited  in  a  finite  foim  except  in  the 
cases  already  specified,  and  when  all  the  moments  of  inertia  are  equal,  in  every  other  case, 
the  value  of  the  integral  of  dt  must  be  obtained  by  the  method  of  quadratunes. 

*  From  the  quantities/,  g',  r',  we  can  collect  the  values  of  p,  q,  r,  which  are  in  a  given 
ratio  to  them,  and  from  these  last  quantities  we  obtain  the  cosines  of  the  angles  whicli  the 

axis  of  instantaneous  rotation  makes  with  the  principal  axes,  but  as  these  axes  though  fixed 

in  the  body  are  moveable  in  space,  we  must  know  the  position  of  these  axes  at  the  com- 
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which  depend  on  the  initial  position  of  these  axes,  and   which  i-eqviire 
three  new  integrals,  which  being  joined  to  the  preceding  quantities  will 

niencement  of  the  motion,  in  order  to  have  the  real  motion  of  the  body,  which  gives  three 

constant  quantities. 

Substituting  in  the  values  o{—N^ — N', — N",  p'  for  Cp,  q  for  Aq,  r'  for  Br  we  shall  have 

q',  sin.  6. sin, (p  +  r.  sin.  «. cos.  <p — p.  cos.  6,  ~  — A'^ 

q'.  COS.  $.  sin.  cp.  cos.  ■^■\-r'.  cos.  6.  cos.  (p.  cos.  -^  '\"p' •  sin-  ̂ -  cos.  -i^ 

•\-r'.  sin  p.  sin.  4^ — q.  cos.ip.  sin.  4^  — iV' 

— 9'.  cos.  £.  sin.  If.  sin.i|/ — ?'.  cos  J.  sin.  4".  cos.  <f> — ^'.  sin.  ̂ .  sin.  4- 

-}-r .  sin.  (p.  cos.  ■v}'^?'-  cos.  <p.  cos.-v^  :;:  — W 
squaiing  these  quantities  we  obtain 

9'.  Vsin.  ̂ «.  sin.  ̂ <p^r'?  sin.  *«.  cos.'ip  +  p'.^cos.  'e-\-2q'r'.  sin. '«,  sin.  1?.  cos.  ? 

— Sp'y'.  sin.  ̂ .  cos.  S.  sin.  (f — 2p'r'.  sin.  6.  cos,  ̂ .  cos.  <p=N^ 

q'.'cos.  *^.sin.  »(p  cos.  ̂ -^-^r'.^  cos.'<.  cos.  'ip.cos.  ̂ 4'-\-p''  ̂   sin.  '^.cos.  ̂ t^ 

+  2//.  cos.  -J.  sin.  (p.  cos.  ?>.  cos.  '4/+2/>V'.  sin.  S.  cos.  ̂ .  cos.  <fi.  cos.  ~--^ 

+  2;/^'.  sin.  <.  cos.  6-  sin.  (p.  cos.  *4) 

-}-r'.-  sin.  -?i.sin.  'ij'-l-/-'  cos.  ̂ ip.sin.  ̂ ■^ — 2/,/,  sin.  <p.  cos.  ip.  sin,  ■^=N'^ 

j'.*  cos.  '6.  sin.  *{?.  sin.  'tJ/^/.s  cos.  '^.  sin,  '■J'-  cos,  '0-j"P'-'  ̂ 'f-  '^-  ®'"-  '^ 

-j-Sg'/.  COS.  --«.  sin.  '  4^.  sin.  (f.  cos.  <t>-^-2p'r'  sin.  S.  cos.  «.  sin.  'if''  cos.  (p 

-^2p'q'  sin.  <.  COS.  S.  sin.  ̂ ■^.  sin.  if) 

•j-/.*  sin.  "ip.  COS.  '4'+o'. '  COS.  ̂ $.  cos.  '4' — 2yV.  sin.  (p.  cos.  ip  cos.  *4=-^"" 

/.  adding  the  first  members  of  these  equations  together  we  obtain 

q'.-  sin.'*,  sin.  •tp-^-q','^  cos.  ̂ 6.  sin.  ̂ ip+y'.^  cos.  '?>=(y'^ )-{-/.»  sin,  '^.  cos.  *? 

4-  r'.^  COS.  '^.  cos.  2(p  +  /,»  sin.  '(?=  (}•'*)  +j3'.'  cos.  '6-\-p'.^  sin.  *«.  cos.  '4^ 

-{■p'.'  sin.  «^,  sin,  ̂ 4'=/'';* 
the  parts  of  these  squares  which  are  the  products  of  two  different  quantities  vanish  when 

added  together  and  in  the  expressions  for  A^',*  A'*",*  we  omit  the  product  {q'.  cos.  0.  sin.  p  cos.4' 

+  »•'  COS.  (.  cos,  ip,  cos. 4'  •{•p'-  sin.  i.  cos.  4')'(''''  sin.  (p.  sin.  4'— ?•  cos,  ̂ .  sin.  4^)  for  this  pro, 

d,uct  occurs  in  A^"  and  Nff*  affected  with  contrary  signs,  .•,  it  must  vanish  from  A^'2+  A"'*  .*. 
we  shall  have 

p'*+q'*+r'^  Zi  +  N'+N'^+N"^. 
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completely  solve  the  problem.  The  equations  ( C)  of  No.  26,  involve  three 

arbitrary  quantities  N,  N',  N", ;  but  they  are  not  entirely  distinct  from  the 
arbitrary  quantities  H  and  k.  In  fact,  if  we  add  together  Ihe  squares  of 
the  first  members  of  the  equations  (C),  we  shall  have 

;/'  +  f  4-  r'"-  =N"-+N"  +  N" ' ; 

and  consequently 

The  constant  quantities  N,  N',  N",  correspond  to  the  constant  quan- 

tities c,  c,  c",  of  No.  21,  and  the  function  t.  t.  \/p'^+q'~-\-r-  expresses 
the  sum  of  the  areas  described  in  the  time  t,  by  the  projection  of  each 

molecule  of  the  body  on  the  plane  relatively  to  which  this  sum  is  a 

maximum.  iV',  N",  vanish  with  respect  to  this  plane,  .•.  if  we  put  their 
values,  which  have  been  found  in  No.  26,  equal  to  nothing  we  shall  have 

0  =  Br.  sin.  (p — Aq.  cos.  f  ; 

0—Aq.  cos.  9.  sin.  (p  +  Br.  cos,  9,  cos.  (p+Cp.  sin.  9  ;* 

♦  From  the  equation  Bi:  sin.  ip—Aq.  cos.  ̂   rr  0  we  obtain  by  substitution 

tan.  (p  =  ~ .-.  COS.  <p.  = — ::iz^:iir  ̂ n"  sin.  <p=   ::::£^:^r 

« 
consequently  we  have '  —  .  cos.  (, 

"^•v^  ill'^+r'^)-  COS. l=p'.  sin.  e..:  {q'^  +r'^).  cos. '^6=p'^— p.-  cos.  't .: 

P 
COS.    i  = 

•v/ ?"+?'*+»■' 
if  we  multiply  the  first  of  the  preceding  equations  by  cos.  6.  sin.  (p.  and  the  second  by  cos.  <p. 

we  shall  obtain  by  adding  them  together  /.  cos.  O+p'.  sin.  6,  cos.  ̂ s=0  .'.  substituting  for  cos.  6 
its  value  we  obtain 
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from  which  we  deduce 

COS.  B  =- 

>//H!7'^+r'
 sin,  6.  sin.  9=  ■  .-„^  .   •:=  > 

Vp'+^'+r"'' sin.  V.  COS.  0  = 

By  means  of  these  equations,  we  can  determine  the  values  of  S  and  <p 

in  functions  of  the  time  with  respect  to  the  fixed  plane  which  we  have 

considered.  We  have  only  now  to  determine  the  angle  4',  which  the  in- 
tersection of  this  plane,  and  that  of  the  two  first  principal  axes,  con- 

stitutes  with  the  axis  of  a:';  but  this  requires  a  new  integration. 
From  the  values  of  q  and  of  r  which  have  been  given  in  No.  26 

we  derive 

e?i)/.  sin.  '■6==q.dt.  sin.  9.  sin.  (p  +  r.dt.  sin,  6.  cos.  p  ; 

from  which  we  deduce 
— / 

sin.  ̂ .  COS.  ®= 

and  if  we  multiply  the  first  of  the  preceding  equations  by  cos.  6.  cos.  (p,  and  the  second  by 

sin.  1^  and  then  substract  the  first  fi-om  the  second  we  shall  obtain 

q'.  cos.  6+p'.  sin.  6.  sin.  <p  =  0 

.'.  substituting  for  cos.  I  its  value,  we  obtain 

sin.  6.  sm.  9= 

\/p"-+'f  +  r"^ 
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_   —k.dt.(Bq'  '-\-Ar'^)^ 
^~         AB.iq^  +  r"') 

but  from  what  precedes,  we  have 

H'—AB.p''- 
q'-+r'i=k^—p"',  Bq"-^Ar'^=    ^   i- j 

therefore  we  shall  have 

_   —k.dt(H'—AB.p'-) ^'^-  ABC  [k^—p') 

By  substituting  in  place  of  dt,  its  value  which  has  been  given  above  ; 

we  shall  have  the  value  of  »J>  in  a  function  of  p' ;  thus  the  three  angles 

e,  ip,  and  ip  will  be  determined  in  functions  of  the  variables^',  q',  r',  which will  be  themselves  determined  in  functions  of  the  time  ̂ .t 

Consequently  we  can  have  at  any  instant  the  values  of  these  angles 

with  respect  to  the  plane  of  x',  and  y,  which  we  have  considered,  and 
it  will  be  easy  by  means  of  the  formulae  of  spherical  trigonometry,  to 

»  If  we  multiply  the  values  of  qdt,  rdt,  given  in  page  166,  respectively  by  sin.  (.  sin.  f, 

sin.  i.  COS.  <p,  and  then  add  them  together  we  shall  have 

d-^.  sin.  2^  =  q.dt.sm.  (.  sin.  <p-\-rdt.  sin.  6,  cos.  if  = 

\      A,k       B.k  AB,k  k^ 

the  value  of  d^'  will  be 

f  Cos. «— sin.  e.  sin.  <;>, — sin.  6.  cos.  p,  are  the    cosines  of  the  angles  which  a  perpendi- 

cular to  the  fixed  plane  or  the  axis  of  z'  makes  the  principal  axes,  see  page  180,  and 

P'  9'  -^ 

are  the  cosines  of  the  angles  which  the  principal  axes,  a''-',  i/",  x",  make  with  the  axis  of  the 
plane,  on  v/hich  the  projection  of  the  area  is  a  maximum,  consequently  the  cosine  of  the 

angle  wliicli  the  axis  of  the  plane  on  which  the  projection  of  the  area  is  a  maximum  makes 
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.  * 

determine  the  values  of  the  same  angles  with  respect  to  any  other  plane 

this  will  introduce  two  new  arbitrary  quantities,  which  combined  with 

the  four  preceding  quantities  will  constitute  the  six  arbitrary  quantities, 

which  ought  to  give  the  complete  solution  of  the  problem  which  we  have 
discussed.  But  it  is  evident  that  the  consideration  of  the  above  men- 

tioned plane  simplifies  considerably  this  problem. 

The  position  of  the  three  principal  axes  on  the  surface,  being  supposed 

to  be  known  ;  if  at  any  instant,  the  position  of  the  real  axis  of  rotation 

on  this  surface,  is  given  and  also  the  angular  velocity   of  rotation,  we 

with  the  axis  of  the  fixed  plane,  (see  note  to  page  7). 

■p' .  cos,  6 — /.  sin.  6.  sin.  0 — ?■'.  sin.  6.  cos.ip         N, 

we  might  by  a  similar  process  shew  that  the  cosine  of  the  angle  which  the  axis  of  the  plane 

of  greatest  projection  makes  with  i/',  and  x',  are  respectively  proportional  to  N'  and  A'''', 

consequently  the  position  of  this  plane  with  respect  to  the  fixed  axes  oi  x'  y',  and  z  is  given, 

therefore  this  plane  remains  fixed  during  the  motion,  and  the  values  of  N,  N',  N'',  are  the 
three  quantities  which  determine  the  position  of  the  fixed  axes,  with  respect  to  the  plane  of 

greatest  projection.  , 

*  The  determination  of  f^,q'y,  which  give  the  position  of  the  instantaneous  axis  of  rotation 

requires  three  arbitrary  quantities  and  (he  determination  of  6,  ■^,  (p,  which  give  the  position 
of  the  principal  axes  with  respect  to  the  fixed  axes  requires  three  more  arbitrary  quantities, 

these  are,  H,  k,  and  the  constant  quantities  which  are  introduced  by  the  integration  of  dt 

and  d-^,  the  two  remaining  quantities  are  determined  by  the  values  of  cos,  6,  sin  S.  sin.  <p, 

sin.  6.  cos.  (p,  for  any  other  fixed  plane  beside  the  invariable  plane,  .'.by  making  the  plane 
of  greatest  projection,  to  coincide  with  the  fixed  plane ;  these  new  arbitrary  quantities 

vanish,  and  the  number  of  constant  arbitrary  quantities  will  be  reduced  to  four. 

The  values  of  6,  (f,  ̂,  with  respect  to  the  plane  on  which  the  projection  of  the  area  is  a 

maximum  being  given,  and  also  the  value  of  the  angle  which  this  plane  makes  with  any 

other  plane,  it  will  be  easy  to  deduce  the  cosine  of  the  angle  which  each  of  the  principal  axes 

makes  with  the  assumed  plane,  in  fact  by  means  of  the  values  of  N  N'  N"  we  can  de- 
termine the  angles  (,  ̂,  (p,  where  we  have  the  values  of  the  same  angles  for  the  plane  on 

which  the  projection  of  the  area  is  a  maximum,  i,  e,  where  we  have^,  q',  r',  and  substituting 

p,  q,  r,  in  place  of  p',  if,  /,  in  these  expressions  we  obtain  the  cosine  of  the  angle  which 
the  axis  of  instantaneous  rotation  makes  with  the  axis  of  the  fixed  plane,  the  three  quan- 

tities A',  N',  N",  are  not  undetermined,  for  if  N'  and  A'*  have  definite  values  the  value 

of  A^  is  determined  by  means  of  the  equation  A'-(- A^'-f-  A**=^. 
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shall  have  the  values  of  p,  q,  r,  at  this  instant  because  these  values  di- 
vided by  the  angular  velocity  of  rotation  express  the  cosines  of  the 

angles,  which  the  real  axis  of  rotation  constitutes  with  the  three  prin- 

cipal axes ;  .*.  we  shall  have  the  values  of  p,  q,  r',  but  these  last  values 
are  proportional  to  the  sines  of  the  angles  which  the  three  principal 

axes  constitute  with  the  plane  a/  and  y',  relatively  to  which  the  sum  of 
the  areas  of  the  projections  of  the  molecules  of  the  body,  multiplied 

respectively  by  these  molecules,  is  a  maximum ;  therefore  we  can  determine 

at  all  instants,  the  intersection  of  the  surface  of  the  body  with  the 

invariable  plane  ;  and  consequently  find  the  position  of  this  plane,  by  the 
actual  conditions  of  the  motion  of  the  body. 

Let  us  suppose,  that  the  motion  of  rotation  of  the  body  arises  from 

a  primitive  impulse,  of  which  the  direction  does  not  pass  through  its  centre 

of  gravity.  It  follows  from  what  has  been  demonstrated  in  Nos.  20  and 

22,  that  the  centre  of  gravity  will  acquire  the  same  motion,  as  if  this 

impulse  was  immediately  applied  to  it,  and  that  the  body  will  move 

round  this  centre  with  the  same  rotatory  motion  as  if  this  centre 

quiesced.  The  sum  of  the  areas  described  about  this  point,  by  the 

radius  vector  of  each  molecule  projected  on  a  fixed  plane,  and  multiplied 

respectively  by  these  molecules  will  be  proportional  to  the  moment  of  the 

principal  force  projected  on  the  same  plane  j  but  this  moment  is  evidently 

the  greatest  possible  for  the  plane  which  passes  through  its  direction  and 

through  the  centre  of  gravity ;  consequently  this  plane  is  the  invariable 

plane.  If  the  distance  of  the  primitive  impulse  from  the  centre  of 

gravity  be^and  if  w  be  the  velocity  which  is  impressed  on  this  point,  m  re- 

presenting the  mass  of  the  body,  mfv  *  will  be  the  moment  of  this  im- 

D  D 

•  V  being  the  velocity  of  the  centse  of  gravity,  and  m  being  the  mass  of  the  body,  the 
measure  of  the  force  will  be  equal  to  mv,  and  its  moment  with  respect  to  the  centre  of 

gravity  will  be  equal  to  inf.v,  see  No.  3,  and  the  motion  of  all  the  molecules  of  the  body 

arising  solely  from  this  impulse  it  is  evident  from  the  principle  of  D'Alembert,  which  has 
been  established  in  No.  18,  that  the  quantities  of  motion  which  these  molecules  have  at  the 

commencement  of  the  motion,  estimated  in  a  direction  contrary  to  their  true  direction  must 
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pulse  and  being  multiplied  by  iJ,  the  product  will  be  equal  to  the 
sum  of  the  areas  described  in  the  time  /,  but  by  what  precedes  this  sum 

is  equal  to  — .  ̂ j>^-\-f^r'" ;  consequently  we  have 

If  at  the  commencement  of  the  motion  we  know  the  position  of  the 

principal  axes  with  respect  to  the  invariable  plane,  i,  e,  *  the  angles  6 

and  (p  ;  we  shall  have  at  this  commencement  the  values  of  p'  q  and  r 
and  consequently  those  of  /?,  q,  r,  therefore  at  ani/  instant  we  shall  have 
the  values  of  the  same  quantities,  t 

CQUStitvite  an  equilibrium  with  the  force  mv  consequently  the  principal  plane  i,  e,  the  plane 

with  respect  to  which  the  moment  is  a  maximum  is  the  plane  passing  through  tlie  centre  of 

gravity,  and  the  direction  of  the  primitive  impulsion  .•.  the  sum  of  the  areas  described  in  the 
timef  =\.t.mfv. 

*  The  constant  quantity  k  ̂   m.fv ;  in  order  to  determine  H,  it  may  be  remarked  that  the 

position  of  the  principal  axes  at  the  commencement  of  the  motion,  with  respect  to  the  pkme 

passing  through  the  fixed  point  and  the  direction  of  the  impulse  being  given,  we  have  the 
the  values  of  f  q,  r,  being  proportional  to  the  cosines  of  the  angles  which  the  principal  axes 
make  with  the  axis  to  the  invariable  plane.     Consequently  we  have  the  constant  quantity 

the  third  constant  quantity  will  be  determined  by  integrating  the  value  of  dt,  which  will  be 

equal  to  a  function  of  p'-\-  a  constant  arbitrary  quantity ;  //  which  is  proportional  to  the 
cosine  of  the  angle  which  the  axis  of  3"  makes  with  the  axis  to  the  plane  of  greatest  moment 

lias  a  detemiined  value  when  <=;0  .  • .  by  means  of  this  value  we  are  enabled  to  find  the  value 

of  the  third  constant  quantity ;  with  respect  to  the  fourth  constant  quantity  which  arises 

from  the  integration  of  the  value  of  d-^,  this  gives  il'  =  to  a  function  of  p  plus  a  constant 

quantity,  p'  being  proportional  to  cos.  (,  we  shall  obtain  the  fonrth  constant  quantity  which 

is  necessary  to  complete  the  solution  of  the  problem,  if  we  know  what  value  of  4'  cor- 
responds to  a  given  value  of  i. 

f  \Mien  a  solid"  body  is  not  eolicited  by  any  accelerating  forces  and  can  revolve  freely 
about  a  point  we  shall  have 

dx.zs.yi'S'^^i^ydyzi.id-^—Kdin, dxp=,sd!pr-yd^,  &c. 
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By  means  of  ttis  theory,  we  are  enabled  to  explain  the  double  motion 
of  rotation  and  of  revolution,  of  the  planets,  by  one  initial  impulse.  In 

fact,  let  us  suppose  that  a  planet  is  an  homogenous  sphere  whose  radius  is 

D  D   2 

See  page  89,  if  we  multiply  the  equations  (^Z)  of  No.  21,  by 

rfw  d^    d-^ 
^'  df'  W 

respectively  we  shall  obtain 

d-a         ,  d<p        ,,  dyl'  C  xdT^.diz—y.d'^a.dx  ?     ,   „    C  zdip.dx — xd(p.dz  1 

'■dr+'-^+''^^^"'-i — -w   5  +'•  i — df'   5 

^^^^ ^y.d4^.d.-..dMy,-^  ̂ ,„,, {^-^—  }-d^  +  ̂^»  {'-^^^}.d. 
'  (y.d-^—xdtp)      ,     ̂      {d3^-{-dyi+dz'i) 

const,  (see  No.  19)  now  if  we  substitute  fof  c,  d,  c", 

^cS+c/^+c".^  COS.  6,  ,yc^+d^  +  c".«  sin.  «.  sin.  ■f,  — ^/^+c'!'+ c".!'  sin.  ».   cos.  i^, 

to  which  they  are  respectively  equal,  and  also  for 

dvr,  dip,  d-<p,  ds.  COS.  I,  de.  cos.  n,  ds.  cos.  m,  see  page  90,  we  shaU  obtain 

(cos.  i.  COS.  ̂ -(-sin.  ̂ .  sin,  i^.  cos.  n — sin.  i.  cOS.  ■^.  coS;  m) 

:Z  const,  as  cos.  6,  sin.  9.  sin.  4',  sin.  6.  cos.  t^i 

are  equal  to  the  cosines  of  the  angles  which  the  axis  of  the  plane  of  greatest  projection, 

makes  with  three  fixed  axes,  and  as  cos.  I,  cos.  n,  cos.  m,  are  the  cosines  of  the  angles  which 

the  axis  of  instantaneous  rotation  makes  with  the  same  axes,  the  last  factor  of  the  second 

member  of  the  equation  is  equal  to  the  cosine  of  the  angle,  which  the  axis  of  rotation  makes 

with  the  axis  of  the  plane  on  which  projection  of  the  areas  is  the  greatest  possible,  .  ■.  as 
di  .    .  - 
—  is  the  exponent  of  the  velocity  of  rotation  for  any  instant,  this  expression  multiplied 



204  CELESTIAL  MECHANICS, 

equal  to  i2,  and  that  it  revolves  about  the  sun  with  an  angular  velocity 

equal  to  Z7;  r  being  supposed  to  express  its  distance  from  the  sun,  we 

shall  have  t;=r  U;  moreover  if  we  conceive  that  the  planet  is  put  in 
motion  by  a  primitive  impulse,  of  which  the  direction  is  distant  from  its 

centre  by  a  quantity  equal  to  j^  it  is  evident  that  it  will  revolve  about  an 

axis  pei-pendicular  to  the  invariable  plane  ;  therefore  if  we  suppose  that 

this  axis  coincides  with  the  third  principal  axis  *  we  shall  have  6=0j 

and  consequently  (/'=0,    r'  =  0;   therefore /?'  =  ««^  ?,  e,    CjizzmfrU, 

But  in  the  sphere,  we  have  C  ■=:  —  mR*  ;  consequently, o 

f-  ̂ E  p. 

which  gives  the  distance  of  the  direction  of  the  primitive  impulsion  from 

the  centre  of  the  planet,  and  satisfies  the  ratio  which  is  observed  to 

obtain  between  p  the  angular  velocity  of  rotation,  and  U  the  angular 

velocity  of  the  revolution  of  the  planet  round  the  sun.     With  respect  to 

the  earth,  we  have  ̂ =  366,25638  ;  the  parallax  of  the  sun  gives  — ::;: 

0.000042665,  and  consequently  y  =  — .  R  very  nearly. 

into  the  cosine  of  the  angle,  which  the  axis  of  instantaneous  rotation  makes  with  the  axis  of  the 

plane,  on  which  the  projection  is  a  maximum,  is  a  constant  quantity.     When  the  plane  oi  x  ij 

coincides  with  the  plane  passing  through  the  direction  of  the  impulse,  and  the  point  about 

dp      d^' 
which  the  rotation  is  performed  cos.«=l  and  sin.  e  =  Q  .:  we  shall  have  c'  -j-,  c"—  —  0  ; 

di 
constant  quantity=c.  — .  cos.  I  consequently  the  velocity  of  rotation,  i.  e,  parallel  to  the 

axis  of  2,=  -r-.  COS.  f  IS  constant. 

at 

*  All  the  diameters  of  a  sphere  being  principal  axes,  if  we  suppose  that  the  axis  of  revolu- 

tion  wliich  is  evidently  the  axis  of  the  invariable  plane  coincides  with  the  axis  of  y",  *  =  0 

.-.  cos.  fl=l  .-.  q'  and  /  =  respectively  to  sin.  i.  sin.  ip,  sin.  6.  cos.  <p  vanish  and  this  con- 
siderably simplifies  the  calculus. 
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The  planets  are  not  homogenous ;  but  we  may  suppose  them  to  be  com- 
posed of  concentrical  spherical  strata  of  unequal  density.  Let  />  denote 

the  density  of  one  of  those  stratas  of  which  the  radius  is  equal  to  R,  we 
shall  have 

^_  2ot  fp.RMR  , 

3    Jp.R.-dR  ' *  The  moment  of  inertia  for  a  sphere  is  calculated  in  Book  V.  No.  II.  in  a  general 
manner,  but  as  it  involves  some  steps  which  are  demonstrated  in  the  second  and  third  books, 

it  will  be  necessary  to  give  here  a  special  demonstration,  let  there  be  two  concentrical 

circles,  whose  radii  are  q,  q-\-dq,  the  circumference  of  the  interior  is  equal  to  '2-jr.q,  and 
the  area  of  the  annulus  contained  between  the  peripheries  of  those  circles  is  equal 

2v,q.dq  .'.  2%.q?dq  is  equal  to  the  moment  of  inertia  of  this  annulus  and  l^.q,*  is  the 
moment  of  inertia  of  a  concentrical  annulus  of  a  finite  breadth,  .*.  when  the  preceding 

integral  is  taken  between  the  limits  y=0,  q  =  R  the  expression  becomes  ̂ ttR*,  which  is  the 
moment  of  inertia  for  the  entire  circle,  now  in  order  to  obtain  the  moment  of  inertia  for  the 

entire  sphere,  let  us  conceive  a  plane  parallel  to  the  axis  of  rotation  cutting  the  sphere  at  a 
distance  from  the  axis  equal  to  x,  its  intersection  with  the  surface  of  the  sphere  will  a  lesser 

circle  of  the  sphere,  let  ̂ =:  the  radius  of  this  circle,  the  moment  of  inertia  of  this  circle 

with  respect  to  its  centre  is  equal  by  what  precedes  to  ̂   vy*  ,•.  the  moment  of  inertia  of  an 
indefinitely  small  slice  is  equal  to  ̂ ■!r.y*.dxz:i  Itt  (2Rx-~x*)- .dx,  for  i/^zz2Rx—a:^  R  being 

the  radius  of  the  sphere,  .•.  btegrating  we  have 

-^^>-Wro} 
—  the  moment  of  inertia  of  a  spherical  segment  and  this  integral  being  taken  between 
the  limits_a;=0,  and  x=R  gives 

—  the  moment  of  inertia  of  the  entire  sphere  with  respect  to  a  diameter,  and  it  is  very 
easy  by  means  of  the  expression  which  has  been  given  in  page  180,  to  obtain  the  moment 

of  inertia  for  any  axis  parallel  to  the  diameter,  if  R  is  supposed  to  be  variable  in  the  last 
expression,  and  if  §  the  density  varies  from  the  centre  to  the  circumference,  the  moment 
of  inertia  of  any  spherical  stratum  whose  radius==  R  is 

^.t^RUR 
10 
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(p  being  a  function  of  R). 

If,  as  is  very  probable,  the  denser  strata  are  nearer  to  the  centre  j  the 

function    /'  p'g  ,„■  will  be  less  than   ,  consequently  the  value  off jf'  Jx,  uK  5 

will  be  less  than  in  the  case  of  homogeneity. 

30.  Let  us  now  determine  the  oscillations  of  a  body  when  it  turns 

very  nearly,  about  the  third  principal  axis.  We  might  deduce  them 

from  the  integrals  which  we  obtained  in  the  preceding  number ;  but  it  is 

.-.  the  moment  of  inertia  of  a  sphwe  composed  of  concentrical  strata  is  equal  to 

g-  Ty  g./Z*  dR,  m  like  manner m=the  mass  of  the  sphere  =i4tir./^R*dh 

m 
am 

d  f~     ̂ 'P  8w  pf^R*dR    _  Jp.f^.R*.dR_ 
Vs-R*'^^""  7n.TU  ̂ 3Atn.Tlir^.E'dR'-'  3rUfi,R^.dR 

we  obtain  the  ratio  of  U  to  p  from  knowing  the  period  of  the  earth  and  the  time  of  its 

rotation,  for  the  angular  velocities  are  mversely  as  the  angles  described  in  the  same  time, 

5  being  by  hypothesis  a  function  of  R  where  the  density   increases  towards  the  centre 

e^ — =- .•.  the  fraction  in  the  text  becomes 

R\dR 
<P.(R) 

^  ̂     R^d
R 

i^R) 

by  parUal  integration 

_Rfi_  R5A.q>[R)  Rs  R3.d<p{R) 

5.<pR      ̂      5WR)  f  "^    3(p{R)       •'      S.{(pRr 

and  as  the  numerator  is  more  diminished  than  the  denominator  the  value  of  the  fraction 

5 

SR* 

which  in  the  case  of  homoge
neity  was  -3—  will  be  diminis

hed  when  the  density 
 mcreases

 

towards  the  centre. 
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simpler  to  deduce  them  directly  from  the  di£FerentiaI  equations  (D)  of 

No.  26.  The  body  not  being  actuated  by  any  forces  ;  these  equations 

will  become  by  substituting  Cp,  Ag,  and  Br,  in  place  of  their  respective 

values  p',  q',  r. 

dq  +  ̂̂ ^.rp.dt^Oi 

rfr+  ̂—Sl.pq.dtzzO, 

The  solid  being  supposed  to  revolve  very  nearly  about  the  third  prin- 

cipal axis,  q  and  r  *  are  very  small  quantities,  therefore  we  may  reject 

their  squares  and  products ;  consequently  we  shall  have  dp^^o  and 

p  will  be  constant.    If  in  the  other  two  equations  we  suppose 

q^M.  sin.  (w?+v) }  r=3=M'.  cos.(n?+y) ; 

we  shall  have 

*  The  solid  being  supposed  to  revolve  very  nearly  about  the  principal  axis, 

the  cosine  of  the  angle  which  the  instantaneous  axis  of  rotation,  make  with  the  principal 
will  be  q.p,  equal  to  unity  consequently,  j  and  r  will  be  very  small  because  the  sine  of  the 
above  mentioned  angle  which  is  equal  to 

\/£+r 

very  nearly  vanishes. 
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„=,.  /  CC-..).(C-.)  .,  ̂ ._  _  mV ggM  ana  ,• 

being  two  constant  quantities,  the  velocity  of  rotation  will  be  y/'f-^q^-Yr' 
or  simply  p,  the  squares  of  q  and  r  being  neglected  j  therefore  this 
velocity  will  be  very  nearly  constant,  finally  the  sine  of  the  angle 
formed  by  the  real  axis  of  rotation,  and  the  third  principal  axis  will  be 

y/g'  +  r 
V 

If  at  the  commencement  of  the  motion  we  have  ̂ =0  and  r'=0,  i,  e, 
if  at  this  instant  the  real  axis  of  rotation  coincides  with  the  third  prin- 

cipal axis  ;  we  shall  have  M  =0  M'=  0  ;  consequently  q  and  r  will  be 
always  equal  to  nothing,  and  the  axis  of  rotation  will  always  coincide 
with  the  third  principal  axis  ;  from  which  it  follows  that  if  the  body 
commences  to  revolve  round  one  of  its  principal  axes,  it  will  continue  to 

revolve  uniformly  about  the  same  axis.     It  is  from  this  remarkable  pro- 

*  q=.M.  sin.  (ni+y)  r  =  M' .  cos.  (nt+y)  satisfy  the  preceding  differential  equations,  for 

by  substituting  these  values  we  obtain 

MmAI.  (cos.  (n<+y)+    —r-^-V  M'-^^-  COS-  (nt  +  y)  ZZ  0 

^   (J 

— M'.n.dt.  sin. (nt+y)-\ — ■^—.pM.dt.  sin.  (wf+y)=0 

.-.  Mn+^^~^^  .pM'=0—M'.n+^t^.pM=0  .'.  M'=: 

Mn.A      _     (A—C).p.M        ,_ 

'~'p.{C—B)~  Bn         •'•"  — 

(C-^)(C-i^).  3,,^  _^.  .1  A.  jC-A)  . 
^  AB  V   B.{C—B) 

the  quantities  M  and  y  are  arbitrary  consequently  these  values  are  perfect  integrals  of  the 

two  preceding  differential  equations  which  they  satisfy.  (See  Lacroix  traite  elementaire  de 

Calcul  integral,  No.  297). 
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perty,  that  these  axes  have  been  termed  principal  axes  of  rotation,  it  ap- 

pertains to  them  exchisively ;  for  if  the  real  axis  of  rotation  is  in- 

variable  on  the  surface  of  the  body,  we  have  c?p=  0,  dq=^  O,  dr=-  0,  there- 

fore from  the  preceding  values  of  those  quantities  we  obtain 

(5—^)  ^    {C—B)  ^   (A—C) 
^^—^—^-rq  =0  ;  ̂_  — _.r/J=0 ;  )^—L.pq=  0. 

In  the  general  case  where  A,  B,  C,  are  unequal,  two  of  the  three 

quantities  j3,  q,  r,  vanish  in  consequence  of  these  equations,  which  implies 

that  the  real  axis  of  rotation  coincides  with  one  of  the  principal  axes.* 
If  two  of  the  three  quantities  A,  B,  C,  are  equal,  for  example,  if  we 

have  A=B ;  the  three  preceding  equations  will  be  reduced  to  the  follow- 

ing, r/j=0,  pq=0  ;  and  they  may  be  satisfied  by  supposing^?  =0.  The 
axis  of  rotation  in  this  case  exists  in  a  plane  perpendicular  to  the  third 

principal  axis  ;  but  we  have  seen  in  No.  27,  that  all  axes  existing  in  this 

plane,  are  in  this  case  principal  axes. 

£  E 

*  The  value  of  the  quantities  M,  M',  may  be  determined  by  knowing  the  position  of  the 
instantaneous  axis  of  rotation  at  the  commencement  of  the  motion,  whatever  be  their 

values  at  that  instant  they  remain  unaltered  during  the  motion  of  the  body  .'.  if  at  the 
commencement  of  the  motion,  the  real  axis  of  rotation  coincided  with  the  principal  axis 

.-.  5 and  rare  respectively  equal  to  nothing,  and  therefore  M  and  M!  will  vanish,  conse- 
quently the  values  of  q  and  r  will  always  be  equal  to  nothing,  and  as  p  is  constant  and  equal 

to  the  angular  velocity,  the  body  will  revolve  uniformly  about  the  principal  axis.  If  the 

position  of  the  real  axis  of  rotation  is  invariable  on  the  surface  of  the  body,  p,  q,  r, 

must  be  constant,  see  No.  29,  page  201,  .•.  rf/j,  dq,   dr,  are   respectively  equal   to  nothing 
.-.  their  values 

B—A       C—B      A—C 

respectively  vanish,  .•.  in  order  to  satisfy  these  equations  two  of  the  three  variable  quantities 

p,  q,  r,  must  vanish. 
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Finally,  if  the  three  quantities  j4,  B,  C,  are  equal,  the  preceding 

equations  will  be  satisfied,  whatever  may  be  the  values  of  p,  q,  r  ̂  

but  in  this  case,  all  the  axes  of  the  body  are  principal  axes.i* 
It  follows  from  what  precedes,  that  to  the  principal  axes  only  belongs 

the  property  of  being  permanent   axes  of  rotation  ;  t  but  they  do  not 

*Wlien  ̂ =5,  the  first  of  these  three  equations  vanishes  of  itself,  whatever  maybe  the 
values  of  r  and  q,  and  we  shall  satisfy  tlie  two  last  equations  by  supposing  p^O,  .:  the  real 

axis  of  rotation  is  perpendicular  to  the  third  principal  axis,  see  No,  29,  notes,  but  as  in  this 

case  all  lines  drawn  in  a  plane  perpendicular  to  the  third  principal  axis,  are  principal  axes, 

it  follows  that  the  axis  of  rotation  is  in  this  case  a  principal  axis  ;  if  A:=.B~  C  the  three  pre- 
ceding equations  will  be  identical,  and  the  values  of  p,  q,  and  r,  may  be  assumed  at  pleasure, 

hut  in  this  case  all  axes  are  principal  axes,  .*.  it  follows  universally,  that  if  the  axis  of  rota- 
tion remain  permanently  the  same,  it  must  be  a  principal  axis. 

In  the  general  case  when  A  B  and  C,  are  unequal,  we  shall  be  always  certain  that  p,  q, 

and  r,  and  M,  M',  vanish  at  the  commencement  of  the  motion,  when  the  impulse  is  made  in 
a  plane  which  coincides  with  the  plane  of  two  of  the  principal  axes,  for  in  this  case  the 

invariable  plane  to  which  we  adverted  in  Note  to  page  184,  coincides  with  the  plane  passing 

through  two  of  the  principal  axes,  and  the  axis  of  rotation  or  of  this  invariable  plane  will 

necessarily  coincide  with  the  third  principal  axis.     See  Notes,  to  page  188. 

■f  It  might  be  proved  directly  from  the  property  of  principal  axes  scilicet  S^z.dm  ■=  0, 
Syz.drtf^  0,  that  the  pressure  on  the  axis  of  rotation  wliich  is  produced  by  the  centrifugal 

force  must  vanish,  when  this  axis  is  a  principal  axis,  and  that  consequently,  when  there  is  a 

fixed  point  given  in  a  body,  there  exists  always  three  axes  passing  through  this  point,  about 

which  the  body  may  revolve  uniformly  without  a  displacement  of  the  axis,  and  as  if  these 

lines  were  entirely  free ;  for  if  the  body  is  acted  upon  by  an  initial  impulse,  •n-  denoting 

the  angular  velocity  and  r  the  distance  of  a  molecule  dm  fi-om  the  axis  of  rotation  wliich  we 
suppose  to  coincide  with  the  axis  ;;:,  x  and  y  being  the  coorilinates  with  respect  to  the  axes 

of  X  and  y,  we  liave  the  centrifugal  force^w'r.rfm,  this  force  resolved  parallel  to x  and  y:z. 

  '■ — .dm, — ^,  because  —,— are  equal  to  the  cosines  of  the  angles  which  the  axes  of  x r  r  r    r 

■  and^  make'with  r,  •••  the  sum  of  the  forces  for  all  the  molecules  of  the  body  =  •a-^Sx.dm, 

■a^.Sydm,  and  the  respective  sums  of  their  moments  for  the  axes  of  y  and  of  x  are 
•sr*  Sx.z.  dm,  v?.  S.yz.dm.  and  m  being  the  mass  of  the  body  and  x^,  y,,  being  the  coordinates 

of  the  centre  of  gravity,  wehave  •a'^ .mx^^-a^SJcdm,  ■c:;- .niyj='S!^S.y.dm,  and  if  z^z^,  repre- 
sent the  distances  of  the  resultants  w^-mx,  ar*wzy,,  from  the  plane  of  the  axis  of  x^  we  have  by 

note  to  No.  3,  ■B^inx^,^'a^SxyJm,TT  '^ .myz^z=-a'^  .Syz.dm,vfheB  z,z,i  are  equal,  the  resultants 
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possess  this  property  in  the  same  manner.  The  motion  of  rotation 
aboirt  the  axis,  of  which  the  moment  of  inertia  is  intermediate  between 

the  moments  of  inertia  of  the  two  other  axes,  may  be  disturbed  in  a 

sensible  degree  by  the  slightest  cause  ;  so  that  in  this  motion,  there  is 

no  stability. 

The  state  of  a  system  of  bodies  is  termed  stable,  when  the  system 

being  very  slightly  deranged,  it  deviates  from  the  state  by  an  indefi- 
nitely small  degree,  by  making  continual  oscillations  about  this  state. 

This  being  understood,  let  us  suppose  that  the  real  axis  of  rotation 

deviates  from  the  third  principal  axis  by  an  indefinitely  small  quantity ; 

in  this  case,  the  quantities  M  and  M'  Si\e.  indefinitely  small  ;  and  if  n 
is  a  real  quantity,  the  values  of  q  and  r  will  always  remain  indefinitely 

small,  and  the   real  axis  of  rotation  will  only  make  excursions  of  the 

E  E  2 

m^.mxp-a^.myi,  are  applied  to  the  same  point,  .'.these  two  forces  will  compose  one  sole 

force  =^z!r«.  m  \/.r/-|-?//,  now  if  the  fixed  axes  pass  through  the  centre  of  gravity  we  have 

x==Oy,=zO  .:  2=-^  Sjcdyn,  ct  ■^.Sydm  respectively  vanish,  and  if  the  axis  of  rotation  is  a  principal 

axes  we  havear2S.xz.rfm=0,  ^'^ S.yzdm=iO,  from  the  first  equation  it  follows  that  the  axes 
does  not  experience  any  tendency  to  a  progressive  motion,  and  the  second  equations  indicate 

that  the  sum  ■a  ■" .  Sxzdm  of  the  moments  of  the  forces  vanish,  from  these  two  conditions  it 

follows  that  the  forces  constitute  an  equilibrium  independently  of  the  axis.  If  the  fixed  axis 

of  rotation  and  origin  of  the  coordinates  was  transferred  to  a  different  point  of  the  body,  being 

still  a  principal  axis,  we  should  have  as  before  S.xs.dm  =  0  Syz.dm  =0  ••.  the  sum  of  the 

moments  of  the  forces  with  respect  to  the  axes  of  y  and  of  x  vanish  as  before  .*.  as  Xj  and  y^ 

have  in  this  case  a  finite  value  z,  and  z^,  must  vanish,  for  id  ̂  .mj,,  z,,  na^.my^  z^^,  vanish  being 

equal  to  ■ot'.  S.xzdm,  m^-Syzdm,  ,;  the  pressure  =  w*.m  v  V*+^'*.,  which  as  z,  z„ 
vanish,  must  exist  in  the  plane  of  x,  y,  and  must  pass  through  the  origin  of  the  coordinates, 

.  • .  if  this  point  is  fixed  the  pressure  will  be  destroyed,  and  the  motion  will  be  performed 
about  the  axis  as  if  it  was  fixed,  for  the  only  pressure  which  could  displace  it  is  destroyed, 

by  the  resistance  of  the  fixed  point. 

From  what  precedes  it  appears,  that  when  the  principal  axis  passes  through  the  centre  of 

gravity,  it  is  not  necessary  that  any  point  should  be  fixed,  in  order  that  the  motion  may  be 

perpetuated  uniformly  about  the  fixed  axes,  in  any  other  case  it  is  necessary  that  the  origin  of 
the  coordinates  be  fixed. 
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same  order  *  about  the  third  principal  axis.  But  if  n  was  imaginary, 
sin.  (wf+y),  cos.  (nt+y)  will  become  exponential,  and  the  expressions 

for  q  and  r  might  then  increase  indefinitely,  and  at  length  cease 

to  be  very  small ;  consequently  there  would  be  no  stability  in  the 

motion  of  rotation  of  the  body  about  the  third  principal  axis.  The 

value  of  n  is  real,  if  C  is  the  greatest  or  the  least  of  the  three  quantities 

A,  B,  €;  for  the  product  (C — A).  (C — B)  is  positive  ;  but  this  product 
is  negative  if  C  is  intermediate  between  A  and  J5,  and  in  this  case  n  is 

imaginary  ;  thus,  the  motion  of  rotation  is  stable  about  the  two  principal 

*  When  n  is  a  real  quantity,  p  and  q  can  be  expressed  by  sines  and  cosines  of  nt,  but 
these  values  are  not  susceptible  of  indefinite  increase  with  the  time,  for  they  are  periodic 

functions  of  t,  and  the  limit  of  the  values  of  sin.  {nt-\-y),  cos.  {nt-\-y)  is  unity,  if  they  are 

very  small  at  the  commencement  of  the  motion,  M  and  M'  must  be  very  small,  and  as 
these  quantities  are  invariable,  the  expressions  for  q  and  r  will  always  remain  indefinitely 

small. ^  If  n  is  imaginary,  sin.  («i+y),  cos.  {nt-{-y)  are  imaginarjs  and  as 

cos.  (w«+y)+«/:iir  sln.{K«+y)=C  +(«^+v)-'^— 
1 

and 

cos.  (n«+y)-sln.  (nf+y)=c~("^ +  '>')•  "^—
^  — 

we  obtain  by  adding  and  subtracting 

I,,    \       .("*+y)V^         — («<4-y).\/Zr cos.  {ni-\-y)  =  c  4-  c        ̂      '^  ' i 

sin.  {nt  -1-y)  =  c 

2 

(«<+y).  v/ZIl       — («<+7)V3r 

if  n  is  imaginary  the  preceding  exponential  expressions  will  become 

— nl^y  s/   1        «* — yVIZx    — "'-fy\/ZI7      nt — yV~\ c  Arc  c  _c 

'2  2v'zr 

in  these  exponential  expressions,  the  part  which  is  not  affected  with  the  radical  sign,  is 
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axes  of  which  the  moments  of  inertia  are  the  greatest,  and  the  least  j 

but  not  so  about  the  other  principal  axis.* 

proportional  to  the  time,  and  therefore  the  values  of  q  and  r,  will  increase  indefinitely 

vvitli  the  lime,  .•.  though  they  may  have  been  indefinitely  small  at  the  commencement  of  the 

motion,  still  as  there  is  no  limit  to  the  increase  of  the  exponential  expressions,  they  will  at 

length  exceed  any  assigned  magnitude. 

*  It  might  be  shewn  di;-ectly  by  means  of  the  equations  Crp^+A^'-^-B-r-^k"; 

/iBC-.p^-\-A^BCq^'\-AB^Cr-=fP,  that  there  is  a  limit  to  the  increase  of  q  and  r  when  C 
is  the  greatest  or  least  of  the  three  quantities  A,B,C,  for  if  we  multiply  the  first  equation 

by  AB,  and  then  subduct  it  from  the  second  we  obtain  A-.B(C — A)q'-i-AB~.{C — B).r^= 
Hi — AB.k^,  if  at  any  instant  the  quantities  q,  r,  are  very  small  If^ — A/fi  which  is  constant 
will  be  very  small,  consequently  in  all  the  changes  wliich  r  and  q  undergo  they  are  sub- 

jected to  the  same  condition,  and  this  condition  requires  that  r  and  q  siiould  be  always  very 

small  when  C — A  and  C — B  are  of  the  same  sign,  because  then  both  the  terms  of  the 

first  member  of  the  preceding  differential  equation  will  be  either  positive  or  negative,  and 

the  expressions 

m—AB.k^  m—ABlfi 

A-.B.(C—A)    '        AB\C—B)  ' 

are  the  limits  to  which  the  respective  values  of  q  and  r  can  never  attain.  If  C — B  and. 

C — A  are  of  different  signs,  then  the  terms  of  the  first  member  of  the  equation  will  be 

of  different  signs,  audit  is  only  the  difference  of  the  quantities  AiB(^C — A).q^-\-ABi, 

(C—By^,  that  is  indefinitely  small  /.  since  tliis difference  depends  on  the  relative  values  of 

these  quantities,  q  and  r  may  be  very  great,  though  the  preceding  residual  is'  a  quantity 
indefinitely  small. 

Pliilosophers  have  distinguished  the  equilibrium  of  stability  into  two  species  absolute  and 

relative,  in  the  first  case  the  stability  obtains  whatever  may  be  the  oscillations  of  the  system, 

;n  the  second  case  it  is  necessary  that  the  oscillations  should  be  of  a  certain  description,  in 

order  to  insure  the  stability  of  the  equilibrium.  If  a  body  revolving  about  afixed  axis  passes 

through  several  positions  of  equihbrium,  these  will  be  alternately  stable  and  instable.  For 

if  a  system  deviates  from  a  position  of  stable  equilibrium,  from  the  nature  of  this  equUibriura 

it  tends  to  revert,  but  according  as  the  system  deviates  more  and  more  from  its  first  position, 

this  tendency  will  diminish,  and  at  length  it  will  tend  to  deviate  from  the  original  position, 

but  previous  to  tliis  change  of  tendency  there  must  have  been  a  position  in  which  the  systenc 

neither  tended  to  revert,  or  to  deviate  from  its  original  position,  consequently  this  is  a  position 

of  equilibrium,  but  this  equilibrium  is  evidently  one  of  instability,  for  previous  to  the  arrival 

of  the  system  at  this  position  it  tended  to  revert  to  its  primary  position,  and  when  it  passed  this 

position,  it  tends  to  deviate  from  the  primary  and  consequently  from  this  second  position  of 
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Now,  in  order  to  determine  the  position  of  the  principal  axes  in  space, 

we  shall  suppose  the  third  principal  axis  to  coincide  very  nearly  with  the 

plane  of  x'  and  of  y',  so  that  9  will  be  a  very  small  quantity  of  which  we 
may  neglect  the  square. 

By  No.  26,  we  shall  have 

d(p—'d^  =pdt  * 

and  by  integrating  we  obtain 

^  =  (p — -pt — i 

E  being  a   constant  arbitrary  quantity.      If  we    afterwards    make 

sin.  0.  sin.  ?'  =  s  j  sin.  6.  cos.  <p  =  u  ; 

from  the  values  of  q  and  of  r  which  have  been  given  in  No.  26,  we  shall 

obtain,  by  the  elemination  of  d-^ 

ds  du  ,  , 

equilibrium,  this  tendency  of  the  body  to  deviate  from'the  second  position  of  equilibrium  gra- 
dually diminishes,  and  at  length  vanishes,  afterward  the  system  tends  to  revert  to  the  second 

position  of  equilibrium,  and  where  the  tendency  to  deviate  from  the  second  position  of  equi- 

brium  vanishes,  is  also  a  position  of  equilibrium,  which  is  evidently  an  equilibrium  of  stability, 

for  previous  to  the  arrival  of  the  system  at  this  position  it  tends  towards  it,  inasmuch  as  it 

tends  to  deviate  from  the  second  position,  and  after  passing  this  third  position  of  equilibrium 

it  tends  to  revert  to  the  second,  and  consequently  to  the  third  position  of  equilibrium, 

thus  it  appears  that  when  a  system  has  returned  to  its  primary  position,  it  has  passed 

through  an  even  number  of  positions  of  equihbrium,  alternately  stable  and  instable. 

6*  6* 
*  dji—d^'-  cos.  e=:p.dt,  but  cos.  6^1   —  +  _-&c^when  6  is  veiy  small, 

unity  .•.  d(p — d-^^jidt. 

f  d4"  sin.  e.  sin.  i? — d6.  cos.  ̂ =.q.dt ;  d-^.  sin.  i.  cos.  (p-^-di.  sin.  ̂ .  =  r.dt, 

substituting  in  place  of  d'^  its  value  dip — pdt,  we  shall  have 
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and  by  integrating 

,$ = e.  sm.(p? + a)  ̂ -=; —  .(sin.  nt-r  y) ; 

tt=e.cos.(;)^+A)  — ^s; —  .  COS.  (nf+y)  i* 

dip.  sin.  «sin.  ip— p.  sin. «.  sin.  ip.  dt—d6.  cos.  <f>-:r.q.dt ;  t?!?.  sin.  «.  cos.  ip— p.  sin.  fl  cos.ip.  dt 

■\-d6.  sin.  ip  =  r.rff, ; 

substituting  6  in  place  of  sin.  6,  to  which  it  is  very  nearly  equal  since  the  higher  powers  of  * 
may  be  neglected,  we  obtain 

— d<p.  6.  sin.  (p-i-d6,  cos.  ip-\-p.  sin,  6.  sin.  <p.  rfi= — ^.t/i,  i,  e, 

d.  (cos.  <p.  sin.  ()  -^-p.  sin.  «.  sin.  <p.  rffis — jrf^, 

and  by  substituting  for  sin.  6.  sin.  <p.  sin.  5.  cos.  <p,  their  values  which  have  been  given  in  the 
text,  we  obtain 

du  , 

in  like  manner  the  second  diiferential  equation  becomes, 

d(p.  6.  cos.  (p+d6.  sin.  (p — p,dt  sin.  i.  cos.  (pzzr.dt,  i,  e,  d.  (sin,  i,  sin,  ?i) 

— p.dtsin.e.  COS.  9=:r.dt, 

and  by  substitution,  —   -^u  =  r. 

*  The  integrals  assigned  in  the  text  are  the  complete  values  of  i  and  a  for 

^=  Z.p.  cos.  {pt4.^)-^-^A..  {C-A).  {C-B).  cos.(nf+v),: 

this  expression  is  equal  to pu-\-r,  for  substituting  in  place  of  u  and  r,  we  shall  have 

^.p.  cos.(pt  +  A)   '      P  cos.  (n<+y)+M'.  cos.  (n<+y)= 

(bj^  substituting  for  M'  iteTalue,)  G.p.  cos.  (p(+A) 

M       /'a 
~  C" •'^  5" •  ( C-^)(C— B).    cos.{«<+v), 



216  CELESTIAL  MECHANICS, 

S  and  X  being  two  new  arbitrai-y  quantities  :  therefore  the  problem  is 
completely  resolved,  since  the  values  of  s  and  of  u  give  the  angles  ©  and  <p 
in  functions  of  the  time,  and  i)/  is  determined  in  a  function  of  (?  and  /. 

If  e  vanishes,  the  plane  of  x'  and  of  ?/'  becomes  the  invariable  plane,  to 
which  we  have  referred  in  the  preceding  number,  the  angles  6,  (? 

and  ̂ .  * 

.••  since  the  integrals  given  in  the  text  satisfy  the  differential  equations 

ds  (hi 

and  since  there  are  two  constant  quantities  introduced,   these  values  of  ti  and  s  are  their 

complete  integrals. 

A.q  .  B.r 
*  \\  hen  €  vanishes  i  =  sm.  i.  sm.  <p  =  —  tt  ~  >  ii=sm.  6.  cos.  ip  =   j^ —  ,    i,  e, 

Cp  C.p 

q       .  r' Sin.  6.  sin.  ®  =   r,  sm.  6.  cos.  ?>  =   j, 
V  P 

and  those  are  values  of  the  cosines  of  the  angles  which  the  principal  axes  of  id'  and  if" 
make  \vith  the  axis  of  the  invariable  plane,  see  notes  to  page  198.     In  this  case 

s  -^M  ,      ,    .  AM    ,  ̂  ,    , 

— =tan.  <p  =  -g^,.  tan.  {nt+y) .-.  <p=  -^Jj' -O't  +  v)' 

as  f  is  equal  to  the  angle  formed  by  the  intersection  of  the  invariable  plane,  and  of  the  plane 

of  x",  y",  with  the  axis  of  x",  if  we  know  this  angle  at  the  commencement  of  the  motion, 
or  at  any  given  epoch,  we  shall  have  the  value  of  y  ;  we  might  in  like  manner  find  M,  for 

,     2      •'>,/•     2    L        .  ̂       ̂ -^J"   ,     -O-M*   /  A.(C—A)  \        .     ,^ 
„«+s^-s.n.  -«.  (sm.  ̂?+cos.  ̂ ):^~^^+  -^j-  {'b:^c-B)  )  =  ''"•  '' 

by  substituting  for  (sin.  -?-|-cos.  -<f)  unity,  and  for  M'^  its  value. 

AM 
4-  =  -^j^r  [ntJfy)—pt  — e 

.  •.  as  we  have  already  determined  the  values  of  M,  M',  and  y,  we  can  determine  the  value  of 

t,  when  the  value  of  -^  is  given  at  the  commencement  of  the  motion  ;  from  the  preceding 

value  of  •4'  't  appears  that  tliis  angle  increases  proportionably  to  the  time,  .•.  the  intersection 

of  the  mvariable  plane  and  the  plane  of  x"  y"  revolves  about  the  axis  of  the  invariable 
plane  with  an  uniform  angular  velocity. 
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31.  If  the  solid  is  free  ;  the  analysis  of  the  preceding  numbers  will 

determine  its  motion  about  its  centre  of  gravity  ;  if  the  solid  is  con- 

strained to  move  about  a  fixed  point,  it  will  make  known  the  motion  of 

rotation  about  this  point.  It  now  remains  for  us  to  consider  the  motion 
of  a  solid  constrained  to  revolve  about  a  fixed  axis. 

Let  us  suppose  this  axis  to  be  that  of  x,  which  we  will  make 

horizontal  :  in  this  case,  the  last  of  the  equations  (  B)  of  No.  25,  will  be 
sufficient  to  determine  the  motion.  Moreover  let  us  conceive  that  the 

axis  of  y  is  horizontal,  and  thus  that  the  axis  of  £  is  vertical,  and  di- 
rected towards  the  centre  of  the  earth,  lastly  let  the  plane  which 

passes  through  the  axis  of  y  and  of  z,*  pass  through  the  centre 

of  gravity  of  the  body,  and  let  us  conceive  an  axis  always  passing 

through  this  centre  and  through  the  origin  of  the  coordinates.  If  6  re- 

presents the  angle  which  this  new  axis  constitutes  with  the  axis  of 

s ;  and  y^  and  2;",  the  coordinates  referred  to  this  new  axis,  we 
shall  have 

y'=y".  COS.  e-j-s'/.  sin.  9 ;  s'=s".  cos.  6—3/".  sin.  G  ; 

from  which  we  may  obtain 

S.  i  1^1^  l.drn  =  -^l.  SJm.{y'-  +  .-).  t {.  at  y  at 
FF 

*  Since  the  plane  passing  through  the  axis  of  2',  and  of  y',  of  which  the  former  is  ver- 
tical, and  the  latter  horizontal,  passes  constantly  through  the  centre  of  gravity,  this  centre 

must  move  in  a  vertical  plane. 

t  As  the  coordinates  x",  ?/' ,  z",  do  not  varj-  with  the  time,  beipg  always  the  same  for  the 

same  molecule,  in  taking  the  differentials  of  y,  s*,  and  their  respective  values,  with  respect 
to  the  time  they  become 

dy=di,{:i'.  cos.  «— y.  sin.«)  ;  M  =—dk  (/'.  sin.  6-\-y''.  cos.  i) 

.-.  yrf*'— s'<iy  =(y'.  cos.«4-2".  sin.  6)1— d«.  (a".sin,  i-\-y",cos.  i)  )—(*".  cos.  i—y'.sin.  i). 

(di.{z!'.  cos- «— y.  sin.  l)  ) 



218  CELESTIAL  MECHANICS, 

S.dni.(i/'^-\-s{'^)  is  the  moment  of  inertia  of  the  body  with  respect  to 
the  axis  of  /  :  *  Let  this  moment  be  equal  to  C.  The  last  of  the 
equations  {B)  of  No.  25,  will  give 

'  dt*  ~  dt 

Let  us  suppose  that  the  body  is  only  solicited  by  the  force  of  gravity  % 
the  values  of  P  and  of  Q  of  No.  25,  will  vanish,  and  R  will  be  constant, 
which  gives 

dW 
  =  S.Ry' .dmzzR.  cos.  ̂ .S.y".  dm  +  R.  sin.fi.  S.z".dm. uc 

The  axis  of  z"  passing  through  the  centre  of  gravity  of  the  body,  we 

have  S.i/'.dmziO ;  moreover,  if  we  name /« the  distance  of  the  centre  of 

gravity  of  the  body,  from  the  axis  of  x',  we  shall  have  S.z".dm  =  mh, 
m  being  the  entire  mass  of  the  body ;  therefore  we  shall  have 

=  —d6.  {y".  COS.  «-f  z",  sin.  (i)« 

— rf^(3".  COS.  «— y".  sin.  «)'  =  — rf«.(y'-+z"=) 

.•.  multiplying  by  dm,  and  extending  the  expression  to  all  the  molecules  we  obtain, 

dt  at 

and  since  C  is  constant,  we  shall  have 

d^S         dN" 

—C. 

dt 

*y*^-2"  =y'-*  cos.*«4-z".*  sin.«+2y'z".sin.  0.  cos.  «+y'.*  sin.  M+s".'   cos.  '« 

— ZyV.  sin.  e.  COS.  «  =y'^+s"«  .-,  S(y ?+/').(/»», 

the  moment  of  inertia  of  the  body  relative  to  the  axis  of 

3f=S{z!'^+j/'^).dm=C. 
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dN" 

  =■  mh.  R.  sin.  6  * dt 

dH__ —  m.h.R.  sin.  9 
dF~  C 

Let  us  now  consider  a  second  body,  all  whose  parts  are  concentrated  in 

one  point,  of  which  the  distance  from  the  axis  of  a/,  is  equal  to  /  j  we 

shall  have  for  this  body,  C^ ??«'/* ,»i' expressing  its  mass;  moreover  h 
will  be  equal  to  / ;  and  therefore 

rfa9      —R     .     ,  .   =  — — .  sm.  0  t 

ff2 

•A?"  is  always  equal  to  S.J[R7/'—Q:/).  dt.dm .'.  Qvankhing  we  shall  have 

dN" 

dt  "^ 
and  by  substituting  for  y'  we  obtain  the  expression  given  in  the  text.  In  fact,  since  the  axis  of 

s"  passes  through  the  centre  of  gravity,  we  have  sy  .rfw=0,  and  S.^'  .dm=mh.  See  No.  15, 
page  91,  it  also  appears  from  note  to  same  number,  page  88,  that  when  a  body  is  constrained 

to  move  about  an  axis,  one  of  the  equations  (B)  of  No.  25,  is  sufficient  to  determine  the 

motion  of  the  body ;  .•.  by  substituting  mh.  sin.  L  for  sin.  6.  S^^'.dm  we  shall  have 

- — =  mh  R.  sin.  6, 
dt 

f  For  any  body  m'  of  which  all  the  molecules  are  concentrated  into  a  point  at  the  distanco 
equal  to  I  from  the  axb  of  sf  we  have 

dH  ml  R      .  R  .     . 

for  in  this  case  the  centre  of  gravity,  is  in  this  point,  and  the  moment  of  its  inertia,  is  equal 
to  m'JF; 

if  this  body  has  the  same  motionof  oscillation  with  the  body  we  have  first  considered,  the 
d^6 

values  of -p  must  be  the  same,  i,  e, 

mh.R.  sin.  6.  R   .     ,      ,        C 
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Consequently  these  two  bodies  will  have  the  same  motion  of  oscillationj 

if  their  initial  angular  velocities,  when  their  centres  of  gravity,  exist  in 
C 

the  vertical,  are  the  same,  and  if  we  have  also  I  =  — - —  *    The  second 
mh 

body  which  we  have  considered  is  the  simple  pendulum,  the  oscillations 

of  which  are  determined  in  No.  1 1,  and  by  means  of  this  formula  we 

are  always  enabled  to  assign  the  length  /  of  the  simple  pendulum  of 
which  the  oscillations  are  isochronous,  with  those  of  the  solid  which  we 

have  considered  in  this  number,  and  which  constitutes  the  compound 
pendulum.  It  is  thus,  that  the  length  of  the  simple  pendulum,  which 

vibrates  in  a  second,  is  determined  by  observations  made  on  compound 

pendulums.t 

,      .,        „   ,               .      d'^e           R.  sin. «  ,       ̂   ,  ,     . 
Multiplying  both  sides  of  the  equation  y-^=   j    by    2dS,  and    integrating    we 

obtain 

dd^  2R 

—  =    J-.COS.I+C, 

the  constant  quantity  C,  depends  on  the  angular  velocity,  and  on  the  value  of  6,  at  the 

commencement  of  the  motion. 

C 
♦From  the  expression  1= — r-,  it  appears  that  when  the  axis  of  rotation  passes  through 

the  centre  of  gravity,  I  is  infinite,  and  consequently  the  time  of  oscillation  is  infinite  in  this 

case,  in  fact  the  action  of  gravity  being  destroyed,  the  primitive  impulse  will  communicate  a 

rotatory  motion  which  will  be  perpetuated  for  ever,  if  the  resistance  of  the  air  be  removed. 

-)-  The  point  which  is  distant  from  the  axis  of  rotation  by  a  quantity  equal  to  I  is  termed 

the  centre  of  oscillation  of  the  body,  and  if  the  axis  of  rotation  passed  through  this  point, 

the  centre  of  oscillation  with  respect  to  this  new  axis,  will  be  in  the  former  axis  of  rotation, 

for  the  moment  of  inertia  with  respect  to  the  centre  of  gravity  being  equal  to  C — mh%  the 

mement  with  respect  to  the  new  axis  will  be  C-^-m  P — 2mlh.      See  note,  page  182,  ••.  the 

value  of  I  for  the  new  axis  =  — — "!       ,"' —  but  C=  mlk  .:  the  value  of  I  for  the  new ml — mn 

inp — mlh       , 
axis  =  —5   ;-  =  I. 

ml — mn 

C'ss  A  sin.  *i.  sin.  »(p+B.  sin.  ««.  cos.  *ip+  C.  cos.*tf+«^^  see  page  180,  where  J,B,C, 
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are  the  moments  of  inertia,  relative  to  the  principal  axis,  passing  through  the  centre  of 

gravity,  we  shall  have 

,        nik^.{.A.sm.sS.  sin.  ̂ /p-^-B.  sin,  sj.  cos.  -<P-{-  C.  cos.  25 
mh 

.'.  I  will  be  a  minimum  when  the  quantity  represented  by  Cin  the  text  is  the  least  of  the  three 
principal  moments  of  inertia,  for  in  that  case  the  other  two  moments  vanish,  let  A  be  the 
least  of  the  three  moments  then  we  shall  have 

,    mh'-i-A     .      .  „  .     „  ,       ,  .  .  . 
l^   /   ,  lor  sm.  6,  cos.  ip=0,  cos.  6—0,  .'.  when  /  is  a  nummum tnh 

2mVfi—7nVi^—mA       „     „      ,       a  /^ =0  .•./«=  A/  — 
dl  —   „,„    .dh 

.-.  I  and  consequently  the  time  of  oscillation  wiU  be  a  minimum  when  the  axis  of  rotation  is 

that  principal  axis,  relatively  to  which,  the  moment  of  inertia  is  a  minimum,  and  at  a  distance 

from  the  centre  of  gravity  by  a  quantity  equal  to    'w   — .    The  product  of  Ik.  is  constant 

C 
and  =  to  — ,  this  fraction  is  equal  to  the  square  of  the  distance  of  the  centre  of  gyration m 

from  the   axis  of  rotation,  therefore  this  distance  is  a  mean  proportional,   between   the 

distances  of  the  centres,  of  gravity  and  oscillation,  from  the  axis  of  rotation,   and  it  readily 

appears  from  what  precedes,  that  when  the  time  of  vibration  is  a  minimum,  the  distance  of 

the  centre  of  gyration  from  the  axis  of  rotation  is  equal  to  the  distance  of  the  centre  of 

gravity    from  this  axis,  and  the  distance  of  the  centre  of   oscillation  from  the  same 

axis  =.2*/— •    ̂   this  case,  the  centre  of  gyration,  is  termed  the  principal  centre  of 

gyration. 
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CHAPTER  VIII. 

Of  the  motion  of  fluids. 

32.  We  may  make  the  laws  of  the  motion  of  fluids,  depend  on  those 

of  their  equilibrium  ;  in  the  same  manner,  as  in  the  fifth  chapter  we  have 
deduced  the  laws  of  the  motion  of  a  system  of  bodies,  from  those  of  the 

equilibrium  of  the  system.  For  this  purpose,  let  us  resume  the  general 
equation  of  the  equilibrium  of  fluids,  which  has  been  given  in  No.  17» 

$p=f[P.Sa:  -t  QJ7/+RJz]  j 

in  which,  the  characteristic  $  refers  only  to  the  coordinates  «f  the  mole- 

cule X,  7/,  z,  being  independent  of  the  time.  When  the  fluid  is  in 

motion,  the  forces  which  would  retain  the  molecules  in  equilibrio 

are  by  No.  18, 

(^dt  being  supposed  constant)  ;  therefore  it  is  necessary  to  substitute  in  the 

preceding  equation  of  equilibrium,  these  forces  in  place  of  P,  Q,  B.  If 

we  snipi^ose  that  PSx-\-Q.Sr/  + Biz  is  an  exact  variation,  represented  by 
iV,  we  shall  have 
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'^-^-(^)■^'KS^)+-c^)^•^^^ 

this  equation  is  equivalent  to  three  distinct  equations ;  because  the 

variations  Ss,  Sy,  Sz,  being  independent,  we  are  permitted  to  make  their 

coefficients,  separately  equal  to  nothing. 

The  coordinates  x,  y,  z,  are   functions  of  the  primitive  coordinates, 

and  of  the  time  ?  j  t  let «  ̂  c  be  the  primitive  coordinates,  we  shall  have 

we  are  permitted  to  consider  PS^r-j-QSy+ii?*,  an  exact  variation  where  the  forces  which 
solicit  the  molecules,  aie  those  of  attraction  directed  towards  fixed  or  moveable  points, 

or  such  as  arise  from  the  mutual  attraction  of  the  fluid  molecules.  We  have  seen  in  No_ 

17,  that  this  is  the  condition  which  must  be  satisfied,  when  the  molecules  of  the  fluid,  are  in 

equilibrio  by  the  action  of  the  same  forces. 

f  The  position  of  a  molecule  at  any  instant,  is  known  when  we  know  the  coordinates 

a,  b,  c,  which  determine  its  position  at  the  commencement  of  the  motion,  or  at  any  de- 

termined epoch, .-.  X, y,  z,  are  respectively  functions  of  a,  b,  c,  and  t,  consequently  «e  have 

x-=zf{fi,  b,  c,  t),t/=:F.{a,  b,  c,  t,) ;  zzi<p.(,a,  b,  e,  t).  and  as  the  differences  indicated  by  the 
characteristic  S  refer  solely  to  the  variations  of  the  coordinates  n,b,c,  being  independent  of  the 

time,  the  expressions  for  dx,  lij,  ̂z,  should  be  such  as  are  given  in  the  text,  .'.  if  it  was  pro- 
posed to  compare  the  respective  positions  of  two  molecules  at  any  given  moment,  the  tiane 

should  be  considered  as  constant,  and  the  expressions  for  ̂ x  di/  iz  should  be  those  which  are 

given  in  page  22i,  on  the  other  hand,  if  we  consider  the  motion  of  the  same  molecule  for  the 

time  di,  the  values  of  dx,  dy,  dz,  deduced  from  the  preceding  expressions  for  x,  y,  z,  must  be 

taken  on  the  hypothesis  that  t  only  varies  and .  •.  when  t=0,  x=.a,  ij=b,  z-=c.  If  the  form  of  the 
preceding  functions  was  given,  by  eliminating  the  time  from  the  equations  which  determine 

values  of  X,  y,  z,  the  two  equations  which  result  will  be  the  equations  of  the  curve  described 

by  the  molecule,  however  as  a  i  c  are  different  for  each  molecule,  the  nature  of  this  curve  and 

its  position  will  be  different  for  each  molecule,  see  Note  page  31. 
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Lda  )  cao)  (ac  > 

By  substituting  these  values  in  the  equation  (2^),  we  may  put  the  coeffi- 
cients of  Sa,  Sb,  Sc,  separately  equal  to  nothing  ;  which  will  give  three 

equations  of  partial  differences  between  the  three  coordinates  of  the 

molecule  x,y,  z,  its  primitive  coordinates  a,b,c,  and  the  time  t. 

It  remains  to  satisfy  the  condition  of  the  continuity  of  the  fluid.*  For 
this  purpose,  let  us  consider  at  the  commencement  of  the  motion,  a  rectan- 

gular fluid  parallelepiped,  of  which  the  three  dimensions  are  da,db,dc.  If 

we  denote  its  primitive  density  by  (p),  its  mass  will  be  equal  to  {p).da.db.dc. 

Let  this  parallelepiped  be  represented  by  {A),  it  is  easy  to  see,  that  after 

the  time  t,i  it  will  be  changed  into  an  oblique  angled  parallelepiped ;  for  all 

the  molecules  which  in  the  primitive  situation  existed  on  any  face  of  the 

*  In  order  to  determine  the  condition  of  a  fluid  mass  at  each  instant,  we  must  know  the 

direction  of  the  motion  of  a  molecule,  its  velocity,  the  pressure  p,  and  the  density  g,  but  if 

we  know  the  three  partial  velocities  parallel  to  the  coordinates,  we  shall  have  the  entire  ve- 

locity, and  also  the  direction,  for  the  partial  velocities  divided  by  the  entire  velocity,  are  pro- 

portional to  the  cosines  of  the  angles  which  the  coordinates  make  with  the  direction,  see 

Note  page  26,  and  page  227. 

Three  of  the  equations  which  are  required  for  the  determination  of  those  sought  quan- 

tities, are  furnished  by  the  equation  (F) ;  another  equation  from  the  continuity  of  the  fluid, 

for  though  each  indefinitely  small  portion  of  the  fluid  changes  its  form,  and  if  it  is  com- 

pressible,  its  volume  during  the  motion,  still  the  mass  must  be  constant,  consequently  the  pro- 

duct of  the  volume  into  the  density  must  be  the  same  as  at  the  commencement,.  • .  by  equating 
those  two  values  of  the  mass,  we  obtain  the  equation  relative  to  the  continuity  of  the  fluid. 

f  After  the  time  t,  the  coordinates  of  the  summit  of  the  parallelogram,  whicji  were  a,  b,  c, 

at  the  commencement  of  the  motion,  will  be  j:,  y,  z,  ory(a  6c<),  ̂ {a  i  c  <),  ip  (a  6c/), 

the  coordinates  of  that  point  of  which  the  initial  coordinates  were  a,  b,  c-^-dc,  will  be 



y 
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parallelepiped  {A)  will  still  be  in  the  same  plane,  at  least  if  we  neglect 

quantities  indefinitely  small  of  the  second  order  ;  all  the  molecules  si- 
tuated on  the  parallel  edges  of  (A)  will  be  found  on  small  right  lines, 

equal  and  parallel  to  each  other.  Denoting  this  new  parallelepiped 

by  (B),  and  conceiving  that  through  the  extremities  of  the  slice 
constituted,  of  those  molecules  which  in  the  parallelepiped  (A)  compose 
the  side  dc,  we  draw  two  planes  parallel  to  the  plane  of  x  and  i/. 

Then  producing  the  edges  of  the  second  parallelepiped  to  meet  these 
two  planes,  we  shall  have  a  new  parallelepiped  (C)  contained  between 

G  G 

f(a,  b,  c+dc,  t),  F(a,  b,  c+dc,  t),  (p  (a,b,  c-(-dc,  t)z= 
respectively  to   . 

the  difference  between  these  coordinates  and  x,  y,  s,  are 

and  the  square  root  of  the  sum  of  the  squares  of  these  three  quantitities,  is  the  value  of  the 

side  of  the  parallelepiped  which  answers  to  the  side  dc  of  the  primitive  parallelepiped;  extracting 

the  square  root,  and  neglecting  the  third,  and  higher  powers  of  dc,  this  side  becomes  equal  to 

dz  drz  , 

Jc-'^^+a— •^'^' 
in  like  manner  it  may  be  shewn  that  the  quantities  which  in  the  original  parallelepiped  are 
equal  to  da,  di,  become 

the  opposite  sides  of  the  figure  are  equal  to  these ;  for  the  value  of  x,  y,  z,  which  corresponds 
to  the  primitive  coordinates  a-^-da,  b,  c, 

are/(a+da,  J + c  t)F{a-\-Aa  +  b,ct,)  ?i(a+da,  b  c  f)= 

x+J.da+^.da^^+|^.da+g-,.da^  .-j-  ̂.da+^.da^ da       ̂ %da^        ̂   '  da       ̂ 2.da^      '    ̂   da  2,dai 
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those  planes,  and  equal  to  (B)  ;  for  it  is  manifest  that  what  one  of  these 
planes  takes  from  the  parallelepiped  (B),  is  added  by  the  other  plane. 

The  two  bases  of  the  parallelepiped  (C)  will  be  parallel  to  the  plane  j',  t/,  : 
its  altitude  contained  between  its  bases  will  be  equal  to  the  difference  of 

~,  taken  on  the  hypothesis  that  c  *  only  varies  ;  consequently  this  altitude 

will  be  equal  to  |  —  V  dc. 

the  values  of  x,  y,  z,  which  answers  to  the  primitive  coordinates  a-\-da,  b,  c-j-dc,  will  be 

y"(«-j-da,  b,  c+dc,  t)  F(a.+da,  b,  c+dc,  <)  ifi(a-j-da,  b,  c+dc  i)r: 

da  2.  da-         '  dc       ̂   <2..d(?         '       ''da        ̂   ̂da-      'dc       idc^ 

dz    ,      d-z      ̂   g  ,  dz    ,       d*z        .  , 
'~'^do^'+2d^-^^'^d-a-^^+2i;^-  ̂ ^' 

.'.  the  difference  of  the  coordinates  of  these  points 

=  -7-.dc+  — -.  dc^   -f.  dc+ -^_.  Ac-,  -.  d<;+— =-:-.  dc?, 
dc  IMc-         .dc       ̂   Idc^  dc      ̂ 2c?c* 

and  as  these  differences  are  equal  to  the  corresponding  differences  of  the  opposite  side  of 

the  figure,  it  follows  that  these  sides  must  be  equal,  being  equal  to  the  square  root  of  the 

sum  of  the  squares  of  these  differences,  in  like  manner  it  may  be  proved,  that  the  other 
sides  are  respectively  equal  to  those  to  whichjthey  are  opposed  ;  and  the  parallelism  of  theee 

sides  is  a  necessary  consequence  of  their  equality,  fiom  which  we  infer  that  the  figui-e 
wliich  the  molecules  assume  is  a  parallelepiped.  The  equation  of  the  line  connecting  the 
points  whose  respective  coordinates  are 

f{a,b,c,t),  F{abcl),  (p(a  bct),f(a-\-da,b  ct),  F(_a+da,  b,  c  t,),  (p)a-^-da,b  ct), 

will  be  that  of  a  right  line,  if  we  neglect  the  indefinitely  small  quantities  of  the  second 
order,  and  the  same  is  true  for  all  lines  parallel  to  this  line,  of  the  sum  of  which  the  face 

may  be  conceived  to  made  up,  .•.  this  face  may  be  considered  as  a  plane. 

*  The  difference  between  the  values  of  z  corresponding  to  the  expressions 

.=,ia,b,c,t),-J=^,.^abc+dct)^'^.  dc+   ̂ £}.g=5|}.dc 
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We  shall  obtain  its  base,  by  remarking  that  it  is  equal  to  a  section  of 

(B)  made  by  a  plane  parallel  to  the  plane  of  a:,  y, ;  let  us  designate  this 

section  by  ({)•  The  value  of  z  will  be  the  same  for  all  the  molecules  of 
which  this  base  is  constituted,  therefore  we  shall  have 

°=  &3-^-  tiM'^rX-  ''■ 

Let  Sp,  Sq,  be  two  contiguous  sides  of  the  section  (e),  of  which  the  first 

is  made  up  of  molecules  which  existed  on  the  face  Ab.  dc.  of  the  paral- 

lelepiped {A),  and  of  which  the  second  is  composed  of  molecules  which 
existed  on  the  face  da.  dc.  If  we  conceive  two  lines  to  be  drawn 

through  the  extremities  of  the  side  Sp,  parallel  to  the  axis  of  .r,  by  pro- 
ducing them  to  meet  that  side  of  the  parallelogram  (f),  which  is  parallel 

to  Sp,  they  will  intercept  a  new  parallelogram  (x)  equal  to  (t),  of  which 

the  base  will  be  parallel  to  the  axis  of  x.  The  side  Sp  being  composed 

of  molecules  which  existed  on  the  face  d6.  dc,  and  relatively  to  which  the 

value  of  ~  is  constant ;  it  is  easy  to  perceive  that  the  altitude  of  the 

parallelogram  (x)  is  the  difference  of  y,  on  the  supposition  that  a,  z,  and 

t  are  constant,  consequently  we  have 

((Iz  ) 
db+  5  7— f  .  dc; (dc  i 

G  G   2 

by  neglecting  quantities  indefinitely  small  of  the  second  order.  For  all  the  molecules 

situated  on  the  edge,  which  corresponds  to  dc  in  the  original  parallelepiped,  projected  on  the 

axis  of  z,  the  values  a  and  6  remain  the  same,  nor  do  any  molecules  which  occur  in  the  face 

daM  enter  in  the  constitution  of  this  perpendicular,  therefore  it  is  equal  to  dz  on  the 
hypothesis  that  c  only  varies. 

*  If  we  conceive  the  molecules  of  the  face  db.dc  relatively  to  which  dz  is  constant,  to 
be  projected  on  the  axis  of  y,  it  is  evident  that  the  projected  Lne  is  equal  to  the  difference 
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from  which  may  be  obtained 

a 
this  is  the  expression  for  the  altitude  of  the  parallelogram  (x).  Its  base 
is  equal  to  a  section  of  this  parallelogram  by  a  plane  parallel  to  the  axis 

of  X ;  this  section  is  composed  of  those  molecules  of  the  parallelepiped 
[A),  with  respect  to  which  z  andj/  are  constant ;  its  length  will  be  equal 
to  the  differential  of  x  taken  on  the  hypothesis  that  z,  y,  and  t  are  con- 

stant, which  gives  the  three  following  equations 

"'-XTi^'^YiV^^tW- 

Ida  C  Idb^  idcy 

-{i}-ii}-^^+{^l-- 

of  y,  on  the  hypothesis  that  a  is  constant,  for  this  projection  is  the  same  for  every  series  of 

molecules,  which  exist  on  the  face  which  corresponds  to  the  primitive  face  di.dc,  and  rela- 

tively to  which  z  is  the  same.  We  obtain  the  expression  which  is  given  in  the  text  for  d^  by 
eleniinating  dc  between  the  two  preceding  equations. 

*  Since  the  parallelogram  (a)  exists  in  the  plane  parallel  to  the  axes  of  «,  y,  the  value  of  z 
will  be  constant  for  this  parallelogram,  and  since  the  base  of  (a)  is  a  line  parallel  to  the  axis 

of  a  the  value  of  y  ■ndll  be  the  same  for  all  molecules  situated  in  this  base,  but  since  in  this 
base  molecules  occur  which  belong  to  the  faces  da.dh,  da.dc,  db.dc,  a,b,c,  will  vary  for  these 
molecules. 
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In  order  to  abridge,  let  us  make 

~   Ida  ̂ - Idb^'^dc  \       lda\'ldc\'ldb^ 
idxl    (di/l    (dz^l  , 

^  Idb^'ldc^'lda^ 

•  Multiplying  the  second  equation  by  j  j-  f  >  and  the  third  by  -!  ;r  f  .  and  then 

subtracting  we  shall  eliminate  dc 

■■■  |(i-)(i)-(|)L^)}-«+  |(l)(S)-(|)(|)}-a*.=o 

"  '      ,  ,    ̂   ,  ,  .da 

in  like  manner  we  can  obtain 

{{7:}-{l}-{l}-{^i}'-+{{l}-{|}-{|}-{f}}-=o 

.•.dc=    \di>s'\d^s~  \Ey\da  s  ̂^ 

dx 

\    da'        ̂ dz\     Sdj\_UyX     idz^y-Xdb\ 
^         XdcS'XdbS    \dcS'\dbs 
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ldb\'lda\'ldc\+  ldc\-lda\'ldb\       Ucylm'idcS 
we  shall  have 

Q.da 
dxzz 

IdbS    Idc)       Idcf'l 

dz_ 

db 
this  is  the  value  of  the  base  of  the  parallelogram  (a)  j  therefore  the  isur- 
face  of  this  parallelogram  will  be  equal  to 

^Aa.Ab 

\dc) 

This  quantity  also  expresses  the  surface  of  the  parallelogram  {i),  if  we 

idz' 

multiply  it  by4(—/dc  we  shall  have  ̂ AaAbAc  for  the  volume  of  the 

\db  J  •  ̂f/a5  \dly  If/a  5  (  dx~\ 
Sdz-x  Sd_y  \_  Sdy\  frfc-i  '  \  del 
\dc\'\db   j         \dci  '\dh] 

,  da= 

{l^}{S}{i}-{^:}-{l}.{i}+{|}.{f}.^,t] 

•    XdcS'XdbS        Xuci'Xdh) 
Q.  da 

\dcj\db\        idcfidbi 

=  the  base  of  the  parallelogram  (a),  this  expression  being  multiplied  into  the  value  of  di/ 
gives  the^area  of  (a),  and  this  area  being  multiplied  by  the  altitude  gives  the  volume  of  (Q 
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parallelepipeds  (C),  and  (5).  Let  p  represent  the  density  of  the  paralle- 
piped  (A),  after  the  time  /;  we  shall  have  its  mass  equal  to  p  Q.da.db.dc  j 

and  by   equating  this  to  its  primitive  mass  {f).da.db.dc  we  shall  have 
pe  =  (p);  (G) 

for  the  equation  relative  to  the  continuity  of  the  fluid. 

33.  The  equations  (i^)  and  (G)  may  be  made  to  assume  another  form, 
which  is  in  certain  circumstances  of  more  convenient  application.  Let 

u,  V,  and  V  be  the  velocities  of  a  molecule  of  the  fluid,  parallel  to  the 
axes  of  X,  of  y,  and  of  z  j  we  shall  have 

{ll  =  -{'f|=-l.T}  =  ̂- By  differentiating  these  equations,  u,  v, ,  V  being  considered  as  functions 
of  the  coordinates  x,  ?/,  z,  of  the  molecule,  and  of  the  time  t,  we  shall  have 

c?'.r>_  (du\  <f^in    .        (din      ,j    cdu-i 

j  d\t 

*«»  w>  V,  are  respectively  unknown  functions  of  x,y,  z,  and  /,  they  depend  on  the  coordinates 
X,  y,  z,  because  for  a  given  value  of  t,  the  velocity  is  different  in  different  molecules,  they 
depend  on  t,  because  for  the  same  values  of  x,y,  z,  the  velocity  varies  every  instant, 

•••-=m-'M<^}'^+{|}''-+ {£}•*■ 

and  since  dx=udt,  dy  =  v.dt  dz='\dt, 

substituting  and  dividing  by  dt,  we  obtain 

,    .  dx     da     d^x but  u  =  —  .:  — =  — . 
dt     dt      dt^ 

n       .1,       1         J-*'"  dv  dW      .       .      , 
trom  the  values  of^,^  ,— ,    given  m  the  text,  it  appears  how  the  increment  of  each  of 
the  three  velocities  depends  on  the  two  other  velocities.    F  we  were  able  to  determine  the 
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consequently  the  equation  (F)  of  the  preceding  number  will  become. 

In  order  to  have  the  equation  relative  to  the  continuity  of  the  fluid  ; 

let  us  conceive  that  in  the  value  of  S,  of  the  preceding  number,  a,  b,  c, 

were  equal  to  t,  i/,  z,  and  that  j;,  y,  z,  were  equal  to  x  +  udt,  y+vdt, 

z+V.dt,  which  is  equivalent  to  assuming  the  primitive  coordinates  a,  b,  c, 

indefinitely  near  to  cc,  i/,  z,  j  we  shall  have 

value  of  !4  in  a  function  of  x,  y,  z,t,  we  could  by  means  of  the  equations  ~jj'—  "'  ̂   =  '"' 

dz_ 

It' 

position  of  this  molecule,  and  also  what  function  of  x  i/zt,  uv\  are,  for  substituting  in  the 

dx  dy  dz 

_  ̂ V  determine  the  position  of  a  molecule  at  any  instant,  provided  we  know  the  initial 
dt 

iition  I 

equations  —  =  ti,  —  =  v,  -j  =V  the  values  of  t«  v,  V,  in  functions  oixyxt,  and  integrating, ^  dt  dt  dt 

we  would  obtain  the  values  of  «,  y,  x,  respectively  in  a  function  of  i,  the  constant  arbitrary 

quantities  which  are  introduced  are  the  values  of «,  y,  z,  at  the  commencement  of  the  motion 

which  by  hypothesis  are  given,  consequently  the  values  o(  x  y  z  will  be  completely  deter- 

mined for  any  instant.  Eliminating  t  between  values  of  x,  y,  z,  to  which  we  have  arrived, 

we  would  obtain  the  two  equations  of  the  curve  described  by  the  molecule,  but  since  the 

initial  position  of  each  molecule  is  different,  the  form  of  this  curve  will  also  be  difterent,  as 

will  be  in  like  manner,  the  position. 
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:dV-) HH 

•  The  fii-st  coordinates  being  assumed  indefinitely  near  to  x,y,  ~,  we  shall  have  da  —  ds, 

and  the  quantity  which  corresponds  to  rfa:=to  (/«+*«.*,  in  like  manner  we  shall  have 

dx,+du.dt  dx+diuft  di/-\-dtrdt     di/+dv.dt    dz+dV.dt    dz+dV.dt 

"~d^  '      dy         '     dz  '        dz         '      dy  '     dx 

respectively  indefinitely  small,  because  when  t—O  these  quantities  vanish,  /.  the  product 

of  any  two  of  these  quantities  may  be  neglected,  making  these  substitutions  the  expression 
for  C  becomes  equal  to 

(dx  +  duJl\      fdi/  +  dv.dt\      (dz+dYdt} 

\  dx      ]•{'      dy        /  ■  t  "~d2        ) 

_   (dx+du.dt\     fd^-hdv.dt\      (dz  +  dy^t\ 

\    dx  M"  rf-'  ri    dT i 
,     cdxj-dtudt-i      (dy+dv.dty     cdz+dV^l 

"^  t         dy      r\         dz      ]l         dx      i 
   f  dx-\-du.dt  ■)     f  dy+dv.dt  ■>     r  dz+dV.dt  1 

1         dy       rl         dx     i'l         dz       y 

(dx-\-dn.dl\     ( di/+dv.dt  \      cdzJ-dVJl) 

"^1         dz      r\         dx     i'\         dy      i 

   i  dx-\-du.dl-i     ̂ dy+dv.dt\      f  dz-^dY.dt  \ 
I         dz      \    \         dy      ]\  dx        \ 

the  first  term  of  this  expression 

=  by  neglecting  quantities  indefinitely  small 

\dx       dy       dzl 

the  other  terms  of  this  expression  vanish.    It  appears  from  what  precedes  that  €j  is  a  con- 

stant quantity  independent  of  the  time,  when  the  fluid  is  incompressible  S=l. 
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the  equation  (G)  becomes, 

If  we  consider  p  as  a  function  of  x,  y,  z,  and  t,  we  shall  have 

therefore  the  preceding  equation  will  become 

*  The  density  {,  the  pressure^,  may  be  shewn  to  be  functions  ol  xy  z,  t,  by  reasoning, 
analogous  to  that,  by  wliich  u,  v,  V,  were  proved  to  be  functions  of  these  quantities ; 

is  the  increment  of  g  on  the  supposition  that  t  is  constant, 

"'•  {1}  -«•*■  {1}  -*  {|}  -^-  {S} 

is  the  variation  of  §  on  the  hypothesis  that  x,  y,  z,  t,  vary  .*.  their  difference 

is  the  differential  of  the  equation  (fi)  taken  with  respect  to  the  time ; 



PART  I.— BOOK  I.  3SS 

this  is  the  equation  relative  to  the  continuity  of  the  fluid,  and  it  is  easy 

to  perceive  that  it  is  the  differential  of  the  equation  (G)  of  the  pre- 
ceding number,  taken  with  respect  to  the  time  t. 

The  equation  (H)  is  susceptible  of  integration  in  a  very  extensive 

case  that  is,  when  uSa:  +  vJj/  +  YJz  is  an  exact  variation  of  *,  t/,  z,  p 

being  any  function  whatever  of  the  pressure  p.     Therefore  if  we  re- 

H  H  2 

when  the  fluid  is  incompressible,  we  have 

for  in  this  case  both  the  magnitude,  and  density  are  constant,  .•.</£  and  d^  are  re- 

spectively equal  to  nothing,  these  two  equations  combmed  with  the  three,  which  may 

be  derived  from  the  equations  {H),  or  (f ),  are  sufficient  to  determine p,  {,  and  the  three 

partial  velocities,  u,  v,  V,  in  functions  of  x,  y,  z,  t,.      When    the  differential    coefficients 

-i,  -  ,— ,  — ,  vanish  of  themselves,  g  must  be  a  constant  quantity,  and  the  incompressible 
dt   dx   dy    dz 

fluid  will  be  also  homogenous,  .-.  in  this  case  the  number  of  unknown  quantities  is  reduced 

to  four,  which  is  also  the  number  of  differential  equations.     When  the  fluid  is  elastic  the 

number  of  unknown  quantities  will  be  ultimately  reducible  to  four,  for  when  the  temperature 

is  given /)=yt.  g, .-.  the  equation  {K)  and  the  tliree  equations  (i/Jare  sufficient  to  determine 
the  unknown  quantities,  in  this  case 

^1—L  h.—  l- 
S.  log  5. 

k  will  not  be  constant  when  the  temperature  varies,  but  if  the  law  of  its  variation  is  known, 

since  for  each  different  instant,  and  point  of  space  the  temperature  is  a  given  fonction  of 

x,y,z,t,}c  will  be  so  likewise,  so  that  even  in  this  case  the  equations  (A')  and  H  are  sufficient 
to  determine  ̂ ,u,v,\.  It  appears  from  what  precedes,  that  we  have  always  as  many  equations 

of  partial  differences  as  sought  quantities,  however  the  general  integration  of  these  equations 

has  baffled  the  ingenuity  of  Pliilosophers  and  even  granting  that  it  is  possible  to  effect  this 

integration,  still  the  determination  of  the  arbitrary  functions  introduced  by  these  integra- 

tion, is  extremely  difficult,  these  functions  depend  partly,  on  the  primitive  state  of  the  fluid, 
and  partly  on  the  equation  of  the  exterior  surface. 
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•present  this  variation  by  $<?,  the  equation  (H)  will  give 

from  which  may  be  obtained  by  integrating  with  respect  to  i, 

*  If  we  take  the  differential  of  the  equation  u2*:+v2i/-\-Y .^z  with  respect  to  i,  x,  y,  z, we  shall  obtain 

'>*+  £-^-*+  E-^-'-- 1-^'=£-  -"'^  t-""'^Z -'•■•" 

««  dz        -^  '    dz  dz  dz  c/z  ^  '  dx- 

now  substituting  udl,  vdt,  Ydt,  in  place  of  dx,  dy,  dz,  and  remarking  that,  j^—  j-,  v=z    —, 

&c.  and  also  that  3.-?  =  _1^  we  shall  have dt  dt 

:=  the  sum  of  the  last  members  of  the  preceding  equations,  but  these  by  concinnating,  and 

dividing  by  dt  are  evidently  equal  to  the  second  member  of  the  equation  ( H).  Since  the 

integration  is  only  made  relative  to  the  characteristic  S,  it  is  evident  that  the  time  is  not  in- 

volved  in  this  expression.  When  the  fluid  is  homogenous  —&c.=0.*.  the  equation  of  con- 

tinuity is  reduced  to  the  second  term,  by  means  of  this  equation,  and  the  equations  uzz.  -j-, 
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It  is  necessary  to  add  to  this  integral,  a  constant  quantity,  which  is  a 

function  of  t ;  but  we  may  suppose  that  this  function  is  contained  in  the 

function  (p.  This  last  function  gives  the  velocity  of  the  molecules  of  the 

fluid  parallel  to  the  axes  of  .r,  of  y,  and  of  z ;  for  we  have 

The  equation  (AT)  relative  to  the  continuity  of  the  fluid,  becomes 

consequently,  we  shall  have  in  the  case  of  homogenous  fluids, 

It  may  observed,  that  if  the  function  u^s  +  vS^  +  YJz  is  an  exact  va- 

riationof  a:,  t/,  z,  at  any  one  instant,  it  will  always  remain  so.  In  fact, 

let  us  suppose  that  at  any  instant  whatever,  it  is  equal  to  Sep,  in  the  sub- 
sequent instant  it  will  be  equal  to 

'^^^'■p\-^^i\'>'^m>^] .  * 

D=— ?,  V=  — ,  and  the  value  for  y"-^,  r:  in  this  case  — ,  we  can  determine  (p  and  p  and dy  dz  5  5 
consequently  u,  w,  V,  in  functions  oi  xy  z. 

•  From  the  value  of  V — f.  —  it  appears  that  the  pressure  of  a  molecule,  of  which  the e 
density  is  constant,  diminishes  when  the  velocity  which  is  equal  to 
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therefore  it  will  be  an  exact  variation  at  this  new  instant,  if 

r}''-i:f}-^+{.?}- 
:clu 

^m'^Yi\'+\t] 
is  increased. 

substituting  this  value  of  S.  J  ̂   <  b  the  expression  for  JV—  £  we  obtain 

and  since  each  of  the  terms,  of  the  second  member  of  this  equation,  are  exact  variations  of 
m,  y,  z,  the  first  member  will  also  be  an  exact  variation,  we  suppose  g  to  be  a  function  of  p. 

is  the  differential  of  S0,  on  the  supposition  that  the  time  only  varies.  Consequently,  we  are 
not  obliged  to  determine  ip  in  j:,y,  z,  in  order  to  know  whether  it  is  an  exact  differential  or 

not.  .•.  It  appears  tliat  if  ii^x.\-v1y-{-V .^z  be  an  exact  variation,  at  the  subsequent  instant 
tts  increment  will  bean  exact  variation,  .-.  S?i  +  this  increment  will  be  an  exact  variation. 
As  in  general  we  know  the  condition  of  the  fluid  at  the  commencement  of  the  motion,  if 
at  this  moment  t(Sx+ uJj/^-V.Si  is  an  exact  variation,  it  will  be  an  exact  variation  when  *^  ± 
df,  t~  ±  2dt,  &c.  and  in  general  whatever  may  the  value  of  t.  ?<?x+ v.Jy+ V.Ss  will  be  an 
exact  variation,  if  when  t~0,  the  fluid  either  has  no  velocity  or  a  consUmt  one,  for  in  first  case 
u=0,v—0,V=0  when  t  vanishes,  .-.  «?jr+t)Sy+VSz  will  be  integrable  for  this  moment, 
the  second  case  will  obtain  when  the  motion  is  produced  by  an  impulse  on  the 
surface  of  the  fluid,  such  as  that  which  arises  from  the  action  of  a  piston.  For  the  velocities 
u,  V,  V  which  are  communicated  to  each  of  the  molecules,  must  be  such,  that  if  they  are 
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is  an  exact  variation  at  the  first  moment,  but  the  equation  (H)  gives  at 
this  moment 

consequently  the  first  member  of  this  equation  is  an  exact  variation  of 

X,  y,  z,  ;  therefore  if  the  function  uSx-\-v.Sy+W.dz  be  an  exact  variation 

at  any  one  instant,  it  will  be  one  in  the  next,  therefore  it  will  be  an  exact 
variation  at  all  times. 

When  the  motions  are  very  small;  the  squares  and  products  of  «,  v,  V, 

may  be  neglected  ;  and  the  equation  {H)  will  then  become 

therefore  in  this  C9.se  uSx  +  vSy  +  YJz,  is  an  exact  variation,  provided 

that,  as  we  have  supposed,  ̂   is  a  function  of  p;  therefore  if  we  designate 

destroyed  by  impressing  on  each  molecule,  equal  velocities  in  an  opposite  direction  the  entire 

fluid  would  quiesce ;  .'.  in  consequence  of  the  primitive  impulsion,  and  the  velocities  u,  v,  V, 

applied  in  an  opposite  direction,  there  must  be  an  equilibrium,  .*.  m  ti  V  must  be  such  that 

M3«+i'Jy-|-V.Sz  may  be  an  exact  variation,  see  No.  17 ;  it  appears  from  what  precedes,  that 

the  integrability  of  the  equation  (//),  and  the  consequent  determination  of  p,  g,  a,  f,  V, 

depends  on  the  nature  of  the  velocities,  communicated  to  the  molecules  at  the  commence- 
ment of  the  motion. 

*  In  the  equation  {H)  u,  v,  V,  are  very  small  quantities,  and  in  like  manner 

.'.  their  product  may  be  rejected  .*.  naming  this  variation  3ip  we  have  as  before, 

'4'-='S-'-={{.t)-'^(.t)-'»+(?)-'-}-  ' 
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this  variation  by  i(p,  we  shall  have 

and  if  the  fluid  be  homogenous,  the  equation  of  continuity  will  become 

lc/a,'^S       UyA       ̂ dz*S 

the  expression 

o^^m+0'^o' 
is  the  value  of  V — /  *,  when  uSx+v^y-^-V .h  is  an  exact  variation,  it  is  reduced  to e 

its  first  term  when  u,  v,  V,  are  very  small  quantities. 

However  though  the  form  of  these  equations  is  comparatively  so  much  simpler,  than  the 

general  equations  which  have  been  given  in  page  232,  still  the  determination  of  the  lav>s 

of  the  small  oscillations  of  the  waves  of  the  sea,  is  yet  a  desideratum  in  Physics.  Philo- 

sophers have  been  much  more  successful  in  investigating  the  oscillations  of  the  pulses  of  the 

air,  and  in  the  determination  of  the  velocity  of  the  propagation  of  sound. 

Tlie  integration  of 

which  is  the  equation  relative  to  the  continuity  of  the  fluid,  when  wJx+v.Sy+VS*  is  an 

exact  variation,  and  when  the  fluid  is  homogenous,  which  is  consequently  the  simplest  possible 

form,  is  extremely  difficult,  however  it  has  been  completed  effected  by  Antonie  Parseval, 
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these  two  equations  contain  the  entire  theory,  of  the   very   small  un- 

dulations of  homogeneous  fluids.* 
1 1 

•  If  the  fluid  which  makes  small  oscillations  be  water,  by  making  the  axis  of  z  vertical, 

fl>z=g.3r,g  representing  the  force  of  gravity,  Pdx,  Q3y  are= respectively  to  nothing, 

in  like  manner  we  may  cortteive  it  to  be  homogeneous  and  incompressible,  consequently 
we  shall  have 

/i=£....,._fe=,.{*)=,.,^'A.,^  f  =  O- 

at  the  surface  p  vanishes,  •'•-="•  1  j7  I '  consequently  when  the  form  of  ?  is  deter- 

mined, we  can  derive  the  equation  of  the  part  of  the  fluid  in  which  p=0,  i,  e,  the  equation 
of  the  surface  of  the  fluid. 

We  determine  <f  as  was  already  observed  by  means  of  the  equation 

m^i^vv^}-"' 
For,  elastic  fluids  or  those  whose  density  varies,  p^zt  §,  and  if  (j)  the  density  of  the 
fluid  in  a  state  of  rest,  becomes  in  a  state  of  motion  equal  to  (?)+(?)■?»  9  being  a  very 

small  quantity,  5  will  be  equal  to  (5)  + (^).  J,  the  oscillations  being  supposed  very  smaU, 

•iV~^£zz'i.  ̂ ^jwai  become  3  V—i,  ̂=:J.  i  ̂  ]  ,  the  only  force  acting  being  that  of 

gravity,  and  the  motion  being  supposed  parallel  to  the  horizon,  3  V  will  vanish  and  the 

equation  will  become  —  -^  =  ?.  •!  ~  j-  =  by  substituting  for  {  its  value,  ({)  being  sup- 

posed constant,—  '-jr-^;  •••— 1.  log.  q=  \^.\  .the  equation  relative  to  the  continuity  of  the 
fluid  will  become 

vanish,  the  motion  being  supposed  to  be  performed  in  a  direction  parallel  to  the  axis  of  s,  and 
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94.  Let  us  consider  art  homogetieous  fluid  ifiass  which  i-evolves  Uni- 

formly about  the  axis  of  x.  n  represeilting  the  angulal*  velocity  of 
rotation,  at  a  distance  from  the  axis  equal  to  unity,  we  shall  have 

v  =  —'nzy  Yz=.ny;  *  consequently  the  equation  [H)  of  the  preceding 
number,  will  become 

P 

consequentiy  the  velocities  v,V, = respectively 

which  is  a   quantity  indefinitely  small   of   the  second   order,  /.  it  may  be    neglected, 
consequently  the  preceding  equation  becomes 

« \-o>^Mm =»■  ̂"•^— ■'^■'-  ̂ --{^} 

con 

this  equation  is  of  great  celebrity  in  the  history  of  the  integral  calculus,  it  was  first  in- 

tegrated by  D'Alembert,  in  an  analysis  of  tlie  pfoblem  of  the  vibrating  chord,  which  leads 
to  an  equation  of  precisely  the  same  form. 

*  The  linear  velodtyis  equ&l  to  the  angular  velocity  mnkiplied  into  tlie  distance,  .-.at  a 
distance  represented  by  unity,  the  linear  velocity  =n,  and  since  the  angular  velocity  at  all 

distances  from  the  axis  is  the  same,  at  a  distance=v'  ~z^~+p'  the  linear  velocity  =  n. 

V  22+^1,  the  direction  of  the  motion  being  perpendicular  to  the  radius  in  order  to 

obtain  the  velocity  parallel  to  the  coordinates  r,y,  we  should  multiply  n.  \/z»+^»  into  the 

cbsiiies  of  the  ailgfes  Vhich  z  and^'make  with  the  "tangent,  but  these  cosifles  are  respectively 

y  — z 
/.  „;.  ~„'  —         „'  for  the  motion  being  circular,  if  one  of  the  cordinates  be  increased, 

the  other  will  be  diminished  .•.  v=z   nz,  Y=ny. 

t  The  tenns  torr^pwdfng  to  -{  t-  f  >  j -7-  1 ,  \  -r-  \ .in the  equation (i!/)  vanish, 

because  the  time  does  not  enter  into  the  values  of  u,  v,  V.in  like  manner  a  and  its  differential 

ooefficients  vanish,  and  from  the  values  of  v,  V,    given  above,   it  is  manifest  that 
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wiiich  equation  is  possible,  because  its  two  members  are  exact  yariations. 

The  equation  (^K)  pf  tjie  same  nu^iber  will  become 

and  it  is  manifest  that  this  equation  will  be  satisfied,  if  the  fluid  mass  ,be 

homogeneous.  The  equations  of  the  motion  of  fluids  will  therefore  be 

satisfied,  and  consequently,  the  motion  is  possible. 

The  centrifugal  force  at  the  distance  4/3/*  +z*  from  the  axis  of  ro- 

tation, is  equal  to  the  square  Ti'.(_^+i/^)  of  the  velocity,  divided  by  this 
distance;  therefore  the  function  n^.(i/Si/  +  z.Sz)i  is  the  product  of  the 

II  2 

/—  ),  (  — -},are  equal  respectively  to  nothing,  consequently  the  only  terms  wliich  have  a 

finite  value  are  V.  \-f-)>  '"•V  j~)'  which  are  respectively  equal  to  zz-r-n^y, — «'  «>  •••the 

equation  (H)  will  become  ̂ ^  SF+n^(v5^+^Sz),  this  equation  determines  the  pressure e 

when  ̂   is- constant,  «r.  when  it  is  a  function  of  p, 

*  The  equation  (K)  is  resolvable  into  two  parts  as  before, 

(I)  +«-(|)+-  (|)+-■(l)+^{(|)+(|)+(£^)^ 

the  velocity  being  uniform,  its  increment  resolved  parallel  to  the  axes  of  x,  y,  z,  i,  e 

.du  \   (  ̂'v\   /dV  . 
{di)'^~d^)'{oiry 

must  be  severally  equal  to  nothing,  this  is  evident  for  v,  V,  from  their  values  which  have 

been  given  above,  with  respect  to  the  velocity  u,  it  must  be  produced  by  the  part  of  the  velocity 

which  is  parallel  to  x,  and  if  it  was  not  uniform,  the  fluid  would  not  have  a  uniform  motion  of 
rotation  about  the  axis  of  x, 

   zdz-{-yh/ 
t  The  centrifugal  force  =  ?j\\/ 2-+ v^   the  variation  of   the  distance  =       , 

•■•  "'•(z^^  +  ySy)  is  =  to  th^  centrifugal  force  mi^ltiplied  into  the  element  of  the  distance. 
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centrifugal  force,  by  the  element  of  its  direction  ;  thus,  if  we  compare 

the  preceding  equation  of  the  motion  of  a  fluid,  with  the  general 

equation  of  the  equilibrium  of  fluids,  which  has  been  given  in  No.  1 7, 

we  may  perceive  that  the  conditions  of  the  motion  are  reduced,  to  those 

of  the  equilibrium  of  the  fluid  mass,  solicitedby  the  same  forces,  and  by 

the  centrifugal  force  which  arises  from  the  motion  of  rotation ;  which  is 

sufficiently  evident  from  the  nature  of  the  case. 

If  the  exterior  surface  of  the  fluid  mass  be  free,  we  shall  have  Sp—Q, 
at  this  surface,  and  consequently 

0  =  SV-^n^.{ySy-\-zSz)  ; 
* 

Substituting  for  SFwe  obtain  -!—=^P.^x-\-QJy\-R.'^z-\-m.yly\-rfiz.tz,t]\e  quantity  added 

i,  e,  the  centrifugalforcemultiplied  into  the  element  of  distance,  being  an  exact  variation,  itfollows 

that  the  expression  for  —will  in  this  case  be  an  exactvariation,  n  is  some  function  of  the  distance 

of  the  molecules  from  the  axis  of  rotation,  as  the  tme  is  not  involved  in  the  preceding 

equation,  it  follows  that  the  conditions  of  the  motion  of  a  fluid  mass,  about  an  axis,  with  a 

given  velocity,  are  the  same  as  the  conditions  of  equilibrium  of  a  fluid  mass,  the  same  forces  as 

before  soliciting  the  molecules,  combined  with  the  centrifugal  force,  arising  from  the  uniform 

revolution  about  the  axis.  The  molecules  of  the  fluid,  though  they  have  a  motion  about  an 

axis,  are  relatively  at  rest. 

*  At  the  exterior  free  surface  Sp=0,  .*.  3  F+n -(?/Jy +  2J2)=0,  .-.  in  order  that  the  form 
of  the  fluid,  may  remain  the  same,  during  the  entire  motion,  n  must  be  constant.  If  die 

fluid  was  water  contained  in  a  vessel  open  at  its  upper  surface,  j  is  constant,  and  3  V=g.2x 

the  axis  of  rotation  being  supposed  vertical,  .•.  Q.Sy,  iJSz  vanish,  and  P=g,  consequently,  we 

shall 
haveZ.^ — gx-j-n^.i  "  "^^    j+/«and  at  the  free  surface,  wehave.T=w".^   ~^-^  j 

-|   for  the  equation  of  this  surface ;  if  m*.  \/  z^  +  if  which  expresses  the  centrifugal  force 

varied  at  the  2r — 1  power  of  the  of  the  distance  from  the  axis  of  rotation  i,  e,  as 

2r— 1 

2.  r— I 

(2*+/);"  '  =a  ». (a »+i^  -),  and/«^0^^+zSi) 

r  ' 

\     ̂ r       I'  ^    "ir.g    )      g 
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from  which  it  follows  that  the  resultant  of  all  the  forces  which  actuate 

each  molecule,  must  be  perpendicular  to  this  surface,  moreover  it  must 
be  directed  towards  the  interior  of  the  fluid  mass.  If  these  conditions 

be  satisfied,  an  homogeneous  fluid  mass  will  be  in  equilibrio,  whatever  may 

be  the  figure  of  the  solid,  which  it  covers. 
The  case  which  we  have  discussed,  is  one  of  those  in  which  the 

variation  uSx  +  vSy-{-YSz  *  is  not  exact ;  for  then  this  variation  becomes 

.•.  if  r  is  positive,  x  is  least,  when (2*4-2^)  =0,  when  r  =1  all  the  molecules  revolve  in  the  same 
2^-4- 2/ \        li 

time,  and  *=  a  * .  i    ̂     J  -i —  which  is  the  equation  of  the  concave  surface  of  the  parabo- 

loid,  of  which  the  parameter=  — — ,  the  periodic  time  being  equal  to  the  force  divided  by 

the  distance  =  — .  .•.  if  the  time  of  revolution,  be  called  T,  we  shall  have  the  parameter  of a 

the  generating  curve  rsto  —T'Sc—  =     —  ~  Zj/  -  +A — ps   .*.  x  being  the  same,  the 

pressure  is  gi'eater  at  a  greater  distance  from  the  axis  of  rotation. 

When  r  is  negative,  at  the  point  where  i*+y2  =0,  x  is  infinite,  and  when= — h  the  surface 
of  the  fluid  will  be  such,  as  would  be  generated  by  the  revolution  of  aconical  hyperbola,  about 

its  asymptote,  the  axis  of  x  is  in  tliis  case  the  as)Tnptote.  The  constant  quantity  h  denotes 

the  distance  of  the  origin  of  the  coordinates  from  the  other  asymptote,  .*.  both  in  this  case 
and  where  the  surface  of  the  fluid  is  paraboloidal,  the  constant  quantity  depends  on  the 

quantity  of  water  in  the  vessel.  If  the  vessel  was  cylindrical,  we  could  determine  the  area 

of  the  paraboloid,  provided  that  we  knew  the  area  of  the  base  of  the  cylinder,  and  also  the 

points  of  greatest  elevation  and  depression,  for  the  paraboloid  is  half  the  circumscribing 

cylinder. 

This  paraboloidal  figure  is  that  which  is  assumed  by  the  molecules  of  the  fluid,  in  the  ex- 
periment which  Newton  adduces,  in  order  to  shew  that  the  effects  by  which  absolute  and 

relative  motions  are  distinguished  from  each  other,  are  the  forces  of  receding  fi-om  the  axis  of 
circular  motion.     See  Princip.  Math,  page  10. 

•  wJx-t-uJy+ V.J2  is  not  an  exact  variation  in  the  preceding  investigation,  for  substituting 

for  V,  and  V,  we  obtain  t,=_«;,V=ny,  .  •.  wJx-f-  v.ly+  V.S2=n.(!/Jz— z.Sy),  consequently  it 

appears,  that  though  the  circumstance  of  the  preceding  expression  being  an  exact  variation, 

would  facilitate  very  much,  our  investigations,  still  it  is  not  essentially  necessary,  that  this 

should  be  the  case,  in  order  that  the  motion  should  be  possible.  :■  Since  in  the  case  of  the 

sea,  revolving  round  with  the  earth  round  its  axis,  and  relatively  quicscing  with  respect  to  the 
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^^n{zh/—ySz] ;  therefore  in  the  theory  of  the  flux  and  reflux  of  the  sea, 

tve  are  not  permitted  to  assume,  that  the  variation  concerned  is  exact ; 

since  it  is  not  so  in  the  very  simple  case,  in  which  the  sea  has  no  other 

motion,  but  that  of  rotation,  which  is  common  to  it,  and  the  earth. 
35.  Let  us  now  determine  the  oscillations  of  a  fluid  mass  which 

covers  a  spheroid  revolving  about  the  axis  of  t;  and  let  us  suppose 

that  it  is  deranged  from  the  position  of  equilibrium,  by  the  action  of  very 
small  forces. 

At  the  commencement  of  the  motion,  let  r  represent  the  distance  of  a 

molecule  of  the  fluid,  *  from  the  centre  of  gravity  of  the' spheroid  over 
which  it  is  spread,  and  which  we  shall  suppose  immoveable  ;  let  6  be  the 

angle  which  the  radius  r  makes  with  the  axis  of  a:,  and  zr  the  angle  which 

the  plane  passing  through  the  axis  of  x  and  the  radius  r,  constitutes  with 

the  plane  of  x  and  of  j/.  Let  us  suppose  that  after  the  time  t,  the  radius 

?•  is  changed  into  r  +  a,s,  that  the  angle  fi  is  changed  into  9  +  aw,  and 

finally,  that  the  angle  t3-  is  changed  into  7it+-By  +  a.v;  a.s,  aw,  and  af, 
being  very  small  quantities,  of  which  the  squares  and  products  may  be 

neglected,  we  shall  have 

x  =  (r-\-cis).  cos.  (6  +  Ml)  } 

^  =  Cr4-«s).  sin.  (9+«m).  cos.  (n?+ in- +  aw); 

2;:=(r+a5).  sin.  (S  +  aw).  sin.  {nt-i-zr^-aV). 

eartb,  u'ix-\-vii/-\-y.h  is  not  an  exact  variation,  we  may  conclude  a.Jbrtiori,  that  it  is  not  one, 
where  the  oscillations  arise  from  the  attractions  of  the  sun  and  moan,  which  produce  tlie 
flux  and  reflux  of  the  sea. 

In  order  to  ascertain  whether  an  incompressible  fluid  solicited  by  accelerating  forces, 

'and  also  by  a  centrifugal  force,  may  be  at  the  surface  of  a  given  figure  of  revohciion,  wA 

substitute  in  the  equation  0=^V+n'^{i/di/+z.'iz)  the  forces  parallel  to  x,  y,  z,  which  would 
result  from  this  hypothesis,  the  resulting  expression  should  be  the  differential  equation  of 

the  given  surface,  if  it  is  not,  then  we  may  be  certain  that  the  given  curve  does  not  satisfy 

the  equilibrium  of  the  fluid.     See  Book  3.  Chap  III.  No.  1'8. 
*  If  a  perpendicular  is  let  fall  from  the  extremity  of  r  on  the  axis  of  a-,  it  will  be  equal  to 

''r;  sin.  (,  and  the  projection  of  this  perpendicular  on  the  plane  ofij,x,  is  equal  to  the  coordinate 
y  and  its  value  will  be  r.  sin.  «.  cos.  -ar,  and  this  perpendicular  projected  on  the  plane  s  x 

will  be  the  coordinate •«,  and  it  will  be  equal  to  r.  sin.  i.  sin;  «t. 
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Substituting  these  values  in  the  equation  (^F)  of  No.  32,  we  sh^li  obtain, 

the  square  of  «  being  neglected,  * 

*  Since  xu,  »^,  ««,  are  very  small  quantities,  of  which  the  squares  and  products  may  be 

neglected,  the  time  t  will  of  the  same  order  as  «,  so  that  at  is  of  the  order  a.  *,  consequently 

sin.  tcu  :=  »u —         &c.=  xu,  COS.  «a=l — -  — —  =1  .•.  x  =  {r.-{-»s).  qas.  («+««) 

^r.  COS.  6.  COS.  au — r.  sin.  i,  sin.  au-^-»s.  cos.  ̂ .cos,  t^u — tts.  ̂ in.  I.  sin,  »u 

=  by  neglecting  quantities  of  the  order  <«*,  r,  cos.  6 — r.  sin.  6,  ccu+*s.  cos.  0, 

r  and  t  are  independent  of  t, 

dx  du        .     , ,   ds  .   d^x  d^u         .     , .   d*s .•.-—  =  — y  .ar.  sm.  tf-f-  -T- «.  cos.  J ;  — — =  —  -r—  xr.  sm.  t-\-  rrr^.  tt.  cos.  t, 
dt  dt  '    dt  df  dti  ^  dt^ 

(d'
x  \ 

■d*u                       id^s                            <f*K  d's 
= — h:ra.wa.  t.cos.e.-   u3r.  a.  cos.  *S.- — l-3tf.  r*«.  ad.  'I'-,   )^.r«.sin.J.cos.«.-r-, 

df  ̂   dt*  df  dt' 

rejecting  quantities  involving  «*  &c; 

^  t=(r-\-ics),  sin.  (*+«m).  cos.{nt+tt-{-»v)=r.  Bva.((-iritu).  cos.(wf^«+«») 

-f-(M.  sin.(«+«a).cos.{n<+'5r-f  «ti)=r.  sin.  0,  cos.(nt-\-ir) — r.  sin.  «.sin.(«r+n<)«u 

-f-teu  r-  cos.  0.  cos.('srf-n^)+«i.  sin.  *.  cos.  (■et+''0 

rejecting  as  before  quantities  of  the  order  <**,  substituting  »u,  civ,  for  sin.  ̂ ^!^  sin.  ««;,  and 

observing  that  at  is  of  the  order  «*,  ,*.  yz: 

r.  sin.  *.  cos.yv — ntr.  sin.  ».  sin.  a-.— r.  sin,  ̂   sin.  <iir  cui—nrtitv.  sin.  <.  cos.  ■a  +  aur.  cos.  0,  cos,  w 

•-^«urn^.  COS.  4.  sin.  '^ir  -fxvf •  sin.  I.  cos.  .jr-^oi^^  sin.  (•  .sin.  'et  ; 

dv  •         •  .  ■dv  .  dv  . 
•^=  — »r.«m.f<.sm.»!— r.sin.tf.  sm.^.-a.'r^— T»r.  «v.  sm.  *..(!flS'  ■wrr-w*^.  5-.sin.«.cos.« dt  dt  dt 

dv.  .    .  ^  *'«         ,  .• 
<«r.  cos, f.-coa. «.  — r— «t*moos.#. ein.w— «rrrf.  -r-— cos.**sui.«r 
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«r«.<r9  J  (^)—  2w.  sin.  fi.  cos.  6.(^)  } 

+ar'.jTff.  )sin.^9.(^— |-)  +2n.  sm.  9.  cos.  6.  \-r)  +   ~"\T)i  >  ̂^) 

=  ̂.  ,J.j/'ri-«5).sin.  (9  +  «mU  +(^7—  A 

rfs     .  .  .  .  .  (is 
4-  II.-T-.  sm.  4.  COS.  «r— «$  s.  sin.  4.  sin, «  —»nt.  sm.  ̂ .  sm, «,  -r- at  at 

d*y  ■     .    ■         '^^'"        o  -A  ^'^   I  .  d^" — i=  — ar.  sm.  6t  sm.  w.-rr-  ■—  Z«r.  at.  sm.  t,  cos.  <r.  -r-  +«r.COS.  6.  COS.  «7.  -; — 

— 2«>*n.  COS.  ̂   sm.  w.-r-  +  <c.  sm.  (>.  cos.  «r.  -^ — 2«n.  sm.  t,  sm.  v-^j — 

3y=3r.  sin.  «.  cos.  iir-|-9^,  r.  cos.  i.  cos.  «t — Jw.  r.  sin.  <.  sin.  -a, 

rejecting  those  quantities  in  the  value  of  iy,  where  <e  occurs,  for  in  the  product  of  the  ex- 
d*ii 

pression  for     ̂         into  the  value  of  3^,  these  would  be  of  the  order  «s*, .«.  they  ought  to  be 

neglected ; 

.3v. — -=lr.( — «r.  sin,  '«.sin.«.  cos.<Er)-—   2nr«.  sin.  ««.  cos. -«r, 
^   dt^  ■  dt* 

dv 

dt 
d'^u  .  .  du 

+  «r.  sm.  (.  cos.  i.  cos.  *  v.  -;   2«rn.  sm.  t,  cos.  ̂ .  sm.  •a.  cos.  w.  — — (/<»  dt 

+  «.  sin.  *tf  cos.  *«'-T-; — 2<t».(sin.  *«.  sin.  cr.cos.  ̂ )-'7t  ) 

3^(— «»•'  sin.  6,  COS.  *.  sin.  w.  cos.  <a   2nr*a.wa.  <.cos,  i,  cos.*c.-t- 

+  <tr*.  COS.  **.  COS.  'c-T-   2«nr*.cos,*^sin, «,  C09.W-; — H«r.  sin.  <.cos.  *.  cos.'cr-— 
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At  the  exterior  surface  of  the  fluid  we  have  ip=:0  ;  moreover  in  the 

state  of  equilibrium, 

o=  "-S.[(r  +  ccs),  sin.(9 +  ««;}*  + (<Jr)  ; 
KK 

— 2«nr.  sin.  t,  cos.  6,  sin.  v.  cos.  -a. —  )  +  3w  (ar*.  sin.  '<  sin.  'w.-r-j- 

^     ,       .    .     •  ''u  .     •     ,  ■  d^^i +  znr'te.  sin.* 0  sin.  wi  cos.  «t.   «r*.  sin.  6.  cos.  J.  sin.  w.  cos.  -a.—. — 
dt  df- 

4>  2*r' n.  sin. <•  cos.  S,  sin.'w.-;   »r. sin.  '*.  sin. w. cos.  w.- — |-2«n»'. sin.'J.sin.'iiT.  —V 
^  rf<  dt^  '  «?// 

(r+(»i. )sin.(«+<»tt).  sin.  ( n< + OT -|-«'u)= (r + <«.)sin.  <.  sin.(n<-}-w + «i)) + ««r.  COS.*.  sin.(r!<  +  OT 

-t-«v)=r.  sin.  6.  sin.(n<+w)+r.  sin.  *.  cos,(nt-\-'a).ccv-\-*ur,  cos.  *.  sin.(ni-f-w) 

*s. sin.(*+«M).  sin.{n<+iir-J-«v)(=«,r.  sin.  tf,  sin.(w<+'K;).) 

=:r.  sin,  6.  sin.  ■w-j-n^r.  sin.  6.  cos,  w  -j"  »■•  sin.  *.  cos.  •ra-.  «ii — r.  sin.  6.  sin.  w.  wt.  »v 

...  .  .  dz 
-Hwwr.  cos.  sin.  tf,  sin.«i+«Kr.  cos.  «.  cos.«r.Rf4-«f.  sin.  6.  sm.«r+«i.6in.  J.cos.w.nf.  .*. -r^ '  '  at 

■     .  I         •      •  A)  .  .  .  .  dv 
nr.  sin. «.  cos.  'o+r.  sm,  ̂ .  cos.  -a.u.   r.  sin.  6.  sm.  w.  n«o — r.  sin.  ̂ .  sm.  'a.nt».-r dt  dt 

I  .        <^M  du  .  .  tfs 
-|-«r.  cos.  0,  sm. «. — -J-«Mr.  cos.  S.  cos.  w.  n+«r.ni.  cos.  6.  cos.  w.-^  +  «.  sin.  I.  sm.  w.— -— uc  at  at 

.     .  rfs    d*z  .  d^v +  «.  sin.  t.  cos.  w.  Ms-i"*  sm.  tf.  cos.  w,  w/. -;— ;   , ,    =r«.  sm. «.  cos.  w. -rr 
dt    dt^  af- 

.     ,    .        dv  .         .       dv  .        d^u  .  du — nret.sm.6,siD,t!T.-   nrx.sm.e.sin.'Br,-, — h«r.  cos.  6.  sin.  m.—r-U  anr.  cos.  *.  cos.  w.-^- 

,  .  du  ,        .  .         d*s  .  ds  .  ds 
-t-tinr.  cos.  6.  cos.  w.  -r+a.  sm.  6.  sin.  w.  r — |-««.sm.  tf.  cos.w.^^ — |-«w.sin,«.  cos.  tr.— ; 

3«=3r.  sin.  6.  sin.  's-f^^*  >■•  cos.  (.  sin.  to+Sit.  r.  sin.  6.  cos.  w, 

neglecting  those  terms  which  mvolve  »,  (at  as  was  before  mentioned,  in  the  product 
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(<rr)  being  the  value  of  (JF  which  corresponds  to  this  state.  Let  us  suppose 
that  the  fluid  in  question,  is  the  sea  j  the  variation(<rr)  will  be  the  product 
of  the  gravity  mlutiplied,  into  the  element  of  its  direction.  Let  g  represent 

d^z     ... 
oz.  —fT^i  these  quantities  would  produce  terms  of  the  order  «, »  and  would  consequently  be df 

df- 

neglected.    •.•  «.  — — 

{d^v  .    a      .     a     dv  ,         .  .     o    d^u 
ru.  sin.  ̂ }.  sin.  «.  cos.  '^■j^ — 2nr».  sin.'^^.  sin.  V.-^-{-«r.  sm.  fl.cos.  t,  sin.  "w.^-j 

du  .    „      .         d^s     „        .    .     .  ds\ 

+2«»r.  sin.  6.  cos. ».  sin.  w.  cos.  in.j  +«.  sm.  '6.  sin.  2©.— +2««.  sm.««.  sm.  w.  cos. «.—  j- 

+3*. (  r'«sm.  «. COS.*. sm.iff. cos.  w.-tj — 2n/^<>e.  sm.  #•  cos.  <•  sm.  *ot.— +«r'.  cos.  6.  sm.^u.-^ 

rfa  .    »    rf^i  .  .  ds\ 
+2«Kr2.cos.2*.  sin.w.cos.w.-T+aj-.  sin.«.  cos.  6.  sin.'^cj.r-j-f  2«nr.  sm.«.cos.«.sm.  ro.  cos.w.-^^  j- 

f  o  d%  o  o  dv  a     .  .  <i"« 
J«r.  •{  »■*«.  sin.  *<.  COS.  2w.  jj— 2wr*«.  sm.  '#.  sin.  w.  cos.  «r.  —  +«?*.  sm.  (.  cos. ».  em.  «.  cos.  -cr.  -^ 

+  2«n>-2.  sin.«.  cos. «.  cos.^n-.^-far.  sin.  ̂ (.  sin.  ts-.  cos.  sr.  -*+2«rtr.sin.-<.  cos.^w.  ̂ | 

,    d^x  ,  .     d^y    ,  ̂    d^z 

d^u  ,dh  .    ,.    .         .„      d-v 

— r«.  sin.  6.  cos.  «.  -72+«-  cos.  \  ̂ — **■•  ̂'^•°^'  sin.  ̂r.  cos.  w.^ 

dv  d'U  .  .  du 
—2nr».  sinsi.  cos.^w.  —  +  ctr.  sin.  6.  cos.  «.  cos.  ̂ a.  j-^  — 2ixrn.sm.  «.cos.  6.  sm.  tr.  cos.w.  ̂  

+«.  sin.  *tf.  cos.  *ar.  -Tj — 2««.  sm.  *«.  sm.  w.  cos.  w.  ̂  

rf^t)  rfu  ,         .  ■    J,      d'u 
+  ra.  sin.  »^.  sin.  v.  cos.  cr.  jj   2nrit.  sin.  i'^.  sin.'ar.^  +«r.  sm.  6.  cos. «.  sin.  '"--^fr 

+2«nr.5ia.<.cos.«,8Jn.«r.cos.zj-.^'+«.  eio,  *«.  sin.  *sr.  ̂ +2«k. sin.'«.  sin.  w.  cos-s-.  -^  J^ 
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the  force  of  gravity,  and  my  the  elevation  of  a  molecule  of  water  at  its 

surface,  above  the  surface  of  equilibrium,  which  surface  we  shall  con- 
sider  as  the  true  level  of  the  sea.  The  variation  (JF)  in  the  state  of 

motion,  will  in  consequence  of  this  elevation,  be  increased  by  the  quan- 

kk2 

(=  by  concinnating 

a'ir. (  Yt  — 2n»-.  sin-  ̂ ^-  ̂ )  )  ;+3^-  -j  »^«- "n.  *«.-^— r«.  sin. «.  cos. «.  ̂  

d^v    „    .       .  „    dv 
— <»r.*  sin. «.  COS.  (.  sin.  w.  cos.  sr.  -r- — 2nr*{c.  sin.  l,  cos.  6.  cos.  V.-r— 

  2«r*n  COS.  *i.  sin.o.  cos.  a-.  —  +«r.Bm.*,cos.*.  cos.**— w 
dt  dt  '  rft* 

ds      .     .  .  d^v 
— 2icnr.  sm.  ̂ .cos.  t,  sm.«r.cos.i7.-7--|-r'«  sin.  i,  cos.  i,  sin.  tt.  cos.  17.  -rs- 

— ^2«r*«  sin.  *.  cos.  «.  sin.  ̂ ct.   r+«'"'' cos.'^.  sin.  "w. —. +2«n7*.cos.*^.6in.a-.c09.w.— p at  at*  at 

.     a     ̂ 's  .  ̂   .  .  ds  \ 
-j-«r.  sin.  (.  cos.  4.  $m.  V. -^ — l-2«»r*sin.  tf.  xos.0.  S1B.0.  co8.n-. -r  r '  dt*  dt  i 

(and  by  concinnating  we  obtain  the  coe£5cient  of  li  =  to 

(<Pa  dv  \ 
r*tc.  j-j   2n/-*«  sin.  «.  cos.  t.  —J ; 

{d  ti  
dv  d^u. 

ttr*.  sin.  *<.  sin.  '«.  -^^ — l-2nr*<t.  sin.  **.8in.  w.cos.  vr.-T-^xr*.  sin,  #.  COS.  t.  sin.w.cos.  ■w.-ry di^    '  dt  d^ 

-♦-2«r*n.  sin. ^.  cos.  I.  sin.  •w.  -7   »r.  sin.  '<.  sin.  w.  cos.  iB.-rr+Zanr.  sin.  'tfsin.Sw.-T- dt  dt*  dt 

d^v  dv  d^ 
-\-r»*.sva.*t.  COS. 'w ^j   2nr*<t.  sin. ««.  sin.  w.cos.  w.  ̂   +*'"*•  ̂ "^  *•  cos. *.  sin.  «.  coSj  w.^ 

^-2«»r*,  sin.  #.  cos.  e.  cos.  ̂ lir.^  +«r  sin.  »<,  sin.  w.  cos.  -an  +2itnr.  sin.'f.eoa'irJL 
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tity  ̂   »g-Sy ;  becanse  the  gravity  is  very  nearly  in  the  direction  of 

ay,  and  tends  toxvards  its  origin  ;  *  consequently,  if  we  denote  by  a,iV', 
the  part  of  SV  relative  to  the  nev?  forces,  which  in  the  state  of  motion 

concinnating  as  before  we  obtain 

.    /      o    .     ,     d'v  ,  „     ,       .  du  ,  „  .     ,    ds  , 
SzrA  a^'^sin.  '$.   f-2«r^«,  sin.  (.  cos.  6.—+2si}ir.  sin.    6.—  ,  }■ 
^  dl-    '  dt  '  dt  r 

the  body  having  a  rotatory  motion  about  an  axis,  the  part  of  the  equation  (H)  which  cor- 

responds to  the  centrifugal  force  arising  from  the  rotation  is  by  the  preceding  number  equal 

to  «*^3y+z32)=  —.  S.  (_5^*-fz' )  =  ̂   .  S.  -j  (r+  as),  sin.  («+«m)  J-  .'.  the  second  num- 

bers of  the  preceding  equations,  when  concinnated,  give  the  equation  (Z)  of  the  text. 

*  At  the  surface  of  the  spheroid  r  =  1  +  y  ?,  in  which  /  is  for  simplicity^  considered  as  a  function 

of  i  only,  and  the  semi-axis  minor=  1,  .•.  "ir^^q.  {  ̂  \aw,9  depends  on  the  eccentricity,  r  re- 

ceiving at  the  surface  of  the  solid  the  incremented^,  the  corresponding  increment  of  «=«!<» 

therefore  the  expression  forr  vrill  become  1  -\-ql-\-ciiiq.  (  j-  J  .'.tcs=aug.(j  j  and  q  being  verj- 

small,  s  may  neglected  in  comparison  of  a,  and  it  is  evidently  of  the  order  uq,  i,  e,  of  a  multiplied 

into  the  eccentricity,  and  if/  be  considered  as  a  function  of  jj-  only,  we  might  shew  that  w  receiving 

an  increment  »t),  the  corresponding  increment  of  r,  is  to  nv,  as  the  eccentricity  multiplied  into 

I  T—  jis  to  unity.    If  we  produce  the  radius  r  to  the  surface  of  the  fluid  in  equilibrio ;  it  will 

be  represented  by  l-fy  l+y,  y  being  the  depth  of  the  fluid,  and  a  function  of  6  and  v, 

.'.  6  receiving  the  increment  xu,  the  corresponding  increase  of  the  radius,  dra^vn  to  the  surface 

of  the  fluid  supposed  in  equilibrio,  will  heq.(  —  \  .xu  +  (-7-)  ■«!<;when  the  fluid  is  in  motion, 

the  distance  of  the  exterior  surface  from  thecenire,=r'-}-ai',  is  greater  than  the  distance  of 
the  surface  of  equilibrium,  from  the  centre  of  the  spheroid,  measured  on  the  same  radius, 
this  last  distance 

=,+, !+,+.».  (,.( J)  +  (^J)  )  +„.  (,.(£)  +  (*  )),  ,^  W-1+?  (+V+ 

-- ■■-('■-Wa)+(t)+-'(l)+(s))=-» 

=  the  elevation  of  a  molecule  of  water  in  the  state  of  motion,    above  the  surface  of 
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agitate  the  molecule,  and  which  arise  either  from  the  changes,  which  in 

the  state  of  motion  the  attractions  of  the  fluid  and  spheroid  experience, 

or  from  the  attractions  of  extraneous  bodies  ;  we  shall  have  at  the 
surface, 

SV={SV)—ocg.Sy  +  x.sv: 

The  variation  — .J.{(r4-«s).  sin.(fi +«")]*  is  increased  by  the  quantity 

an*  Jy.r.  sin.  H,  *  in  consequence  of  the  elevation  of  the  molecule  of  the 
water,  above  the  level  of  the  sea  ;  but  this  quantity  may  be  neglected  in 

comparison  of  the  term  —  a.g.Si/,  because  the  ratio  — ^  of  the  centrifugal 

force  at  the    equator,    to  the  gravity,  is  a   very  small  fraction   equal 

to   .     Finally,  the  radius  r  is  very  nearly  constant  at  the  surface  of 

the  sea,  because  it  differs  very  little  from  a  spherical  surface  j  therefore 

we  may  make  Sr=0.  The  equation  (L)  will  thus,  become,  at  the  surface 
of  the  sea. 

r\, 

+  T*.h 
{s«.{^|  +  .„..„...co...|^||  +  >....|||| 

equilibrium;  it  is  evidently  a  function  of  «andjr.  y  being  the  eccentricity,  it  is  evident  that 

the  differential  of  the  normal  according  to  wliich  the  gravity  acts,  in  case  of  equilibrium, 

differs  from  the  differential  of  the  radius,  by  a  quantity  which  r:  the  product  of  the 

eccentricity  into  the  differential  of  N,  a  function  of  0. .-.  at  the  surfoce  of  the  fluid  in  equilibrio, 

{^V)—g.  S,  (r'+q.  N),  at  the  surface  of  the  fluid  in  motion,  the  normal  corresponding  to 

r' -f  «^,  has  not  the  same  direction  as  when  in  equihbrio,  its  variation=S.  (r'-^/jN+ai/ 

+«7.  qN) ;  the  attraction  of  the  spheroid  in  motion  differs  from  the  attraction  of  the 

spheroid  in  equilibrio  by  quantities  of  the  order  «^  •.•  let  it  be  equal  to  ai/g',  then  {g+^yg')- 

i(r'-\-qN+ui/-\-cci/  q.  ]S')—(g  +  uyg).  S[j-+jiV)  +  g.  Uy,  rejecting  quantities  of  the  order 

«  S  and  remarking  that  ̂ r  is  of  the  order  q.h,  the  first  term  of  the  second  member  of  the 

preceding  equationz=(S  f^  .  •.  the  second  term  is  the  quantity  by  which  in  the  slate  of  motion 
(S  V)  is  increased,  as  has  been  stated  in  the  text. 
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the  variations  Sy,  and  SV,  being  taken  relatively  to  the  two  variables  6, 
and  w. 

Let  us  now,  consider,  the  equation  relative  to  the  continuity  of  the  fluid. 

For  this  purpose,  let  us  conceive  at  the  origin  of  the  motion,  a  rectangular 
parallelepiped,  of  which  the  altitude  is  dr,  the  breadth  r.  dw.  sin.  fi.  and  the 

length  7-.d9.  *  Let  r',  8',  ir',  represent  what  r,  6,  ■a-,  become  after  the  time  /. 
By  following  the  reasoning  of  No.  32,  we  shall  find  that  after  this  interval, 

the  volume  of  the  molecule  of  the  fluid,  is  equal  to  a  rectangular  paral- 

(dr't 
lelepiped,  of  which  the   height  is  -j  —  r-  .dr  ;  of  which  the  breadth  is 

dr  being  eliminated,  by  means  of  the  equation 

Finally,  its  length  is  ' 

•  r  Bin.  » =  radius  of  a  smaU  circle,  whose  plane  is  parallel  to  the  equator,  and  as  the 
plane  of  the  axes  of  x,  and  y,  is  fixed,  r,  sin.  6.  dw=  the  differential  of  the  arc  of  thi« 

circle,  to  wliich  dr  is  evidently  perpendicular,  also,  the  differential  of  the  nieridian:=r.<^«,  is 

perpendicular  both  to  r.  «aa.  i.  d«r  and  to  dr,  .•.  these  three  differentials,  constitute  the 
parallelepiped  mentioned  in  the  text. 

•  When  the  fluid  is  in  motion,  this  expression  becomes,  —  J.(r+i»4  +  <»y)  sin.  (« +  »«)* 

.-.the  part  which  corresponds  to«y,  is  «*.«3y.(r-J-<M-f-<«y).  sin.(»+<tu)»  =  by  neglecting 

quantities  of  the  order  «*,  tv'.aii/.  r.  sin.  \ 
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dr,  and  iv,  being  eliminated  by  means  of  the  equations 

Consequently,  if  we  make 

(dr'X    (d^'X    f  dzr'  \       (dr'X    ( d^l    (  rfsr'  | 

^=  \dP  yid^yx  'd^yX'^rfXd^l  '{w  j 
jd/\  (d^\  (d£X 

after  the  time  t,  the  volume  of  the  parallelepiped  will  be  equal  to  C.  r*. 
siu.  6.  dr.  d9.  d^- ;  *   therefore  if  (p)  represent  the  primitive  density  of 

the  molecule,  and  />  its  density,  con-esponding  to  the  time  t,  we  shall 
obtain,  by  putting  the  primitive  value  of  its  mass,  equal  to  its  value  after 
the  time  t, 

p.  e'r'*.  sin.  y  =  (p).  r*.  sin.  9 ; 

this  is  the  equation  relative  to  the  continuity  of  the  fluid.     In  the  case 

we  are  at  present  considering, 

r'  =  r+a.s;  6'  =  9  +  «u;  ■ar=nt+zr  +  aV', 

*  r"  t  ■s/  are  generally  functions  of  r,  t,  w,  and  t,  see  page  217,  notes ;  the  reasoning  is 

precisely  the    same  as  in  page  218,   substituting  the   coordinates  j-,  t,  w,  in  place  of 
j;.  ;/>  *• 



256  CELESTIAL  MECHANICS, 

consequently,  we  shall  have  by  neglecting  quantities  of  the  order  «• 

Let  us  suppose  that  after  the  time  /,  the  primitive  density  (p)  is 

changed  into  (p)  +  «p' ;  the  preceding  equation  relative  to  the  continuity 
of  the  fluid,  will  give 

36.  Let  us  apply  these  results,  to  the  oscillations  of  the  sea.  Its  mass 

being  homogeneous,  f'  vanishes,  consequently, 

»  dr'=dr->r»ds,  d^=d6-^»du,d^*d^J^*dv  .'.  (x-)-(^)-(^)=-- 

(dr-\-ctds\       (d6-^»du\  ̂ f  dtn-X-adv  \         ,  .     {" ds  \  ,       /  du\  /dv  \ 

it  is  plain,  that  if  there  was  no  motion,  the  differential  of  any  coordinate  6,  with  respect  to 

another  coordinate,  would  vanish,   after  the  time  <,  this  differential  is  of  the  order  <••. 

— -7— —  ̂   ̂  (  ̂T** —  )'s  of  the  order  f  or  «■",  consequently  it  may  be  neglected,  from (JOT      )       ̂      di      ' 

which  it  appears,  that  all  the  terms  in  expression  for  €'  after  the  first  may  be  neglected. 

r»{sin.  «+«M.cosO  \  =(5).  r».  sin. «) 

(»''+2«s).  sin.  <+«M.  cos,  i)  >  =(§).  r*.  sin.  t,  i,  e, 
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Let  us  suppose,  conformably  to  what  appears  to  be  the  case  of  nature, 

that  the  depth  of  the  sea  is  very  small  in  comparison  with  the  radius  r  of  the 

terrestrial  spheroid;  let  this  depth  be  represented  by  y,  y  being  a  very  small 

function  of  6  and  -a,  which  depends  on  the  law  of  this  depth.  If  we  inte- 
grate the  preceding  differential  equation,  with  respect  to  r,  from  the  surface 

of  the  solid  which  the  sea  covers,  to  the  surface  of  the  sea,  *  it  is  obvious 

that  the  value  of  5  will  be  equal  to  a  function  of  9,  w,  and  /,  independent  of 
LL 

(j).  (r»-l-2«r5).(sln.  ()+««cos.  0)+  («)•  '■'•«n.  i.   J«-{§}  +  {^]  +  {£}  } 

+aj'.  r'.  sin.  6-=z{()  r«.  sin.  6. 

.-.  (j).r«.««cos.«+(5)2*w.sin.  «+(j).r'.sin.«.|«|^|+  {^|+  {^}} 

-}-«§'.  r'.  sin,  tf=0 

.•.  dividing  by  sin.  6  and  »,  we  obtain 

•  The  depth  of  the  sea  being  inconsiderable,  in  comparison  of  the  terrestrial  radius,  we 

may  suppose,  that  for  this  depth  r*,  and  the  factor  of  r»  in  the  second  tema,  of  the  second 

member  of  this  equation,  are  constant  .*.  integrating  we  obtain 

,  /  /du\  ,    tdv  \      u  COS.  (■y 

as  the  increment  of  the  radius  at  the  surface  of  the  spheroid  =  aug.  (-j-j  +avg.  ( j-  ) 

see  notes  to  page  252,  .-.  s'  at  the  surface  of  the  sea 

_      f  (du-)        Cdvl       tt.cos.  «1    .         <dll    ,        /  dl\ 
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r,togethev  with  a  very  small  funetion  which  will  be  to  u  and  tof ,  of  the  same 

order  of  smallness  as  the  function  _;  but  at  the  surface  of  the  solid  which r 

tiljie  sea  covers,  when  the  anglesfi,  and^D-,  are  resj^ectively  changed  into  6  +  a«, 

v-^nt-^  «i',  it  is  easy  to  perceive  that  the  distance  of  a  molecule  of  water, 
contiguous  to  this  surface,  from  the  centre  of  gravity  of  the  earth,  only 

varies  by  a  quantity  very  small  with  respect  to  a.u  and  a,v,  and  of  the  same 

order,  as  the  products  of  these  quantities,  into  the  eccentricity  of  the 

spheroid  covered  by  the  sea :  therefore,  the  function,  which  occurs  in 

the  expression  for  s,  independent  of  the  value  of  r,  is  a  very  small  quan- 

tity of  the  same  order  ;  thus  we  can  generally  neglect  s,  as  inconsiderable, 

in  comparison  of  u  and  v.  Consequently,  the  equation  of  the  motion  of 

the  sea,  which  has  been  given  in  No.  Z5,  becomes, 

+  r*Sz7Ss,{n.^L\~l  +  2n.  sin. 6.  cos.  9.  i  — }  |-  =—g.S^+SV';  (M) 

the  equation  (L)  of  the  same  number  relative  to  any  point  of  the  interior 

of  the  fluid,  gives  in  the  state  of  equilibrium, 

0-  I'. J.  (  (r  +  a5).  sin  (9  +  cu)  \    +  {SV)  —  ̂-^ 

(iV)-  and  {Sp)  being  the  values  of  iV  and  S<p^  which  in  the  state  of  equi- 

these  two  last  terms  are  to  u,  or  v,  as  the  product  of  these  quantities  into 

the  eccentricity.  With  respect  to  the  first  term,  it  may  be  remarked  that  we  can  derive 

another  expression  for  it,  in  terms  of  the  difference  of  the  eccentricities  of  the  interior  and 

exterior  spheroids,  divided  by  r,  but  tlus  difference  is  evidently  proportional  to  y,  in  fact  this 

term  will  be  to  ur  as  y  to  r.  The  integral  involves  (  because  it  was  taken  with  respect  to 
tbe  characteiistic  d  and  not  3. 

The  last  member  of  the  equation  ( L  )  bcconjes  in  a,  state  of  motion,  ia  consequence  of 
Uiig  substitution, 



PART  I.— BOOK  L  ^ft 

librium,  answer  to  the  quantities  r+ocs,  6  +  *m,  u  +  ttt.  Suppose  thit 
when  the  fluid  is  in  motion,  we  have 

the  equation  (L)  will  give 

From  a  consideration  of  the  equation  (M),  it  appears  that  "•!  j7  I  ̂̂  ̂'^ 

the  same  order  as  1/  or  s,  and  consequently  of  the  order  —  ;   the  value 

of  the  first  member  of  this  equation  is  therefore  of  the  same  order  ;  * 
thus,  multiplying  this  value,  by  dr,  and  then  integrating  from  the 

surface  of  the  spheroid,  to  the   surface   of  the   sea;   we   shall   have 

V —  ̂equal  to  a  very  small  function,  of  the  order-i-,  plus  a  function  of 

9,Tr,  and  t,  independent  of  r,  which  we  will  denote  by  x;  therefore,  if  in  the 

♦  |!.  J  S^  (r+«M).6m.(*+«tt)  I  *+(>r)—  {-  }  +  «3^'— «  — .  the  three  first  terms 

destroy  each  other  .•.  aiV — «  —  +|  is  equal  to  the  first  member  of  the  equation  (L),  and i 
1/ 

liace  it  is  an  exact  variation,  the  first  member  of  the  equation(L)wiU  Be  so  also,  .*.  V   —    dif- 

ftfenced  With  respect  f 0  f,  is  equal  M  the  tentt  of  the  first  metrHbex  of  the  equatioB  (t). 
wWch  is  multipKed  by  Sf . 

— «.  sin.«.cos.  »=   t.'^cos.<0    ,    in  order  that —2».   ̂   ̂  ̂  .  sin.  <.  cos. »  may  b*  *f 

ifienme  wfder  m  |  -  -  I  it  16  Becessay  that  « |  —  ?  should  be  of  the  order  y  or  </whi«K is 

of  the  order  — 
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equation  (L)  of  No.  35,  we  only  consider  the  two  variables  G  and  zr,  it 

will  be  changed  into  the  equation  (M),  with  this  sole  difference,  that  the 

second  member  will  be  changed  into  <5'x.  But  A  being  independent  of 
the  depth  of  the  molecule,  which  we  consider;  if  we  suppose  this 

molecule  very  near  the  surface  ;  the  equation  (L)  must  evidently  coincide 

with  the  equation  (M)  ;  therefore  we  have  SxzzSV — gSy,  and  con- 
sequently, 

S.\v'^^^'^=SV'^gSy; 

the  value  oiSV'in  the  second  member  of  this  equation,  being  relative  to  the 
surface  of  the  sea.*     We  shall  find  in  the  theory  of  the  flux  and  reflux 
of  the  sea,  that  this  value  is  very  nearly  the  same  for  all  molecules  situated 
on  the  same  terrestrial  radius,  from  the  surface  of  the  solid  which  the  sea 

covers,  to  the  surface  of  the  sea;  therefore  with  respect  to  all  thesemolecules 

Sp'  .        . 
—  zzg.Sy;  which  gives  ̂ ' =  f^T/,  together  with  a  function  independent 

of  6,  T3-,  and  r ;  but  at  the  surface  of  the  level  of  the  sea,  the  value  of  a.p', 
is  equal  to  the  pressure  of  a  small  column  of  water  uy,  which  is  elevated 

*J  j-^dr—'2/nrdr.sm.'i6  <  —  \  integrated  between  the  the  siuface  of  the  splieroid,  and 

(  d''s  7 
the  surface  of  sea,  gives  the  integral  of  the  text,  the  first  term  is  —  to  i  - —  >  y,  which  is 

a  function  of  ̂.•ct,  and  <,=A,  the  other  term  being  of  the  order  —may  be  rejected.    If  we  only 

consider  the  terms,  which  refer  to  S  and  -r,  the  first  member  of  the  equation  (L)  is  the  same  as 

the  first  member  of  the  equation  (M),  near  the  surface,  the  last  term  of  the  first  member  of 

the  equation  (L')  vanishes  .-.  the  equation  (L)  must  in  this  case  coincide  with  the  equation 

(M),  but  A  the  member  of  the  equation  (L)  does  not  vary  .•.  we  have  the  second 

member  of  the  equation  (L)  —  the  second  member  of  the  equation(M)  i.  e,  Ja=JF' — giy  '■> 

but  Sa  =  3./  V'—JL  I  •••  S-  •[  V'—  ̂   ?  =.lV'—g.ly,   from  the  theory  of  the  tides *  / 

it  appears  that  the  5  F'  fin  these  two  members  are  the  same,  .•.  g^xf=:.—  and  ■p'^egy  -^  a  con- % 

slant  arbitrary  quantity ;  when  the  integral  is  taken   between  the  surface  of  spheroid,  and 

eurface  of  the  sea,  this  constant  arbitrary  quantity  may  be  rejected. 
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above  this  surface,  and  this  pressure  is  equal  to  a-^.gy  %  therefore  we  have, 
in  the  entire  of  the  interior  of  the  fluid,  from  the  surface  of  the  spheroid 

covered  by  the  sea,  to  the  surface  of  the  level  of  the  sea,  p'  =  ̂ gy  ;  conse- 
quently, any  point  of  the  surface  of  the  spheroid,  which  is  covered  by  the 

sea,  is  more  pressed  than  in  the  state  of  equilibrium,  by  the  entire  weight 

of  a  column  of  water,  contained  between  the  surface  of  the  sea,  and  the  sur- 

face  of  level.  This  excess  of  pressure  becomes  negative,  for  those  points, 

where  the  surface  of  the  sea  is  depressed  beneath  the  surface  of  level. 

It  follows  from  which  has  been  stated  above,  that  if  we  only  consider  the 

variations  of  9  and  is  ;  the  equation  f  L)  will  be  changed  into  the  equation 

(Mj,  for  all  the  interior  molecules  of  the  fluid.  Consequently,  the  values 

of  u,  and  v,  relative  to  all  molecules,  *  situated  on  the  same  terrestrial 

radius,  are  determined  by  the  same  differential  equations  ;  thus,  supposing, 

as  we  shall  do  in  the  theory  of  the  flux  and  reflux  of  the  sea,  that  at  the 

commencement  ofthemotion,the  values  of  w,i  —  Vy,  I  —  I,   were    the 

same  for  all  the  molecules  of  the  fluid,  situated  on  the  sanie  radius, 

these  molecules  will  exist  the  same  radius,  during  the  oscillations  of  the 

fluid.  Therefore  the  values  of  r,  u,  and  v,  may  be  supposed  very  nearly 

the  same,  on  the  small  part  of  the  radius,  comprised  between  the  solid, 

which  the  sea  covers,  and  the  surface  of  the  sea  ;  thus,  if  we  integrate 

with  respect  to  r,  the  equation 

^     cd.r*s  1  ,    ,   ̂ ^du)  ,    (dv}  ,   u  cos  9  }     , 

*  At  the  commencement  of  the  motion  u,  and  v,  i  —  f  i "{  t;  r  >  ̂ ^^  the  same,  for  all 

molecules  situated  on  the  same  radius,  .••  after  the  interval  dt,  the  corresponding  values  of 
u  and  V,  will  be  the  same  for  all  molecules  situated  on  the  same  radius. 

t  r-s-(j^i)zz)%_?2.(^)4-2,-y.(i)+y2(i)for  (r^)=(r—y)* 
y  being  a  function  of  i,  and  ar,  when  these  angles  are  increased  by  the  quantity  «m,  »v, 

becomes  y-\-aM..  \-t-\  +«d.  5   j  -  f  this  is  the  value  of  -/  con-esponding  to  the  angle 

<+«u,  ̂ ■\-nt-\-an  for  the  surface  of  equilibrium,  ,••   where  the  fluid  is  in  motion,  we  must 
add  ay  to  this  expression. 
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we  shall  have 

( crf9  J       Ccra-J  sm.  8  ) 

(r»5)  being  the  value  of  Vs,  at  the  surface  of  the  spheroid  covered  by  the 

sea.  The  function  r^s — (r*s)  is  very  nearly  equal  to  r*.  [s — («)} 
+Qry(s),  (s)  being  what  5  becomes  at  the  surface  of  the  spheroid  ;  con- 

sidering, the  smallness  of  y,  and  (5),  in  comparison  of  r,  we  may  neglect 

the  term  2ry.(s)  ;  therefore,  we  shall  have 

ros—(r*s')=r.'  [«— (5)}. 
Now,  the  depth  of  the  sea,  corresponding  to  the  angles  0-|-ixw,  ar 

+  w?+«f,  is  y  +  a.[s — (s)].  If  the  origin  of  the  angles  6,  and 
ni  +  sr,  be  referred  to  a  point,  and  a  meridian,  which  are  fixed 

on  the  surface  of  the  earth,  which  we  are  permitted  to  do,  as  we 

shall  see  very  soon  ;  this  same  depth  will  be  y-i-  au. 

^-T^^+ai'.  j;r-(>  plus  the  elevation  ay  of  the  molecule  of  the  fluid  at 

the  surface  of  the  sea,  above  the  surface  of  level ;  therefore,  we  shall  have 

If  we  make  cos.  4=:^,  then 

sin. «  '         '^  ^•'  1 — u^ 

—dfi       ̂     ̂ .   __    —fi.dft.  ̂   __j^_  COS.  i sin.  $ 

consequently  the  equation  of  continuity,  on  the  supposition  that   the  sea  is  honiogeneouA becomes, 

—  (^)  +r2.  r  ̂^  _r2.  (rf.(«-v/rV)w  Book  IV.  Chap.  2. 

^  Md^  r+     :?: — +-d;;^   j=  -r-  {  [^)+  —T^   
S.ee  Book  IV.  Chap.  1,  No.  2. 
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'-»=^+-gi(  +  4l}' 
Consequently   the   equation    relative    to  the    continuity   of  the   fluid 

will  become  * 
cdyjO         (d.yV?      yii.cos.6     ,„. 

It  may  be  remarked,  that  in  this  equation,  the  angles  8  and  nt-\-t!r  are 
reckoned  from  a  point,  and  a  meridian,  which  are  respectively  fixed  on  the 

surface  of  the  earth,and  in  the  equation(M), these  angles  are  reckoned  from 

the  axis  of  a,  and  from  a  plane,  which  passing  through  this  axis,  revolves 

about  it  with  a  rotatory  motion,  expressed  by  n  ;  but  this  axis,  and  this 

plane  are  not  fixed  on  the  surface  of  the  earth,  since  the  attraction  and 

pressure  of  the  fluid  which  covers  it,  as  well  as  the  rotatory  motion  of  the 

spheroid,  disturb  a  little  their  position.  However  it  is  easy  to  perceive  that 

these  perturbations  t  are  to  the  values  of  «m,  and  «t',  in  the  ratio  of  the  mass 

*  Substituting  for  s — {s),  its  value 

{du  "i 
 dv 

di  >        ̂'  1Z and  observing  that 

du  ̂   dv  lu  COS.  * 

y.    . 

sm.  i 

we  will  arrive  at  the  value  of  y,  which  is  given  in  the  text. 

f  In  the  state  of  equilibrium,  neither  the  pressure  or  attraction  of  the  ocean,  can  produce 

any  motion  in  the  spheroid  covered  by  the  sea,  and  it  is  only  the  stratum  of  water  which  irv 

consequence  of  the  attractions  of  the  exterior  bodies,  and  of  the  centrifugal  force,  is  elevated 

above  the  surface,  wliich  can  produce  any  effect.  The  effects  of  the  pressure  and  attraction^ 

may  be  considered  separately,  with  respect  to  the  first,  if  the  mean  radius  of  the  earth  be 

supposed  equal  to  unity,  «y  being  the  elevation,  the  action  of  the  aqueous  stratum  is  equal  to 

the  diiference  of  the  attractions  of  two  spheroids,  of  which  the  radius  of  the  interiors  1,  of 

the  exterior  —  l+»i/,  naming  this  difference  »y.k.  and  t  its  direction,  uyhdv  will  be  the 
expression  for  this  attraction ;  multiplied  into  the  element  of  its  direction,  t  being  a  function  of 

<,  and  -a,  dr 
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of  the  sea,  to  the  mass  of  the  spheroid  ;  therefore,  in  order  to  refer  the 

angles  9,  and  nt+zi;  to  a  point  and  meridian,  which  are  invariable  on  the 

surface  of  the  spheroid,  in  the  two  equations  (M)  and  (N)  ;  we  should 

alter  u,  andi^,  by  quantities  of  tl:e  order^  and   — ,   which   quantities  we 

r  r   are  permitted  to  neglect ;  therefore  we  may  suppose  in  these  equations, 

that  a.u  and  a.v  are  the  motions  of  the  fluid,  in  latitude  and  longitude.* 
It  may  also  be  observed,  that  the  centre  of  gravity  of  the  spheroid  being 

supposed  immoveable,  we  should  transfer  in  an  opposite  direction  to  the 

molecules,  the  forces  by  which  it  is  actuated,  in  consequence  of  the  re- 

action of  the  sea  ;  but  the  common  centre  of  gravity  of  the  sea  and  sphe- 
roid being  invariable  in  consequence  of  this  reaction  ;  it  is  manifest  that 

the  ratio  of  these  forces,  to  those  by  which  the  molecules  are  solicited  by 
the  action  of  the  spheroid,  is  of  the  same  order,  as  the  ratio  of  the  mass 

therefore  they  may  be  omitted  in  the  calculation  of  W. 

of  the  fluid  to  that  of  the  spheroid,   and  consequently  of  the  order-, 

The  attractions  are  of  the  order  ay ;  for  if  y  vanished  there  would  be  no  pressure  or  action,  but 

y  is  of  the  order  — .  The  exact  effect  which  the  attractions,  and  pressures  of  the  aqueous 

stratum  produce  are  calculated  in  Book  V.  Nos.  10  and  11. 

•  The  centre  of  gravity  of  the  spheroid  is  considered  immoveable,  because  we  do  not 
consider  the  absolute  oscillations  of  the  molecules  in  space,  but  only  their  oscillations  reia^ 

live  to  the  mass  of  the  fluid.  The  common  centre  of  gravity  of  the  fluid  and  spheroid 

covered  by  the  fluid  is  not  affected  by  the  mutual  action  of  these  molecules,  see  No.  20. 

With  respect  to  the  action  of  foreign  bodies,  their  effect  is  not  to  be  neglected,  as  in  case  of 

the  action  of  the  sea,  if  we  consider  the  centre  of  gravity  of  the  spheroid  immoveable,  we 

must  transfer  in  a  contrary  direction  to  the  molecule,  the  attraction  which  such  bodies  exert 

on  the  centre  of  gravity  of  the  spheroid,  the  oscillations  «y  and  the  force  which  actuates  the 

particles  are  of  the  order  a.-~fix  ».q.  \  — -i-  !•  ,see  preceding  note. 
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37.  Let  us  consider  in  the  same  manner,  the  motions  of  the  atmos- 

phere. In  this  investigation,  we  shall  omit  the  consideration  of  the 

variation  of  heat  in  different  latitudes,  and  different  elevations,  as  well 

as  all  anomalous  causes  of  perturbation,  and  consider  only  the  regular 

causes  which  act  upon  it,  as  upon  the  ocean.  Consequently,  we  may  con- 

sider the  sea  as  surrounded  by  an  elastic  fluid  of  an  uniform  temperature  ; 

we  shall  also  suppose,  that  the  density  of  this  fluid  is  proportional  to  its 

pressure,  which  is  conformable  to  experience.  This  supposition  implies,  * 
that  the  atmosphere  has  an  infinite  height ;  but  it  is  easy  to  be  assured, 

that  at  a  very  small  height,  its  density  is  so  small,  that  it  may  be  regarded 
as  evanescent. 

This  being  premised,  let  s',  u\  and  w',  denote  for  the  molecules  of  the 
atmosphere,  what  s,  u  x\  designated,  for  the  molecules  of  the  sea ;  the 

equation  (L)  of  No.  35,  will  then  become 

2  .„   t  \d*ii {m--^->--'-m\ 

+ 

1    ̂   3-     (  •    2fl  /■  d""^'  \  .  o       -ft       „   A  fdu'\  ,  2w.  sin,  ̂ 9  /  ds'  \\ '\-o^'rJzT.\sm.^\—-^) +271.  sin.  9.  cos.  9,  ( —  1  -|   .(  —  ) 
(  dt-  '  ^dt '  r  ^  dt  ' . 

<^-Sr.  $  (^~)—2nr.  sin.  \  (^)^  =  |-.  <^.(^+  ccs').sm.^  +  xu').Y 

+^F-  ̂ P. 
e 

M  M 

•  x\ccording  as  the  fluid  is  elevated  above  the  surface  of  the  earth,  it  becomes 
rarer,  in  consequence  of  its  elasticity  which  dilates  it  more  and  more,  as  it  is  less 
compressed,  and  it  would  extend  indefinitely,  and  eventually  dissipate  itself  in  space, 
if  the  molecules  of  its  surface  were  elastic ;  consequently,  if  there  is  a  state  of  rarity,  in 
which  the  molecules  are  devoid  of  elasticity,  the  elasticity  of  the  atmosphere  must  diminish 
in  a  greater  ratio  than  the  compressing  force. 
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At  first  let  us  consider  the  atmosphere  in  a  state  of  equilibrium* 

in  which  case  s\  zi'  andt/  vanish.  Then,  the  preceding  equation,  being 
integrated  becomes, 

■— .r^.  sin.  *9  +  F—  P-^  =  constant. 

The  pressure  p  being  by  hypothesis  proportional  to  the  density  ;  we 

shall  make  j)  =  I.  g.  p,  g  represents  the  gravity  at  a  determined  place,  * 
which  we  will  suppose  to  be  the  equator,  and  /  is  a  constaat  quantity 
which  expresses  the  height  of  the  atmosphere,  of  which  the  density  is 
throughout  the  same  as  at  the  surface  of  the  sea  :  this  height  is  very 

small  relative  to  the  radius  of  the  terrestrial  spheroid,  of  wliich  it  is  less 
than  the  72Dth  part. 

The   integral  A^  is  equal  to  Ig.  log.  f ;  consequently  the  preceding 

equation  relative  to  the  equilibrium  of  the  atmosphere  becomes, 

ig.  log.  p  =  constant  +  r+  — .-r*. -sin.  *9. 

At  the  surface  of  the  sea,  the  value  of  F"  is -the  same  for  a  molecule  of 
air,  as  for  a  molecule  of  water  contiguous  to  it,  because  the  forces  which 
solicit  each  molecule,  are  the  same  ;  but  the  condition  of  the  equilibrium 
of  the  sea  requires,  that  wc  should  have 

V-)r  — .  r^.  sin.^S=constant ; 2 

*  An  homogeneous  atmosphere  is  an  atmosphere,  supposed  to  be  of  the  same  weight  as 
that  which  actually  surrounds  the  earth  ;  its  density  being  uniform,  and  every  where  equal 

to  the  density  of  the  air  at  the  surface  of  the  earth.     Let  h  be  the  height  of  the  mercury 

in  the  barometer  at  the  equator,  and  d  its  density,  we  shall  have  lg=h.d:.  /x— and  by e 

substituting  for  A  and  e^  and  g  their  rnumerical  values,  /comes  out  equal  to  5;^  miles  very 

nearly,  which  is  somewhat  less  than  ̂ he  720th  part  of  the  radius  of  the  equator.  When  the 

temperature  is  given,  this  height  is  a  constant  quantity,  whatever  be  the  ohang«s  wliich  'the 
pressure  undergoes. 
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therefore  p  is  constant  at  this  surface,  i,  e,  the  density  of  the  stratum  of 

air  contiguous  to  the  sea,  is  every  where  the  same,  in  the  state  of 

equilibrium. 
Let  R  represent,  the  part  of  the  radius  r,  comprehended  between 

the  centte  of  the  spheroid  and  the  surface  of  the  sea,  and  r'  the 
part  comprised  between  this  surface  and  a  molecule  of  air  ele- 

vated  above   it ;  r'  will  differ  only  by  quantities  nearly  of  the  order 

— .  r'  1 ,  *  from  the  /leigkt  of  this  molecule   above  the   surface    of 

the  sea  ;  we  may  without  sensible  error  neglect  quantities  of  this  order. 
The  equation  between  p  and  r  will  give 

Ig.  log.  f  =  constant  +  l 

+  — .  RK  sin.  *H?^*  -R/.  sin.  -fl : 2 

the  values  of  V,  (-p^and  (-r-g)  being  relative  to  the  surface  of  the  sea, 
where  we  have, 

constant  =  V+  ̂ 'R'-  sin. -9j 

the  quantity  *-  l—^  \— n*  R,  sin.  %  expresses  the  gravity  at  the  same 

M  m2 

*  V  being  a  function  of  R,  6,  and  vt,  i{  R  receive  the  increment  /,  V  becomes  s  V 

"^  T  I  d~  \  "^  T9\  J~t\'^  ̂ ^'  ̂ ^  the  expression^  R^-  sin.  -e  will  be  increased  by 

the  quantity  n*  R/,  sin.  *«^ — -/.'  sin.  *(,  but  this  last  term  being  indefinitely  small, 
may  be  rejected. 
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surface;  which  we  will  represent  by  g'.  The  function  \tll  *  being  niul^ 
!;/:>  ■€.  Ldr  3  ^ 

tiphed  by  a  very  small  quantity  r?  we  may  determine  it  on  the  hypothesis, 
that  the  earth  i.  spherical,  and  we  may  neglect  the  density  of  the  atmos- 

phere relatively  to  that  of  the  earth  ;  therefore,  we  shall  have  very  nearly, 

Ur  i  ~  *       m' 

m  expressing  the  mass  of  the  earth  ;  consequently  S— J  = 

'~Jlz=  — ^  ;  therefore  we  shall  have  /^.  log.  p= constant 

—^'g' — ^g' ;  from  which  may  be  obtained 

_r'g'    C  r) 

p  =  n,c  t 

*If  the  earth  was  a  sphere  then  r',  would  be  equal  to  the  height  of  the  molecule  of  the  atmos* 
phere  above  the  surface  of  the  sea,  and  as  in  the  case  of  a  spheroid  the  height  is  determined 
by  a  normal  drawn  to  the  surface  from  the  molecule,  the  difference  between  /  and  the  part  of 
this  normal  which  is  exterior  to  the  surface,  depends  on  the  ellipticity  of  the  spheroid,  which  is 

   1      for  he  afterwards  supposes  that  the  earth  is  at  the  surface  of 

the  sea  very  nearly     ̂   spherical,  .*.  the  only  abberration  from  sphericity  can  arise 

from  the  greater  centrifugal  force  of  the  molecule  of  the  air,  the  ratio  of  this  excess  of  cen- 

trifugal force  to  gravity,  for  a  molecule  elevated  at  the  equator,   above  the  surface  of  the 

earth  r=      ,  and  the  mtercept  at  the  surface  between  the  du-ection  of  r,  and  the  direction 

of  a  normal  drawn  from  the  molecule  of  the  air  must  be  evidently  of  the  order  of  the 

ellipticity  t,  e,  of  the    order    ,  and  the  difference  between  r'  and  this  height  is  equal 

to  the  square  of  this  quantity  divided  by  R  very  nearly. 

t  Sf— P3x+  Qlj/-i-Rh,  and  if  we  refer  the  molecules  to  the  polar  coordinates  r,  i,  w. 
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c  being  the  number  of  which  the  hyperbolical  logarithm  is  equal  to  unity, 
and  n  being  a  constant  quantity  evidently  equal  to  the  density  of  the  air 

at  the  surface  of  the  sea.  Let  h  and  /?'  represent  the  lengths  of  a  pen- 
dulum, which  vibrates  seconds  at  the  surface  of  sea,  under  the  equator, 

and  at  the  latitude  of  the  molecule  of  the  atmosphere,  which  has  been 

is  that  part  of  the  force  SF,  which  is  resolved  in  the  direction  of  the  radius  of  the  earth,  tf:= 

the  complement  of  latitude  .'.  »*7l  sin.  '<  is  the  part  of  the  centrifugal  force,  which  acts  in 
the  direction  of  the  terrestrial  radius.    The  force  varying  inversely  as  the  square  of  the  dis- 

1  dV       m 
tance,  V-^  —,  and  —  r:  -j-  see  Book  II.  No.  12. 

R  dr       R' 

The  earth  being  supposed  spherical  5  ;7-  >•  'S  nearly  the  same  in  every  parallel,  and .-.  equal 

(d'Vt 
to  its  value  at  the  equator,  where  it  is  equal  to  g  very  nearly ;  in  the  value  of  <  -j-^  >  we  sub- 

stitute ^  in  place  of  ̂ ^  ,  for  thus  the  error  of  the  supposition  that  g  =:^is  somewhat  cor- 

rected ;  substituting  for 

/'dV\  „    .     .     fd^V\       «»  „,     . 

(^-)  +  mR.sm.^>,^^)+-^R'.sm.'e 

.their  values  and  of  remarjiing that  V-{-  —  R.*  sin. '«  is  constant,  we  obtain  the  value  of 

Ig.  log.  ̂   which  is  given  in  the  text. 

The  density  of  the  atmosphere  being  inconsiderable  with  respect  to  that  of  the  earth,  we 

may  without  sensible  error,  neglect  the  attraction  of  its  molecules. 

The  variable  part  of  the  value  of  §  is  necessarily  negative,  for  the  density  decreases,  ac- 
cording as  we  ascend  in  the  atmosphere ; 

const       ̂ g'-(.y\ 

Ig  Ig    V-^Rl 

,  const      r'c^.,1    ,  r'\ 

const 

md  at  the  surface  of  the  sea  /  :rO  .••{=<:  =  n  which  is  consequently  the  value  of  5 
at  the  surface  of  the  sea;  when  the  times  of  vibration  are  given,  the  lengths  of  the  isochronous 

lendulums  are  proportional  to  the  forces  of  gravity,  .*.    — :i  -r-. 
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considered  :  we  shall  have—  =  -,  and  consequently, 

g      h 

7/    C        r'\ 
Ih 

f—n.  c  * 

From  this  expression  of  the  density  of  the  air,  it  appears  that  strata 

of  the  same  density,  are  throughout  equally  elevated  about  the  surface 

of  the  sea,  with  the  exception  of  the  quantity  -i — ~-^  j   however,   in 

the  exact  determination  of  the  heights  of  mountains  by  observations  of 

the  barometer,  this  quantity  ought  not  to  be  neglected. 
Let  us  now  consider  the  atmosphere  in  a  state  of  motion,  and  let  the 

oscillations  of  a  stratum  of  level,  or  of  the  same  density  in  the  state  of 

equilibrium,  be  determined.  Let  acp  represent  the  elevation  of  a  mole- 
cule of  the  fluid,  above  the  surface  of  level,  to  which  it  appertains  in  the 

*  If  we  expand  the  value  of  g  into  a  series  it  becomes  equal  to 

■  V     '  r'h' 
and  neglecting  higher  powers  of  /',=!— =7-  .-.  in  strata  of  equal  elevation  above  the  level 

h'—h 

of  the  sea,  the  difference  of  density  is  equal  to  r.  (j —  j ;  in  like  manner,  if  the  density  of 

two  strata,  in  latitudes  of  which  the  forces  are  respectively  equal  tog  and  g';  be  the  same, we  shall  have 

Ih 

7'  and  r*  being  the  heights  which  coiTespond  to  the  respective  latitudes,  .•.  neglecting  quantities 

of  the  second  order  we  shall  have,  when  the  density  is  given,  /A'=r"A  .-.  r'/=  —      conse- h 

quently  the  difference  between/ and /''/(=—)=  r'.  ('— ̂V 
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state  of  equilibrium  ;  it  is  manifest  that,  in  consequence  of  this  eleva- 
tion, the  value  of  tVvfill  be  increased  by  the  differential  variation 

—»g.S<p ;  thus  we  shall  have,  SV:=.{iV)-^s>i.g.Sip  +  »SV' ;  (^SV)  being  the 
value  of  S  V,  which,  in  the  state  of  equilibrium,  corresponds  to  the  stratum 

of  level,  and  to  the  angles  9  +  «w,  and  nt+zr+otv  j  SV  being  the  part  of 
iV,  which  is  produced  by  the  new  forces,  which  in  the  state  of  motion, 
agitate  the  atmosphere. 

Let  fi=:(f)  +  «f',  f  being  the  density  of  the  stratum  of  level,  in  the 

state  of  equilibrium.    By  making  -4-=y,  we  shall  have 

but  in  the  state  of  equilibrium  we  have, 

0=  ̂J.{{r+»s).  sin.  ($  +  «^)}»+(JD-/^'y  } 

therefore,  the  general  equation  relative  to  the  motion  of  the  atmosphere 
will  become,  relatively  to  the  strata  of  level,  with  respect  to  which  ir 

very  nearly  vanishes, 

+r^.J^.|sm.  .9.  |-^j+2«. sin. 6. cos. 6.^-^1+   r-\rf^|| 

=  neglecting  quantities  of  tlie  order  a',  Ig-  8(5)  (•(s)~(g).~-«.{') 
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=iV'—gJ(P'^gSy'  +  n^r.  sin.  »6.$.  (/ — (/)),* 

a  («')  being  the  variation  of  r,   which  in  the  state  of  equilibrium  corre- 

sponds to  the  variations  a?/,  «u',  of  the  angles  9,  and  zy. 
Let  us  suppose  that  all  the  molecules,  which  at  the  commencement  of 

the  motion  existed  on  the  same  radius  vector,  remained  constantly  on 

the  same  radius  in  a  state  of  motion,  which,  as  appears  from  what  pre- 
cedes, obtains  in  the  oscillations  of  the  sea ;  and  let  us  examine  whether 

this  supposition  is  consistent  with  the  equations  of  the  motion  and 

continuity  of  the  atmospjiere.  For  this  purpose,  it  is  necessary  that 

the  values  of  u'  and  of  v',  should  be  the  same  for  all  these  molecules,  as  we 
shall  see  in  the  sequel,  when  the  forces  which  cause  this  variation  are  de- 

termined ;  consequently,  it  is  necessary  that  the  variations  Sip  and  St/, 

should  be  the  same  for  these  molecules,  and  moreover  that  the  quantities 

•V 

2nr.  
S-sr.  

sin.  
'Q.  

S'^>  
,  and  

n'r.  
sln.^^  

J.  S  <t' — (s)  
(, 

may  be  neglected  in  the  preceding  equation. 

At  the  surface  of  the  sea,  we  have  <p=]/,  a-y  being  the  elevation  of  the 
surface  of  the  sea  above  the  surface  of  level.  Let  us  examine  whether  the 

suppositions  of  <?  equal  to  y,  and  of  y  constant  for  all  molecules  of 

the  atmosphere,  existing  on  the  same  radius  vector,  is  compatible 

with  the  equation  of  the  continuity  of  the  fluid.  This  equation 

is  by  No.  2,5, 

*  ai'  and  «(^')  being  tlic  variations  of  r,  corresponding  respectively,  in  the  states  of  motion 

and  equilibrium,  to  the  variations  mi  and  «.v' ,  the  expression 

p.  3.  J  (r-f  «s').  sin.(i!-l-««')  j  '=  Y-  ̂-  {  C*"  ^■  «(*')+«(«'-(*'))•  s:n-(«+««)  }  ' 

and  when  we  neglect  quantities  of  the  order**,  the  part  of  this  expression,  which  docs  not 
occur  in  the  equation 

0=-|-.  3.  |(»-  +  «4  sin.(tf+«i<)  I  ,  is,  7j«  r.«.S.  |  (*'—(/)  |.  sin. '«. 
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fiom  which  we  obtain 

,  C  f  d.r's'  >    ,    Sdu")  ̂   <:dt'}      u.'  cos.  9  % 

r  +  as'  is  equal  to  the  value  of  r  at  the  surface  of  level,  which  corresponds 
to  the  angles  8+«m,  and  sr  +  uv,  together  with  the  elevation  of  a  molecule 

of  air  above  this  surface ;  the  part  of  as'  which  depends  on  the  variation 

of  the  angles  G  and  iB-jt  being  of  the  order   — '—,   may    be  neglected   in & 
N  N 

*  Dividing  tliis  equation  by  r»  (5)  we  shall  obtain 

(?)  ̂~  I'  ̂ d«  )       W  j  sin.  6        \r'  dr )' 

f  The  part  of  «/  which  corresponds  to  the  variations  »u',  av',  is  of  the  same  order  as  the 
products  of  these  quantities  by  the  eccentricity  of  the  spheroid,  see  page  258,  and  the  ec- 

centricity in  this  case  is  proportional  to  the  fraction — ,  consequently    the  variation   of   «/ 

which  corresponds  to  the  variation  of  the  angles  I  and  1?,=:   ;  the  entire  variation  of  cts'  is g 

made  up  of  two  parts,  of  which  one  is  equal  to  the  elevation  of  the  molecule  above  the  sur- 

face of  equilibrium,  on  the  supposition  that  the  angles  6  and  ar  are  not  varied,  and  this  part 

of  the  variation  of  us'=ttip,  the  other  part  of  the  variation  is  the  part  which  corresponds  to  the 

variations  au'  and  «u'  of  the  angles  6  and  w,  and  from  what  precedes  it  appears  that  this  part 
may  be  neglected,  consequently  we  have 

r  d.r^sf    \      2s'  .  ds' 

the  second  term=  f~-  J  by  substituting  <p  in  place  of  y,  to  which  it  is  equal,  and  when  (f>  is 

supposed  to  be  equal  to  y ;  its  derivitive  function  with  respect  to  r  must  vanish,  <p  being  the  same 

for  all  the  molecules,  situated  on  the  same  radius,  y  is  the  same  order  &ss',  or  the  eccen- 
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the  preceding  expression  for  y,  consequently  it  may  be  supposed  in  this  ex- 

pression  thats'=:i?;  by  making <p  =3/,  we  shall  have!  —  |  =  0,sincethe  value 

of  (p  is  then  the  same  for  all  molecules  situated  on  the  same  radius. 

Moreover,  by  what  precedes,  y  is  of  the  order  Z  or  — ;  therefore  the  ex- 

pression  for  y'  will  become. 

'_     1  W*^^' \       \^^  y      m'.  cos.  6 ^~      '\Xdf\       Id^S  sin.  9 

thus,  11  and  v'  being  the  same  for  all  molecules  situated  primitively  on  the 
same  radius,  the  value  of  y  will  be  the  same  for  all  these  molecules. 

Moreover,  it  is  manifest  from  what  has  been  stated  that  the  quantities 

<2nr.  iw.  sin. -9.  j— Land «V.sin.^9.  (?.(«'— .-(y)), 

may  be  neglected  in  the  preceding  equations  of  the  motion  of  the  at- 

mosphere, which  can  then  be  satisfied,  by  supposing  that  u'  and  t'  are  the 
same  for  all  the  molecules  of  the  atmosphere,  which  at  the  commencement 
of  the  motion  existed  on  the  same  radius ;  therefore  the  supposition  that 

all  those  molecules  remain  constantly  on  the  same  radius  during  the  oscil- 
lations, is  compatible  with  the  equations  of  the  motion  and  of  the  con- 

tinuity of  the  atmospheric  fluid.  In  this  case,  the  oscillations  of  the 

different  strata  of  level  are  the  same,  and  may  be  determined  by  means 
of  the  equations, 

tricity  which  is  proportional  to  -,  and  this  last  quantity  is  proportional  to  I,  see  page  258  and 
o 

2s'        ds' 266,  •••  we  may  neglect  both  —  and  —  consequently  we  will  obtain  for  1/'  the  expression 

given  in  the  text.    It  is  manifest  from  what  has  been  stated  in  notes  to  page  253,  tliat 

—  y«^./-sin.*^.J(i' — («))raaybeneglectedwhenthe  earth  is  nearly  spherical. 
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+r.»J^.5sm.=fl.J^  I  —  2n.  sin.  9.  cos.  9.  Yj-\  -^'^'—g-^'S'^r, 

t_   ,  C  Cc?m'>       (cfw'?      z/cos  9  ? 

These  oscillations  of  the  atmosphere  ought  to  produce  corresponding 
oscillations,,  in  the  heights  of  the  barometer.  In  order  to  determine 

these  last  by  means  of  the  first,  we  should  suppose  a  barometer  fixed  at  any 
elevation  above  the  level  of  the  sea.  The  altitude  of  the  mercury  is  pro- 

portional to  the  pressure  which  the  surface  exposed  to  the  action  of  the 
air  experiences  ;  therefore  it  amy  be  represented  by  Ig.  p  ;  but  this  surface 

is  successively  exposed  to  the  action  of  different  strata  of  level,  which  are 

alternately  elevated  and  depressed  like  the  surface  of  the  sea ;  thus  the 

value  of  p  at  the  surface  of  the  mercury  varies,  1st,  *  because  it  appertains  to 
a  stratum  of  level,  which  in  the  state  of  equilibrium  was  less  elevated  by  the 

quantity  a.y;  2dly,  because  the  density  ofa  stratum  increases  in  the  state  of 

motion,  by  a/ or  by— yi^  .  In  consequence  of  the  first  cause,  the  variation 

of  f  is  augmented  by  the  quantity — »y,  ( -f  }or  ̂'pi.  therefore  the  en- 

tire  variation  of  the  density  f  at  the  surface  of  the  mercury,  is  gtCp)-  ,  . 

It  follows  from  this,  that  if  we  represent  the  height  of  the  mercury,  in 

^      *  (rfr)~  '^'  (/)• '°  *^  *^'®  °^  equilibrium /^\=g'.  (§)  see  (page  223)  ••.  (^\ 

=  ̂ ^  consequently  —  ay,  ( —~  J  =  '  j     \-r-j  's   negative  because  the  density  in- 

creases as  we  ascend  in  the  atmosphere . 

The  temperature  of  the  air  being  supposed  to  remain  unvaried,  its  specific  gravity  will  vary 

as  ({)  its  density,  and  this  quantity  varies  as  Jc. 
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the  barometer,   in  the  state  of  equilibrium  by  k  j  its  oscillations,  in  the 

state  of  motion  will  be  represented  by  the  function  — '^"  ;    conse- 

quently at  all  heights  above  the  level  of  the  sea,  these   oscillations  are 

similar,  and  proportional  to  the  altitudes  of  the  barometer. 
It  only  now  remains,  in  order  to  determine  the  oscillations  of  the  sea, 

and  of  the  atmosphere,  to  know  the  forces  which  act  on  these  respective 

fluids,  and  to  integrate  the  preceding  differential  equations  j  which  will 
be  done  in  the  sequel  of  this  work. 

END  OF  THE  FIRST  BOOK. 
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OF  THE  LAW  OF  UNIVERSAL  GRAVITATION,  AND  OF  THE  MOTIONS 
OF  THE  CENTRES  OF  GRAVITY  OF  THE  HEAVENLY  BODIES. 

CHAPTER  I. 

Of  the  law  of  universal  gravitation,  deduced f-om  the  phenomena. 

1.  After  having  developed  the  laws  of  motion,  we  proceed  to 
deduce  from  these  laws,  and  from  those  of  the  celestial  motions,  which 

have  been  given  in  detail  in  the  work  entitled  the  Exposition  of  the  Sys- 

tem of  the  World,  the  general  law  of  these  motions.  Of  all  the  pheno- 

mena, that  which  seems  most  proper,  to  discover  it,  is  the  elliptic  motion 
of  the  planets  and  of  the  comets  round  the  sun,  let  us  therefore  consider 

what  this  law  furnishes  us  with  on  the  subject.     For  this  purpose,  let 
PART.  I. — BOOK  II.  *  B 
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X  and  1/  represent  the  rectangular  coordinates  of  a  planet,  in  the  plane 

of  its  orbit,  their  origin  being  at  the  centre  of  the  sun  ;  moreover,  let 

P  and  Q  represent  the  forces  with  which  the  planet  is  actuated  in  its 

relative  motion  round  the  sun,  parallel  to  the  axes  of  ̂   and  of  j/,  these 

forces  being  supposed  to  tend  towards  the  origin  of  the  coordinates  ; 

tinally,  let  dt  represent  the  element  of  the  time  which  is  supposed  to 

be  constant;   by  the  second  chapter  of  the  first  bool^,*  we  shall  have 

d''v 

.  0  =  ̂   +  Q.     (.) 

If  we  add  the  first  of  these  equations  multiplied  by  — i/,  to  the  se- 

cond multiplied  by  x,  the  following  equation  will  be  obtained  : 

,^        d.  (xdy—ydx)     ,      „        „ 
0  =  — ^     ̂ ^if  +  xQ—ijP. 

It  is  evident  that  xdy — ydx  is  equal  to  twice  the  area  which  the  ra- 
dius vector  of  the  planet  describes  about  the  sun  during  the  instant  dt; 

by  the  first  law  of  Kepler  this  area  is  proportional  to  the  time,  conse- 

quently we  have 

xdy  — ydx  =  cdt, 

c  being  a  constant  quantity  ;  hence  it  appears,  that  the  differential  ot 

the  firsi  member  of  this  equation  is  equal  to  cypher,  which  gives 

xQ—yP  =  0, 

*  These  laws  refer  strictly  to  the  motion  of  the  centre  of  gravity  of  each  planet ;  it  is 

therefore  the  motion  of  this  point  which  is  determined,  and  by  the  position  and  velocity 
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it  follows  from  this,  that  the  forces  P  and  Q  are  to  each  other  in  the 

ratio  of  cT  to  ̂  ;  and  consequently  their  resultant  must  pass  through 

the  origin  of  the  coordinates,  that  is,  through  the  centre  of  the  sun, 

and  as  the  curve  which  the  planet  describes  is*  concave  towards  the 
sun,  it  is  evident  that  the  force  which  acts  on  it,  must  tend  towards 
this  star. 

The  law  of  the  areas,  proportional  to  the  times  employed  in  theic 

description,  leads  us  therefore  to  this  first  remarkable  result,  namely, 

that  the  force  which  solicits  the  planets  and  comets,  is  directed  towards 
the  centre  of  the  sun. 

2.  Let  us  in  the  next  place,  determine  the  law  according  to  which 
this  force  acts  at  different  distances  from  this  star.  It  is  evident  that 

as  the  planets  and  the  comets  alternately  approach  to  and  recede  from 

the  sun,  during  each  revolution,  the  nature  of  the  elliptic  motion 

ought  to  conduct  us  to  this  law.  For  this  purpose,  let  the  differential 

equations  (l)  and  (2)  of  the  preceding  number  be  resumed.  If  we  add 

the  first,  multiplied  by  dx,  to  the  second,  multiplied  by  dy,  we  shall 
obtain 

dx.d''x  +  dy.d''u    ,   „  ,       ̂   , 0=   -—^ — ^+Pdx  -!-  Qdy ; 

which  gives  by  integrating 

of  a  planet,  we  always  understand,  unless  the  contrary  be  specified,  the  position  and  ve- 

locity of  its  centre  of  gravity ;  hence  it  is  evident,  that  the  equations  of  the  motion  of  a 

material  point,  which  have  been  given  in  the  second  chapter,  are  applicable  in  the  present 
case. 

*  The  areas  being  proportional  to  the  times,  the  curve  described  is  one  of  single  curvature, 
{see  Book  I.  page  28,  Notes),  therefore  two  coordinates  [x,  y)  are  sufficient  to  determine 

the  circumstances  of  the  planet's  motion.  As  the  curve  described  by  the  planet  is  con- 

cave to  the  sun,  it  is  plain  that  in  the  equation  —pr=  P;  -jj-  must  be  taken  nega- 

tively, because  the  force  tends  to  diminish  the  coordinates.  See  Book  I.  Chapter  II. 

page  31. 
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0=  -^^^^  -V2J\Pdx  H-  Qdy\* 

the  arbitrary   constant   being   indicated  by   the  sign    of  integration. 
oodii^^^  u  fix 

Substituting   instead  of  dt,  its   value  — - — - — ,  which  is  given  by 

the  lavs^  of  the  proportionality  of  the  areas  to  the  time,  we  shall  have 

For  greater  simplicity,  let  us  transform  the  coordinates  x  and  j/,  into 
a  radius  vector,  and  a  traversed  angle,  conformably  to  the  practice  of 
astronomers.  Let  r  represent  a  radius  drawn  from  the  centre  of  the  sun 

to  that  of  the  planet,  or  its  radius  vector ;  and  let  v  be  the  angle  which 
it  makes  with  the  axis  of  x,  we  shall  have  then, 

xz=.r.  cos.  v;  y  =.r.  sin.  r  ;  r  ■=.  y/a*  +  ij*  ;t 

from  which  may  be  obtained, 

■dx''-\-dy''-=.r''.dv^-\-d7''' ;  xdy — ydx  zz  r'dv. 

If  the  principal  force  which  acts  on  the  planet  be  denoted  by  (p,  we 

shall  have  by  means  of  the  preceding  number,  . 

P  z=  (p.  COS.  t; ;  Q  =  (p.  sin.  i; ;   9  =:\/P*i-Q* ; 
which  gives 

Pdx+Qdyz=.(pdr  ; 

dx  -4-  dii' *  The  equation  0  =    ^^   h  '^■/{Pdx  +  Q(/y),  has  been  already   deduced   in 

No  8 ;  by  substituting  for  dx^  and  dif-  their  values  in  terms  of  the  polar  coordinates,  we 

obtain  — — p  -J — — — [-  1J  <p.dr  =  0 ;  hence  if  <p  be  given  in  terms  of  r  we  shall  immedi- 

diately  obtain  the  velocity  at  any  distance  from  the  centre  of  force. 

f  The  most  obvious  way  of  determining  the  position  of  any  body,  is  by  means  of  rectan- 

gular coordinates,  in  which  case  the  differential  equations  of  motion  are  symmetrical ; 

however,  as  the  polar  coordinates  involve  directly  the  quantities  which  are  required  to  be 

known  in  astronomical  investigations,  namely,  the  distance,  longitude  and  latitude  of  a 

planet,  astronomers  make  use  of  these  coordinates  in  determining  the  circumstances  of  its 
motion,  &c. 
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and  by  substitution  we  shall  have 

*  dx  =  dr.  COS.  D  —  (/u.  sin.  v.  r,  dy  —  dr.  sin.  v  +  </t;.  cos.  v.  r,  •/  (/j:*  +  d\)'  =  f/i-. 

(COS.  'v+  sin.  ';;)  — 2rfr.  dm.  sin.  v.  cos.  u  +  2rfr.  rfur.  sin.  u.  cos.r  +  dv^.  r^.  (sin.  "v  + 

COS.  'i;)=  t?r^  +  dv°.  r^;  xdy  =  r.  cos.  u.(c?r.  sin.  v  +  rdv.  cos.  u)  =  rdr.  sin.  f.  cos,u  + 

rfu.r*.  COS.  *r,  ydx=r.  sin.  u.  (rfr.  cos.  « — r.  rfu.  sin.  v)=rdr.  sin.  v.  cos.  u — rfur'.  sin.  "v,  •/ 
xrfj/ — ydx  =  r".  dv ;  Pdx  =  (f.  cos.  r.  (dr.  cos.  t;— rc/i).  sin.  u) ;  Q,dyz=<(>.  sin.  u.(rfr.  sin.  i>+ 

rdv.coi.v),  V  Pix+Qrfy  =  ?irfr.(cos.^u+sin.  ̂ d),  +(prft).  (r.cos.  r.  sin. «— r.  cos.  v.  sin.ii) 

(T  (dx''  +  du'') 
=  <t>dr;  therefore  by  substituting  in  the  equation  — ^ — —rr::  +  2f(Pdx+  Qdy)  =  0, 

[xdy—ydxy 

we  obtain  ijl^lj^+Ii  ̂   g /©t/r  =  0 ;  and  •  •  l—ch"—T\  2f^dr).  dv"  =  c^dr" ;  as  the 
r  «D^  ■ 

variables  dv  and  (/)•   are  separated  in  the  equation  dv  =    .  j  "  can 
r.V—c"—2r\fq)dr 

be  integrated  and  constructed,  the  radical  ought  to  be  affected  with  the  sign  ±,  when 

I)  and  r  increase  the  same  time,  the  sign  is  +,  and  in  the  contrary  case  the  sign  is  —  ; 

these  circumstances  depend  on  the  initial  impulse  of  the  planet.  The  determination  of  v, 

or  of  the  orbit  described  by  a  body,  when  the  law  of  the  force  (p  is  given,  is  called  the  in- 

verse problem  of  central  forces,  the  expression  for  dv  coincides  with  that  given  by  Newton 

in  Prop,  il,  Lib.  1st.  Princip.  for  it  is  there  demonstrated  that  XY.  XC  = 
O    T^  0\'^  XY 
'  ,  from  the  construction  it  is  evident  that  -rrrrr  =  dv,  that  IN  =  dr. 

Q 
A 

X. 

XC 

that  Q;=c,  and  finally  that   A  =  r,  and  as  Z«  OC  -^ ,  and  ABTD  =   the  square  ot 

  XY  ^-  ̂'^ 
the  velocity,  V  ABTD  —  Z-  =  v^  —fifdr—  f_':  -^^  =  dv  =  ̂ V.^yiVT)  —  Z= 

cdr 
■■  -H  by  r. 

r\i/—c'—'lr"f(pdr 

If  the  force  <p  be  as  any  power  w  of  the  distance,  then  2/<pdr=  2/r"dr  (=  the  square 

of  the  velocity)  =i'4-  --   .  Z'"^'   —  .  a""*"^  (a  being  the  initial  distance),  hence ■"       ̂ »  +  l  n+l 
cdr 

dv  = 

V_  c'—  bh--  -I   —    r"+3  +  — ^  "   " "  \  as  i  is  tiie  velocity  of  projec- w4-l  n  +  l 
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from  which  we  may  obtain, 

dv=:        ,   ^gl^...^.    (3) 
r.y/ —  c*  —  9.r'J'<pdr 

This  equation  will  give  by  the  method  of  quadratures,  the  value  of 

V  in  terms  ofr,  when  (pis  a  known  function  of  r,  but  if,  this  force  being 

unknown,  the  nature  of  the  curve  which  it  makes  the  planet  describe, 

be  given,  then,  by  differentiating  the  preceding  expression  of  9.f(pdr, 

we  shall  have,  to  determine  <p,  the  equation 

tion,  if  p  be  the   peqiendicular  on  the  tangent   at   this   point,  c  QC  p  b,  and   b"=.m- 

a"+i,  ••  dv=    —  '  —  ,    at  tlie  apsides 

»■•       /_(p2  +  /-),„2an+l__:i_.  yn+3  ̂   _1_     „b4-2  ,S _2_ 

p=a,  dr  =  0,  and  •/  r=  ̂ —r'=-    ,  .  ,  lience 

  _   

Ir  +  ■   .(a""*"' — >■"+*)  — pl>  =  0,  by  squaring  this   equation,  we  get  b-r' 

2                            2 

J   .  o»+i  r-   .  r"'*"3 — p"b-  =  0. 

When  n  is  even,  this  equation  may  have  four  possible  roots,  when  it  is  odd,  it  can  only  have 

three ;  but  as  this  equation  is  the  square  of  the  given  equation,  some  of  the  roots  are  in- 

troduced by  the  operation,  so  that  the  equation  to  the  apsides  can  never  have  more  than  two 

possible  roots,  consequently  no  orbit  can  have  more  than  two  apsides,  i.  e.  there  are  only 

two  different  distances  of  the  apsides,  but  there  is  no  limit  to  the  number  of  repetitions  of 

these,  without  again  falling  on  the  same  points,  if  ?2  =  —  3  or  a  greater  negative  number, 

the  equation  can  have  only  one  possible  root,  and  the  orbit  but  one  apsid. 

If  in  the  equation  — j-  +  -r-7-"  +2/?'£?'")—  be  substituted  in  place  of  r,  it  becomes 

c2_  /_    1    J\   2f(p.  —T!  which  is  a  much  more  convenient  form,  particularly  when  the 
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dr 

The  orbits  of  the  planets  are  ellipses,  having  the  centre  of  the 

sua  in  one  of  the  foci ;  if,  in  the  ellipse,  is-  represents  the  angle 
which  the  axis  major  makes  with  the  axis  of  x,  moreover  if  a  re- 

presents the  semiaxis  major,  and  e  the  ratio  of  the  excentricity  to  the 

semiaxis  major,  we  shall  have,  the  origin  of  the  coordinates  being  in 
the  focus, 

1  +e.  cos.  {y — ut)  ' 

which  equation  becomes  that  of  a  parabola,  when  t?  =  1,  and  a  is  in- 

finite, it  appertains  to  an  hyperbola,  when  e  is  greater  than  unity. 

law  of  the  force  being  given,  the  nature  of  the  orbit  is  required;  for  instance  the  equation  in 

page 2rf2, 
page  5  becomes,  when  —  is  substituted  for  r  then  differentiated,  and  the  result  divided  by 

W^"^    ■     A       f       ,>  ,  9 /'^''^         oX         ,  1        1-4-e.  cos.  (u— sr) 

j.^        .    .      _    .      d^z           e.cos.(u-ro)         d-z        „             1  cV 
differentiating  twice  -—  =   ~ — -i,  '.--rir  -H-   =  -75   Tx'  "•■  ̂   = 

rf„8  -         «.(!— e«)  '   •    dir    ̂ ~   ~  «.(1— e»)'   *  ̂  ~  rt.(l— e^) 

c'".(r*.(/'D*4.rfr''')       c'         c'.dr" 
*      —     '  ■  ■      =  —  ̂  — ^-—  r=  —  Ifiidr,  •  •  by  differentiating  and  dividing  by r*.dv  r-        r^.dv 

by  dr  we  obtain   d.l—--A—(p. 
r  \r*dv^/ 

t  The  greatest  and  least  values  of  r  correspond  to  v—vs^ijr,  u— ot'=0,  •.•  they  are  re- 
spectively 0.(1  +  e),  «.(! — e),  consequently  they  lie  in  directum;  hence  it  is  easy  to  per- 

ceive, that   when   <p.  varies  as  —  ,  the  apsides  are  180°  distant,  and  vice  versa. 
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This  equation  gives 

dr''  2  11 

and  consequently 

c*  1 

«  = 
a.(\—e^y  r X       ) 

therefore,  the  orbits  of  the  planets  and  comets  being  conic  sections, 

the  force  (p  is  reciprocally  proportional  to  the  square  of  the  distance  of 
the  centres  of  these  stars  from  that  of  the  «un. 

Moreover  we  may  perceive,  that,  if  the  force  (p  be  inversely  as  the 

square  of  the  distance,  or  expressed  by  —^ ,  h  being  a  constant  co- 

efficient, the  preceding  equation  of  conic  sections,  will  satisfy  the  dif- 
ferential equation  (4)  between  r  and  v,  which  gives  the  expression  of  if, 

h                                                 c* 
when  (p  is  changed  into  — j-  .     We  have  then  h  =  — —   ^,  which 

1  _  I-t-e.  cos.(u — ig)  dr-    _/e.sm.{v — ro)  \^  a.(l — e")  _ 

I  (2.(1— e=  \  !         2n.(l — eM 
„  (v — 0-)  •.•    I  -^— —  I   —   -J-  1  ■=.  e'-,  COS.  (v  —  -of  ■=.  e'  —  t'.  sin. 

cos, 

dr-  12  1  1 
°(ti  — a-),  •.•  -TT^   ',-\   Ti   T  X   ;;   r  >  and  the  ditferential  of  the  se- ^  r\dv'  r^       a.(l—e-        r         a^.{l — e*) 

2  2  1 
cond  member  divided  by  dr  will  be  equal  to  -^   —  ,  consequently  we  have 

r'        a.(l — er)'  r-  ' 
the  value  of 

dr-  \       c-         c-  c-  1 c'  c-     ,  f  dr-  \ 

dr 
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forms  an  equation  of  condition  between  the  two  arbitrary  quantities  a 

and  e,  of  the  equation  of  a  conic  section  ;  therefore  the  three  arbitrary 

quantities  a,  c,  and  ra-,  of  this  equation,  are  reduced  two  distinct 
quantities,  and  as  tlie  differential  equation  between  r  and  v,  is  only  of 

the  second  order,  the  finite  equation  of  conic  sections  is  its  complete 

integral.* 
From  what  precedes,  it  follows,  that,  if  the  curve  described  is  a 

conic  section,  the  force  is  in  the  inverse  ratio  of  the  square  of  the  distance, 

and  conversely,  if  the  force  be  inversely  as  the  square  of  the  distance, 
the  curve  described  is  a  conic  section. 

S.    The  intensity  of  thet  force  ?,  with  respect  to  each  planet  and 

c*
 

comet  depends  on  the  coefficient  — r-   .-  :  the  laws  of  Kepler  fur- 
^  a{l — <?")  ^ 

nish  us  with  the  means  of  determining  it.     In  fact,  if  we  denote  the 

time  of  the  revolution  of  a  planet  by  T;  the  area,  which  its  radius  vector 

describes  during  this  time,  being  the  surface  of  the  planetary  ellipse,  it 
PAET  I.   BOOK  II.  c 

*  Conversely,  when  <p  =  — ,  the  preceding  equation  of  conic  sections  will  satisfy  the 

differential  equation  (i)  between  r  and  v,  and  h   becomes  =    ■   -. ,    '■•  the  three 

c.(l — e^j arbitrary  quantities  are  reduced  to  two  distinct  ones,  and  this  is  the  required  number  of 

arbitrary  quantities,  for  the  differential  equation  between  r  and  v  being  of  the  second 

order,  the  number  of  arbitrary  quantities  introduced  by  the  double  integration  is  two, 

so  that  the  equation  of  conic  sections  is  the  complete  integral  of  this  differential  equation. 

■)-  The  two  first  laws  of  Kepler,  are  sufficient  to  determine  the  ratio  which  exists  be- 
tween the  intensities  of  the  action  of  the  sun  on  each  planet,  at  different  distances  of 

the  planet  from  the  sun  ;  by  means  of  the  third  law  we  are  enabled  to  find  the  relations 

which  exist  between  the  respective  actions  of  the  sun  on  different  planets.     As  — —   —  , 

which  expresses  the  intensity  of  the  force  for  each  planet,  at  the  unity  of  its  distance  from 

the  sun,  depends  on  the  tliree  quantities  a,  e,  c,  which  have  particular  values  for  each 

planet,  we  cannot  determine  without  the  third  law,  whether  it  changes,  or  remains  the 

same,  in  passing  from  one  planet  to  another. 
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will  be  7r.a*.v  1 — e%*  tt  being  the  ratio  of  the  semicircumference  to  the 
radius ;  but,  by  what  precedes,  the  area  described  during  the  instant  dt, 

is  equal  to  i.cdt;  therefore  the  law  of  the  proportionality  of  the  areas 
to  the  times  of  describing  them,   will  give  the  following  proportion  : 

i.cdt :  ira\\/l— e* ::  dt :  T: 

•onsequently 

27r.rt^^/l— e* 
c=     J.     . 

With  respect  to  the  planets,  the  law  of  Kepler,  according  to  which 
the  squares  of  the  times  of  their  revolutions,  are  as  the  eubes  of  the 

greater  axes  of  their  ellipses,  gives  T'  =  k'.a^,  k  being  the  same  for 
all  the  planets ;  therefore,  we  have 

c  =  2^Vg^(l^^^ k 

2fl.(l— e')  is  the  parameter  of  the  orbit,  and  in  different  orbits,  the 
values  of  c  are  proportional  to  the  areas,  described  by  the  radii  vectores 

in  equal  times  ;  therefore  these  areas  are  as  the  square  roots  of  the  pa- 
rameters of  the  orbits. 

This  proportion  obtains  also,  for  the  orbits  described  by  the  comets, 

compared  either  among  themselves,  or  with  the  orbits  of  the  planets ; 

this  is  one  of  the  fundamental  points  of  their  theory,  which  corresponds 
so  exactly  to  all  their  observed  motions.  The  greater  axes  of  their 

orbits,  and  the  times  of  their  revolutions,  being  unknown,  we  compute 

the  motion  of  these  stars,  on  the  hypothesis  that  it  is  performed  in  a 

•  The  area  of  the  ellipse  being  equal  to  that  of  a  circle,  whose  radius  is  a  mean  propor- 

tional between  the  semiaxes  a  and  av'l— e* ;  it  must  be  equal  to  iraK^l—e'. 
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parabolic  orbit,  and  expressing  their  perihelion  distance  by  D,*  we 

suppose  c  =  — ^^^    ,  which   is  equivalent  to   making  e  equal  to 

unity,  and  a  infinite,  in  the  preceding  expression  of  c  ;  consequently,  we 

have  relatively  to  the  comets,  T'  =  k^.a^,  so  that  we  can  determine 
the  greater  axes  of  tlieir  orbits,  when  the  periods  of  their  revolution 
are  known. 

The  expression  for  c  gives. 

C*  49r* 

fl.(l— £') 7.«     > 

therefore  we  have 

c  2 

*  The  polar  equation  of  the  parabola  is  r  =   ~   -;  •.•  when  v — v  =  0,  i.  e. 
•^  ^  r+cos.  (u— cr) 

at  the  perihelium,  r  =.   — '  =—  =D,  :•  a(l — e»)=2D.    Nowthis  is  the  same  thing, 

(J   g2\ 

as  if  a  was  made  infinite,  and  e=  to  unity,  in  the  equation,  rz=:a.-   -,  which  expresses 

the  distance  of  the  nearest  apsis  from  the  focus  of  the  ellipse,  for  substituting  for  the  ex- 

centricity  its  value  V^a^—A^,  r  becomes  equal  to  a.{—   filZ—l  |  —  as  (i*  —  af) 

~   —   -2.'    and  as  v'a* — apz=a   —  +(  }•  —  =  when    a    is   infinite 
2a  '^  2  o 

a.{a—a  +-^) 

„    £_    f —   ''^        —    JL      and  it  is  evident  that  e  is  equal  in  this  case  to 
2   '     ~  2a  * 

unity.    •.•  If  we  suppose  that  the  synchronous  areas  are  as  the  square  roots  of  the  parame- 

ters,  or  c  =    ,  we  will  have   ;   .  dt :  ̂ tat  ̂ /2D  ::  dtiT;  :'  1    —/c*  a'- k  2k 

\    The  constant  ratio  which  c  bears   to   the    square  root   of  2D,  is   that  of  2x 

'.h,   which  is  the  same  for   all  the   planets;    -^,  or --p^-rT-  is  the  value  of  the "^  «'         0.(1 — e'; 
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The  coefficient       ,    ,    being  the  same  for  all  the  planets  and  comets,  it 

Ic' 

force  ip  at  the  unity  of  the  distance  of  a  planet  from  the  sun.  The  accelerating  force  of  the 

planets  being  the  same  at  equal  distances  from  the  sun,  it  follows  that  the  moving  force  will 

be  proportional  to  the  mass;  and  if  all  the  planets  descended  at  (he  same  instant,  and 

without  any  initial  velocities  from  different  points  of  the  same  spheric  surface,  of  which  the 

centre  coincided  with  that  of  the  sun,  they  would  arrive  at  the  surface  of  the  sun,  being 

tupposed  spheric,  in  the  same  time  ;  here,  we  may  perceive,  a  remarkable  analogy  between 

this  force  and  the  terrestrial  gravity,  which  also  impresses  the  same  motion,  on  all  bodies 

situated  at  equal  distances  fiom  its  centre. 

If  the  apparent  diameter  of  the  sun  be  observed  accurately  vvith  a  micrometer,  it  will  be 

found  to  vary  in  the  subduplicate  ratio  of  his  angular  velocity  ;  from  this  phenomenon  the 

equable  description  of  areas  may  be  inferred  ;  for  as  the  apparent  diameters  of  the  sun  are 

inversely  as  the  distance  of  the  sun  from  the  earth,  the  angular  velocity  of  the  sun  must  be 

inversely  as  the  square  of  the  distance  of  the  sun  from  the  earth,  therefore  the  product  of  the 

diurnal  motion  into  the  square  of  the  distance,  i.  e.  the  small  area  must  be  constant.  If  the 

sun's  mean  apparent  diameter  be  called  m,  and  his  least  apparent  diameter  m — n,  his  appa- 
rent diameter  at  any  other  time,  will  be  m — n  cos.  z,  z  being  the  angular  distance  of  the  sun 

from  the  point  where  his  diameter  is  least,  lience  it  may  be  inferred,  that  the  orbit  is  ellip- 

tic ;  for  as  the  distance  is  inversely  as  the  apparent  diameter,  r:=i  —   -,  when m — n  cos.  (i' — ■sr) 

r  is  greatest,  v — ■az^O,  when  least  v — CT=:jr,  •.•  viu- — nr  cos.  (u — -z)  =  j('« — n),  x  being 

the  greatest  distance,  and  mr  =  s  (m — n)  -\-  nr.  (cos.  v. — «r),  let  (m — ?;).  x  =  nx',  and 
then  7nr  =  ?i(r.  cos.  (v — to)  -|-  x),  :•  m  :  «  : :  r.  cos.  (v — t!!)-\-x'  :  r  ;  now  r.  (cos.  [v — w)  is 

equal  to  a  part  of  the  axis  intercepted  between  a  perpendicular  let  fall  from  the  sun's 

place  on  this  axis,  and  the  place  the  earth  is  supposed  to  occupy,  and  x'  is  a  constant  quan- 
tity, •.•  producing  the  axis  in  an  opposite  direction  from  the  sun,  till  the  distance  from  the 

earth  is  equal  to  x',  and  erecting  a  perpendicular  to  the  produced  axis  at  the  extremity  of 

its  production,  x  -\-  r  cos.  [v — ■cr)  is  e(iual  to  the  distance  of  the  sun  from  this  perpendicu- 

lar, and  as  it  is  to  r  the  distance  of  the  sun  from  the  earth,  in  a-given  ratio  of  major  ineijua- 

lity,  namely  m  :  n,  it  follows  that  the  curve  is  an  ellipse  of  which  the  directrix  is  a  perpendicu- 

lar, erected  at  the  extremity  of  x'.     This  conclusion  might  also  have  been  inferred  fi-om  th« 

polar  equation  to  the  ellipse  r  =      ~^       =  a(l— e').  (1-f  ecos.  (u— w))-'. 
'^  H-ecos.  (y — ot) 

Kepler  directed  his  observations  to  the  planet  of  Mars,  of  which  the  motion  appeared  te 

be  more  irregular,  than  the  motion  of  the  other  planets,  and  by  determinmg  several  di^ 

tances  of  the  planet  from  the  sun,  and  tracing  the  orbit  which  passes  through  them  all,  it 

will  appear  that  this  orbit  must  be  an  ellipse,  of  which  the  sun  occupies  one  of  tlie  foci,  it 
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follows  that  for  each  of  these  bodies,  the  force  ip,  is  inversely  as  the 

square  of  the  distance  from  the  centre  of  the  sun,  and  that  it  only  va- 

ries from  one  planet  to  another,  in  consequence  of  the  change  of  dis- 

tance ;  from  which  it  follows  that  it  is  the  same  for  all  these  bodies  sup- 
posed at  equal  distances  from  the  sun. 

We  are  thus  conducted,  by  the  beautiful  laws  of  Kepler,  to  consider 

the  centre  of  the  sun  as  the  focus  of  an  attractive  force,  which,  decreasing 

in  the  ratio  of  the  square  of  the  distance,  extends  indefinitely  in  every  di- 

rection. The  law  of  the  proportionality  of  the  areas  to  the  times  of  their 

description,  indicates  that  the  principal  force  which  solicits  the  planets  and 

comets,  is  constantly  directed  towards  the  centre  of  the  sun  ;  the  ellipti- 

city  of  the  planetary  orbits,  and  the  motions  of  the  comets  which  are  per- 
formed in  orbits,  which  are  very  nearly  parabolic,  prove,  that  for  each 

planet  and  for  each  comet,  this  force  is  in  the  inverse  ratio  of  the  square 

of  the  distance  of  these  stars  from  the  sun  ;  finally,  from  the  law 

of  the  squares  of  the  periodic  times  proportional,  to  the  cubes  of  the 

greater  axes  of  their  orbits,  i.  e.  from  the  proportionality  of  the  areas 

traced  in  equal  times  by  the  radii  vectores  in  ditlerent  orbits,  to  the 

square  roots  of  the  parameters  of  these  orbits,  which  law  involves  the 

preceding,  and  is  applicable  to  comets  ;  it  follows,  that  this  force  is  the 

same  for  all  the  planets  and  comets,  placed  at  equal  distances  from  the 
sun,  so  that  in  this  case,  these  bodies  would  fall  towards  the  sun,  with 

equal  velocities. 

4.  If  from  the  planets  we  pass  to  the  consideration  of  the  satellites.! 

we  find  that  the  laws  of  Kepler  being  very  nearly  observed  in  their  mo- 

tions about  their  respective  primary  planets,  they  must  gravitate  towards 

the  centres  of  these  planets,  in  the  inverse  ratio  of  the  squares  of  their 

distances  from  these  centres ;  they  must  in  like  manner  gravitate  very 

nearly  as  their  primaries  towards  the  sun,  in  order  that  their  relative  mo- 

tions about  their  respective  primary  planets,  may  be  very  nearly  the  same 

can  also  be  sliewn  that  the  angular  velocities  are  inversely  as  the  squares  of  the  distances 
from  the  sun,  from  which  it  fblluvvs  that  the  areas  are  proportional  to  the  times. 
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as  if  these  planets  were  at  rest.  Therefore  the  satellites  are  solicited  to- 

wards their  primaries  and  towards  the  sun,  by  forces  which  are  inversely 

as  the  squares  of  the  distances.  The  elliplicity  of  the  orbits  of  the  three* 
first  satellites  of  Jupiter  is  inconsiderable  ;  but  the  ellipticity  of  the  fourth 

satellite  is  very  perceptible.  From  the  great  distance  of  Saturn  we  have 

not  been  able  hitherto  to  recognise  the  ellipticity  of  the  orbits  of  his 

satellites,  with  the  exception  of  the  sixth,  of  which  the  orbit  appears  to  be 

sensibly  elliptic.  But  the  law  of  the  gravitation  of  the  satellites  of 

Jupiter,  Saturn,  and  Uranus  is  principally  conspicuous  in  the  rela- 
tion which  exists  between  their  mean  motions,  and  their  mean  dis- 

tances from  the  ceiitre  of  these  planets.  This  relation  consists  in  this, 

that  for  each  system  of  satellites,  the  squares  of  the  times  of  their  revo- 

lutions are  as  the  cubes  of  their  mean  distances  from  the  centre  of  the  " 

planet.  Therefore  let  us  suppose  that  a  satellite  describes  a  circular 

orbit,  of  which  the  radius  a  is  equal  to  its  mean  distance  from  the  centre 

of  the  primary,  T  expressing  the  number  of  seconds  contained  in  the 

duration  of  a  sidereal  revolution,  and  tt  expressing  as  before  the  ratio 

of  the  semiperiphery  to  the  radius,  — '——  will  be  the  small  arc  described 

by  the  satellite  in  a  second  of  time.     If,  the  attractive  force  of  the  pk' 

*  The  frequent  recurrence  of  the  eclipses  of  the  satellites,  enables  us  to  determine  the 
synodic  revolution  with  great  accuracy  :  and  by  means  of  this  revolution,  and  of  the  motion 

of  Jupiter,  we  can  obtain  the  periodic  time.  The  hypothesis  of  the  orbits  being  very 

nearly  circular,  in  the  case  of  the  first  and  second  satellites,  is  confirmed  by  the  pheno- 

mena, for  the  greatest  elongations  are  always  very  nearly  the  same  ;  besides  the  supposition 

of  the  uniformity  of  the  motions,  satisfies  very  nearly  the  computations  of  the  eclipses. 

The  distances  of  the  satellites  from  the  centre  of  Jupiter,  may  be  found,  by  measuring 

with  a  micrometer,  their  distances  from  this  centre,  at  the  time  of  their  greatest  elongation, 

and  also  the  diameter  of  Jupiter  at  this  time,  by  means  of  which,  these  distances  may  be 

obtained  in  terms  of  the  diameter;  however  they  cannot  be  determined  with  the  same  preci- 

sion as  the  periods  of  the  satellites.  As  it  is  necessary  in  a  comparison  of  a  great  nu  nber 

of obsenations,  to  modify  the  laws  of  circular  motion,  in  the  case  of  the  third  and  fourth 

•atellites,  but  especially  in  the  case  of  the  fourth,  we  conclude  that  the  orbits  of  these  sa- 

tellites are  elliptical. 
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net  ceasing,  the  satellite  was  no  longer  retained  in  its  orbit,  it  would 

recede  from  the  centre  of  the  planet  along  the  tangent,  by  a  quantity 

equal  to  the  versed  sine  of  the  arc  ,   that  is  by  the  quantity*  ■  ; 

therefore  this  attractive  force  makes  it  to  descend  by  this  quantity,  to- 

wards the  primary.  Relatively  to  another  satellite,  of  which  the  mean 

distance  from  the  centre  of  the  primary  is  represented  by  «',  7"  being 
equal  to  the  duration  of  a  sidereal  revolution,  reduced  into   seconds, 

the  descent  in  a  second  will  be  equal  to         ,  ■;   but  if  we  name  (p,  (p', 

the  attractive  forces  of  the  planet  at  the  distances  a  and  a',  it  is  mani- 
fest, that  they  are  proportional  to  the  quantities  by  which  they  make 

the  two  satellites  to  descend  towards  their  primary  in  a  second  ;  therefore 

we  have  0:0   ••  — = —  :  — — —  . 

The  law  of  the  squares  of  the  times  of  the  revolutions,  proportional 
to  the  cubes  of  the  mean  distances  of  the  satellites  from  the  centre 

of  their  primary,  gives  v 

T*  :  r'  ::  a'  :  d*  : 

From  these  two  proportions,  it  is  easy  to  infer 

1  1 
<?:?>:: 

a*       d' 

consequently,  the  forces  9  and  9'  are  inversely  as  the  squares  of  the  dis- tances a  and  d. 

•  T:  1"  ::  2ax  :  arc  described  in  a  second,  on  the  hypothesis  that  the  motion  is  uni. 

form,  the  versed  sine  of  this  arc  =   ^~..    As  the  orbits  of  all  the  satellites  are  notd- 

2a  1^ 

liptic,  we  cannot  determine  from  the  nature  of  the  orbits,  whether  the  force  for  each  satel- 
lite in  particular,  varies  inversely  as  the  square  of  the  distance  or  not. 
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5.  The  earth  having  but  one  satellite,  the  ellipticity  of  the  lunar 

orbit  is  the  only  phenomenon,  which  can  indicate  to  us  the  law  of  its 

attractive  force  ;  but  the  elliptic  motion  of  the  moon,  being  very  sen- 

sibly deranged  by  the*  perturbating  forces,  some  doubts  may  exist,  whe- 
ther the  law  of  the  diminution  of  the  attractive  force  of  the  earth,  is  in 

the  inverse  ratio  of  the  square  of  the  distance  from  its  centre.  Indeed, 

the  analogy  which  exists  between  tliis  force,  and  the  attractive  forces  of 

the  sun,  of  Jupiter,  of  Saturn,  and  of  Uranus,  leads  us  to  think  that  it 

follows  the  same  lawt  of  diminution  ;  but  the  experiments  which  have 

been  instituted  on  terrestrial  gravity,  offer  a  direct  means  of  verifying 
this  law. 

Fort  this  purpose,  we  proceed  to  determine  the  lunar  parallax,  by 

•  The  orbit  of  the  moon  differs  sensibly  from  the  elliptic  form,  in  consequence  of  the 

action  of  the  disturbing  forces,  and  the  variation  of  its  apparent  diameter  shews,  that  it  de- 

viates more  from  the  aVcuZar  form,  than  the  orbit  of  the  sun.  The  first  law  of  Kepler  may 

be  proved  to  be  true,  in  the  case  of  the  moon,  In  the  same  manner  as  for  the  sun,  namely, 

by  a  comparison  of  her  apparent  motion,  with  her  apparent  diameter.  Indeed,  if  great 

accuracy  is  required,  the  observations  ought  to  be  made  in  the  syzygies  and  in  the  quadra- 

tures ;  for  in  the  other  points  of  the  orbit,  the  disturbing  force  of  the  sun  deranges  the 

proportionality  of  the  areas  to  the  times  employed  in  their  description.  See  Princip. 

Math.  Lil).  1.  Prop.  66.  and  Lib.  3,  Prop.  Sand  29. 

f  Newton  demonstrates  that  th?  force  which  retains  the  moon  in  her  orbit,  is  inversely  as 

the  square  of  the  distance,  in  the  following  manner :  if  the  distance  between  the  apsides  was 

180°,  the  force  would  be  inversely  as  the  square  of  the  distance,  as  has  been  already  pointed 
out.    See  Note  to  page  7- 

Now  the  apsides  are  observed  to  advance  three  degrees  and  three  minutes  every  month, 

and  the  law  of  the  force  which  would  produce  such  an  advance  of  the  apsides,  varies  in- 
Tersely  as  some  power  of  the  distance,  intermediate  between  the  square  and  the  cube,  but 

which  is  nearly  sixty  times  nearer  to  the  square ;  •.•  on  the  hypothesis,  that  the  progres- 
sion of  the  apsides,  is  produced  by  a  deviation  from  tlie  law  of  elliptical  motion,  the  force 

must  vary  very  nearly  va  the  inverse  ratio  of  the  square  of  the  distance;  but  if,  as  Newton 

demonstrates,  the  motion  of  the  apsides  arises  from  the  disturbing  force  of  the  sun,  it  follows, 

aforliori,  that  the  force  must  be  inversely  as  the  square  of  the  distance. 

X  The  value  of  the  constant  part  of  the  parallax  is  deduced  on  the  hypothesis,  that  the 

force  soliciting  the  moon,  is  the  terrestrial  gravity,  diminished  in  the  ratio  of  the  square  of 
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means  of  experiments  on  the  length  of  the  penduUim  which  vibrates  se- 
conds, and  to  compare  it  with  observations  made  in  the  heavens.  On 

the  parallel  of  which  the  square*  of  the  sine  of  the  latitude  is  J,  the 
space  through  which  bodies  fall  by  the  action  of  gravity  in  a  second,  is, 

from  observations  on  the  length  of  the  pendulum,  equal  to  3'°"[",65548, 
PART.  I.   BOOK  II.  D 

the  distance  ;  and  if  this  parallax  agrees  with  the  observed  parallax  corrected  for  the  lunar 

inequalities,  we  are  justified  in  inferring,  that  the  diminished  terrestrial  gravity  and  the 

force  solliciting  the  moon  are  identically  the  same. 

•  Let  unity  represent  the  radius  of  a  sphere  equicapacious  w  ith  a  spheroid,  its  density 

being  supposed  to  be  the  same  with  the  mean  density  of  this  spheroid;  if  the  greater  semi- 

axis  of  the  spheroid  be  =  1+g,  and  the  lesser  =  1 — s,  we  shall  have  for  the  oblong 

spheroid  the  following  equation,  -—.1^=——  (1  +  ̂).(1 — s)*,  v  P  =  1+g  —  2* 

neglecting  the  squares  and  products  of  s  and  §,  which  is  permitted  as  the  ellipticity 

of  the  spheroid  is  supposed  to  be  inconsiderable,  consequently  we  have  {:^2«,  •••  in  an  oblong 

spheroid,  such  as  would  be  generated  by  a  revolution  about  the  greater  axis,  the  ele- 

vation of  the  spheroid  above  the  equicapacious  sphere  is  double  of  the  depression 

below  this  sphere ;  and  if  r  be  the  radius  of  the  equicapacious  sphere,  a  the  greater, 

and  b  the  lesser  axis  of  the  spheroid,  we  have  a — r=  2r — 2b,  :•  r  =  — - —  ;  if 

the  spheroid  be  oblate,  i.  e.  such  as  would  be  generated  by  a  revolution  about  the  lesser  axis, 

4*     i   43- 
—.1^  =  — .  (1 — «)(l  +  e)^,  hence  j=2j,  i.e.  the  depression  inthisca«eis  equal  to  twice 

the  elevation,  •-•  2a — 2r=r—b,  andr=  — — — . '  '  3 
If  a  sphere  be  inscribed  in  a  spheroid,  the  elevation  of  any  point  of  the  spheroid  above 

the  inscribed  sphere,  is  to  the  greatest  elevation  of  a  spheroid  above  the  inscribed  sphere, 

i.  e.  to  the  difference  between  the  radius  of  the  equator  and  seniiaxis,  as  the  square  of  the 

cosine  of  the  angular  distance  A  from  the  axis  major,  to  the  square  of  radius,  •.•  the 

elevation  =z  {a — b)  cos.  *a,  and  as  the  equicapacious  sphere  is  elevated  above  the 

lesser  axis,  and  •/  above  the  inscribed  sphere  by  a  quantity  equal  to  r — b,  the  ele- 

vation of  the  spheroid  above  the  ctjuicapacious  sphere  =(a-^b)  cos.  "t^ — r-{-b:=(_a — b). 
2a4-b    .,    /        —2a  +  2b\  ,,,,••     <^  ,, 

cos.  'A   — +A,  ̂ =    I,  consequently  when  the  elevation  is  0,  we  have 
2  1 

cos.  "-A  =  — ,  V  sin. 'a  = — ,   and  a  =  35°16'.    This  situation  is    also   remarkable 3  3 

for  being  the  distance  from  the  quadrature  at  which  the  addititious  force  of  the  sun,  ig 

equal  to  that  part  of  its  ablatitious  force,  which  acts  in  direction  of  the  radius  of  the  moon's 
orbit. 
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as  we  shall  see  in  the  third  book  :  we  select  this  parallel,  because  the 

attraction  of  the  earth  on  the  corresponding  points  of  its  surface,  is 

very  nearly,  as  at  the  distance  of  the  moon,  equal  to  the  mass  of  the 

earth,  divided  by  the  square  of  its  distance  from  its  centre  of  gravity. 

Under  this  parallel,  the  gravity  is  less  than  the  attraction  of  the  earth, 

by  f  *  of  the  centrifugal  force  which  arises  from  the  motion  of  rotation 

at   the   equator  ;   this  force  is  the  -         th  part  of  the  force  of  gravity  ; 

consequently  we  must  augment  the  preceding  space  by  its  432d  part, 

in  order  to  obtain  the  entire  space  which  is  due  to  the  action  of  the 

earth,  which  on  this  parallel,  is  equal  to  its  mass  divided  by  the  square 

of  the  terrestrial  radius ;_  therefore  this  space  will  be  equal  to 

3'"',66394.  At  the  distance  of  the  moon,  it  must  be  diminished  in  the 
ratio  of  the  square  of  the  radius  of  the  spheroid  of  the  earth,  to  the 

square  of  the  distance  of  this  star,  to  effect  this,  it  is  sufficient 

to  multiply  it  by  the  square  of  the  sine  of  the  lunar  parallax  ;  therefore 

X  representing  this  sine  under  the  parallel  above  mentioned,  we  shall 

have  ■2'*.3"'%66394,  for  the  height  through  which  the  moon  ought  to 
fall  in  a  second,  by  the  attraction  of  the  earth.  But  we  shall  see  in  the 

theory  of  the  moon,  that  the  action  of  the  sun  diminishes  its  gravity 

towards   the    earth  by   a   quantity,    of    which    the   constant  part  ist 

•  The  centrifligal  force  at  the  equator  is  to  the  efficient  part  of  the  centriftigal  force  at 

any  parallel,  as  the  square  of  radius  to  the  square  of  the  cosine  of  latitude,  i.  e.  in  this  case, 
2  1 

as  1  to  — ,  -.'  as  the  centrifugal  force  at  the  equator  is  the-—— th  part  of  the  gravity,  the  force o  288 

2       1  1 
at  the  parallel  in  question,  will  be  =  -^  '"ooq"  "^ 3     288  432 

\  m  being  the  mass  of  the  sun,  and  d  its  distance  from  the  moon,  a  the  radius  of  th^ 

moon's  orbit,  the  addititious  force  =  — r— >  and  the  part  of  the  ablatitious  force,  which  acts 

in  the  direction  of  the  radius  vector  ==-— -.  3  sin.  ̂ -sr,  -a  being  the  angular  distance  from 

quadrature,  see  Kev.ton,  Princip.  Prop.  66  ;  •••  -^C — 3  sin.  'sr)  is  the  part  of  tlie  sun's 
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equal  to  the    th  part  of  this  gravity ;  moreover,  the  moon,  in  its  re- 

lative motion  about  the  earth,  is  sollicited  by  a  force  equal  to  the  sum 

of  the  masses*  of  the  earth  and  moon,  divided  by  the  square  of  their  mu- 

tual distance  ;  it  is  therefore  necessary  to  dimipish  the  preceding  space 

by  its  358th  part,  and  to  increase  it  in  the  ratio  of  the  sum  the  masses 

of  the  earth  and  moon,  to  the  mass  of  the  earth  ;  but  we  shall  see  in 

the  fourth  book,  that  the  mass  of  the  moon  deduced  from  the  pheno- 

raena  of  the  tides,  is  a — - — th  part  of  the  mass  of  the  earth  ;   therefore 
5o,7 

the  space  through  which  the  moon  descends  towards  the  earth,  in  the 

interval  of  a  second,  is  equal  to  -^.  — ^  .  ■r^3'"^66394. 358     58,7 

Now  a  representing  the  mean  radius  of  the  lunar  orbit,  and  T",  the 
duration  of  a  sidereal  revolution  of  the  moon,  expressed  in  seconds ; 

d2 

disturbing  force  acting  in  the  direction  of  the  radius,  which  is  efficient  at  any  point; 

(hence  it  appears  that  it  vanishes  when  sin.  *w  —  . — ,    see    Note,    page  17);  in  order 3 
ma 

to  obtain  its  mean  quantity,  multiply  this  expression  by   dtn  and  it  becomes     •    : 

(rfrar — Srfar.  sin.  »ir)  =  -— -  {dia —  --rfar-f-  —  rfzircos.  %b),  and  its  integral  =  ——{vi~- 

3,3.                                   ..„              .,                         ma     v  . 
2"^  •'"Z"' ^'^       '  ̂ ^  entire  circumference,  z.  c.  when  ■»=«-,   Tr""5~'  ■•' the 

mean  disturbing  force  :=   ,  but  —  :  ii'  the  force  retaining  the  moon  in  its  orbit  : : 

J**"*  T^  '    '      2re  the  periods  of  the  sun  and  moon)  •••  -rj-  r:    — 7^^^  Ttq'       "t"^  ' 

=    .^Q-,  and — ~qjr^^  ~ 'oTo''  ■•'  ■"  consequence  of  the  diminution  of  her  gravity  by 

the  action  of  the  disturbing  force,  the  moon  is  sustained  at  a  greater  distance  from  the 

earth,  than  it  would  be  if  the  action  of  the  sun  was  removed,  and  as  the  mean  area  de- 

scribed in  a  given  time  in  the  primitive  and  disturbed  orbits  is  the  same,  the  radius  vector 

is  increased  by  a  358th  part,  and  the  angular  velocity  is  diminished  by  a  l79th  part. 

*  The  moon  being  considered  as  a  point,  if  it  revolved  about  the  centre  of  the  earth,  in 
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9/7      * ^,^     will  be,  as  has  been  already  observed,  the  versed  sine  of  the  arc 

which  it  describes  during  a  second,  and  it  expresses  the  quantity,  by 
which  the  moon  has  descended  towards  the  earth,  in  this  interval.  This 

value  of  a  is  equal  to  the  radius  of  the  earth,  under  the  above  mentioned 

parallel,  divided  by  the.  sine  of  x ;  this  radius  is  equal  to  6369514"''; 
therefore  we  have 

6369514""'^'
 

a-   . 
X 

but  in  order  to  obtain  a  value  of  a,  independent  of  the  inequalities  of 

the  moon,  it  is  necessary  to  assume  for  its  mean  parallax  of  which 

the  sine  is  x,  the  part  of  this  parallax,  which  is  independent  of  these 

inequalities,  and  which  has  been  therefore  termed  the  constant  part 

of  the  parallax.  Thus,  tt  representing  the  ratio  of  355  to  113,  and 

T' being  =:  2732166"  ;  the  mean  space  through  which  the  moon  de- 
scends towards  the  earth,  will  be 

2.(355)16369514"" 

(113/..r.(2732lG6)'" 
the  same  time  in  which  it  revolves  about  the  common  centre  of  gravity  of  the  earth  and 

moon,  the  central  force  which  should  exist  in  the  centre  of  the  earth  capable  of  effecting 

this,  should  be  :::  to  the  sum  of  the  masses  of  the  earth  and  moon ;  for  a  being  the  dis- 

tance of  the  earth  from  the  moon,  and  m,rril  their  respective  masses,  the  distance  y  at  which 

the  moon  would  revolve  round  the  earth  by  itself,  considered  as  quiescent,  is 
I 

,  see  Prin.  Math.  Prop.  59,  Book  I.  and  T  '  =:  ̂ —=:  — ; — ,  ,  hence  if  a 

be  the  distance,  the  central  force  =:  m-\-m',  •••  as  the  versed  sine  of  the  arc  described  in  a 
second  is  the  space  through  which  the  moon  descends  in  consequence  of  the  combined 

actions  of  the  earth  and  moon,  this  must  be  diminished  in  the  ratio  of  ?n :  m-J-i«'  to  obtain 
the  space  described  in  consequence  of  the  sole  action  of  7«.  The  two  corrections,  wliich 

are  here  applied  to  the  space  through  which  a  heavy  body  would  descend  at  the  latitude 

55' 16',  diminished  in  the  ratio  of  the  square  of  the  distance,  are  in  the  Systeme  du 
Monde,  applied  to  the  versed  sine  of  the  arc  described  in  a  second,  hence  it  appears  that 

they  must  be  affected  with  contrary  signs. 
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By  equalling  the  two  expressions,   which  we  have  found  for  this  space, 
we  shall  have 

,3_  '2.(355)-. 35S.5S,7.6369514< 

^^  ~  (USy. 307. 59,7. 3,6ii39ii'-2732l66y  ' 

from  which  we  obtain  10536  ",2  for  the  constant  part*  of  the  lunar  pa- 
rallax, under  the  parallel  in  question.  This  value  differs  very  little 

from  the  constant  quantity  10540,7  which  Triesnecker  collected  from 

a  great  number  of  observations  of  eclipses,  and  oft  occultations  of  the 

stars  by  the  moon  ;  it  is  therefore  certain  that  the  principal  force  which 

retains  the  moon  in  its  orbit,  is  the  terrestrial  gravity  diminished  in  the 

ratio  of  the  square  of  the  distance  ;  thus,  the  law  of  the  diminution  of 

gravity,  which  in  the  planets  attended  by  several  satellites,  is  proved  by 

a  comparison  of  the  times  of  their  revolutions,  and  of  their  distances,   is 

•  In  order  to  find  the  constant  part  of  the  parallax,  we  apply  to  the  observed  parallax, 
all  the  corrections  which  theory  males  known,  and  we  may  perceive  from  this  how  the 

theory  of  gravity,  by  indicating  the  forces  which  act  on  the  moon,  furnishes  us  with  the 

means  of  determining  the  mean  motion,  and  the  nature  of  the  inequalities  which  act  on  it. 

f  If  in  a  partial  eclipse  of  the  moon,  the  time  be  noted  in  which  the  two  horns  of  the  part 

which  is  not  eclipsed,  are  observed  to  be  in  the  same  vertical  line,  it  would  be  easy  to  shew 

that  the  height  of  the  centre  of  the  moon  at  this  instant,  will  be  the  same  as  the  height  of  the 

centre  of  the  shadow  ;  •.•  if  at  this  instant  the  height  of  each  of  the  horns  be  observed,  the 
mean  height,which  will  be  the  heightofthecentreof  the  shadow,  will  be  the  apparent  height 

affected  by  the  parallax ;  but  as  the  centre  of  the  shadow  is  diametrically  opposite  to  the 

centre  of  the  sun,  the  true  height  will  bo  equal  to  the  depression  of  the  sun,  which  is  known 

from  the  time  of  observation ;  •.•  the  ditl'erence  of  these  heights  will  be  the  parallax  of  the 
moon  for  the  observed  altitude,  by  means  of  which  we  can  easily  determine  the  greatest 

parallax;  and  if  in  a  total  and  central  eclipse,  the  height  of  the  moon  be  observed  at  the 

instant  that  it  is  entirely  immersed,  and  also  when  it  Jint  begins  to  emerge,  the  mean 

height  will  be  the  height  of  the  centre  of  the  shadow  as  it  is  affected  by  parallax. 

In  an  occultation  of  a  fixed  star,  the  star's  parallax  vanishes,  and  the  difference  of  ap- 
parent altitudes  is  =  to  the  difference  of  the  true  altitudes  -|-  parallax  in  altitude  of  the 

moon  ;  hence  by  the  known  formulae  we  can  obtain  the  true  parallax.  A  constant  ratio 

exists  between  the  horizontal  parallax,  and  the  moon's  apparent  diameter  at  the  same 
terrestrial  latitude. 
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demonstrated  for  the  moon,  by  comparing  its  motion  with  that  of  pro- 

jectiles near  the  surface  of  the  earth.  It  follows  from  this,  that  the  ori- 

gin of  the  distances  of  the  sun,  and  of  the  planets,  ought^in  the  com- 

putation of  their  attractive  forces,  on  bodies  placed  at  their  surface,  or 

beyond  it,  to  be  fixed  in  the  centre  of  gravity  of  these  bodies ;  since  this 

has  been  demonstrated  to  be  the  case  for  the  earth,  of  which  the  attrac- 

tive force  is,  as  has  been  remarked,  of  the  same  nature  with  that  of 
these  stars. 

6.  The  sun  and  the  planets  which  are  accompanied  with  satellites, 

are  consequently  endowed  with  an  attractive  force,  which  decreasing  in- 

definitely, in  the  inverse  ratio  of  the  squares  of  the  distances,  comprehends 

all  bodies  in  the  sphere  of  its  activity.  Analogy  would  induce  us  to  think, 

that  a  like  force  inheres  generally  in  all  the  planets  and  in  the  comets ; 

but  we  may  be  assured  of  it  directly  in  the  following  manner.  It  is  a  con- 

stant  law  of  nature,  that  one  body  cannot  act  on  another,  without  expe- 

riencing an  equal  and  contrary  reaction  ;  therefore  the  planets  and  comets 

being  attracted  towards  the  sun,  they  ought  to  attract  this  star  according 

to  the  same  law.  For  the  same  reason,  the  satellites  attract  their  respec- 

tive primary  planets ;  consequently^'ais  attractive  force  is  common  to  the 
planets,  to  the  comets,  and  to  the  satellites,  and  therefore  we  may  con- 

sider the  gravitation  of  the  heavenly  bodies,  towards*  each  other,  as  a 
general  property  which  belongs  to  all  the  bodies  of  the  universe. 

We  have  seen,  that  it  varies  inversely  as  the  square  of  the  distance  ; 

indeed,  this  ratio  is  given  by  the  laws  of  elliptic  motion,  which  do  not 

rigorously  obtain  in  the  celestial  motions ;  but  we  should  consider,  that 

the  simplest  laws  ought  always  to  be  preferred,  unless  observations  com- 

pel us  to  abandon  them  ;  it  is  natural  for  us  to  suppose,  in  the  first  in- 

stance,  that  the  law  of  gravitation  is  inversely  as  some  power  of  the  dis. 

«  Besides,  it  follows  from  tlie  sphericity  of  these  bodies  that  their  molecules  are  united 

about  their  centres  of  gravity,  by  a  force  which  at  equal  distances  solicits  them  equally 

towards  these  points ;  the  existence  of  this  force  is  also  indicated  by  the  perturbations 

which  the  planetary  motions  experience. 
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tance,  and  by  computation  it  has  been  found,  that  the  slightest  differ- 

ence between  this*  power  and  the  square,  would  be  very  perceptible  in 

the  position  of  the  perihelia  of  the  orbits  of  the  planets,  in  which  obser- 

tion  has  indicated  motions  hardly  perceptible,  and  of  which  we  shall 

hereafter  develope  the  cause.  In  general,  we  shall  see  throughout  this 

treatise,  that  the  law  of  gravitation  inversely  as  the  square  of  the  dis- 

tance, represents  with  the  greatest  precision  all  the  observed  inequalities 

of  the  motions  of  the  heavenly  bodies;  this  agreement,  combined  with 

the  simplicity  of  this  law,  justifies  us  in  assuming  that  it  is  rigorously  the 
law  of  nature. 

The  gravitation  is  proportional  to  the  masses  ;  for  it  follows  from  No. 

3,  that  the  planets  and  comets  being  supposed  at  equal  distances  from 

the  sun,  and  tlien  remitted  to  their  gravity  towards  this  star,  would 

fall  through  equal  spaces,  in  the  same  time  ;  consequently  their  gravity 

will  be  proportional  to  their  mass.  The  motions  almost  circular  of  the 

satellites  about  their  primaries,  demonstr;ife  that  they  gravitate  as  their 

primaries  towards  the  sun,  in  the  ratio  oi  their  masses ;  the  slightest 

difference  in  this  respect,  would  be  perceptible  in  the  motions  of  that 

satellites,  and  observations  have  not  indicated  any  inequality  depending 

*  See  No.  58  of  this  book  ;  this  also  follows  from  Prop.  45,  Book  1st,  Prin.  For  if  the  force 
which  is  added  to  the  force  varying  in  the  inverse  ratio  of  the  square  of  the  distance  be  called 

X,  the  angular  distance  between  the  apsides  =  1  SO.   .  =  180.(1 — X),  the  square  of 

-/l+^X  ^ 
X  being  neglected,  and  conversely  if  the  distance  between  the  apsides  be  given,  wt  can 

determine  X.    The  force  X  is  supposed  to  vary  as  the  distance. 

f  See  Newton  Princip.  Prop.  6,  Book  3,  where  it  is  shewn,  that  if  the  satellite  gravitated 
more  towards  the  sun  than  the  primary  at  equal  distances  from  the  sun,  in  the  ratio  ofd:e, 
the  distance  of  the  centre  of  the  sun  from  the  centre  of  the  orbit  of  the  satellite,  would  be 

greater  than  the  distance  of  the  centre  of  the  sun  from  the  centre  of  the  primary,  in  the 

ratio  of  V  «/  :  v/  e ,  •••  if  the  difference  between  d  and  e,  was  the  thousandth  part  of  the 
entire  gi-avity,  the  distance  of  the  centre  of  the  orbit  from  the  centre  of  the  sun,  would  be 

greater  than  the  distance  of  the  centre  of  Jupiter  from  that  of  the  sun,  by  a    th  part ^  '    "       2000        ̂  
of  the  entire  distance. 
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on  this  cause.  Therefore  it  appears  that  if  the  comets,  the  planets  and 

satellites,  were  placed  at  equal  distances  from  the  sun,  they  would  gravi- 
tate towards  this  star,  in  the  ratio  of  their  masses ;  from  which  it  follows, 

in  consequence  of  the  equality  between  action  and  reaction,  that  these 

stars  must  attract  the  sun,  in  the  same  ratio,  and  consequently  their 

action  on  this  star,  is  proportional  to  their*  masses  divided  by  the  square 
of  their  distance  from  its  centre. 

The  same  law  obtains  on  the  earth  ;  for  from  very  exact  experiments 

instituted  by  means  of  the  pendulum,  it  has  been  ascertained,  that  if  the 

resistance  of  the  air  was  removed,  all  bodies  would  descend  towards  its 

cefitre  viith  equal  velocities  ;  therefore  bodies  near  the  earth  gravitate  to- 

wards its  centre,  in  the  ratio  of  their  masses,  in  the  same  manner  as  the 

planets  gravitate  towards  the  sun,  and  the  satellites  towards  their  pri- 

maries. This  conformity  of  nature  with  itself  on  the  earth,  and  in  the 

immensity  of  the  heavens,  evinces  in  the  most  striking  manner,  that  the 

*  The  mutual  attraction  does  not  affect  the  elliptic  motion  of  any  two  bodies  when 
their  mutual  action  is  considered,  for  the  relative  motion  is  not  affected  when  a  common 

velocity  is  impressed  on  the  bodies,  •••  if  the  motion  which  the  sun  has,  and  the  action 

which  it  experiences  on  the  part  of  the  planet,  be  impressed  in  a  contrary  direction,  on  both 

the  sun  and  the  planet ;  the  sun  may  be  regarded  as  immovable,  and  the  planet  will  be  sol- 

licited  by  a  force  ::'  to  the  sum  of  the  masses  of  the  sun  and  planet,  divided  by  the  square 

of  their  mutual  distance  ;  •/  the  motion  will  be  elliptic  ;  but  the  periodic  time  will  be  less 
than  if  the  planet  did  not  act  on  the  sun,  for  the  ratio  of  the  cube  of  the  greater  axis  of 

the  orbit  to  the  square  of  the  periodic  time,  is  proportional  to  the  sum  of  the  masses  of  the 

sun  and  planet;  however  as  this  ratio  of  the  square  of  the  time  to  the  cube  of  the  distance, 

is  very  nearly  the  same  for  all  the  planets,  it  follows  that  the  masses  of  the  planets  must  be 

comparatively  much  smaller  than  the  mass  of  the  sun,  which  is  confirmed  by  an  estimation 

of  their  volumes.  See  No.  25,  and  Prop.  8,  Lib.  3.  Frincip.  Math.  Tlie  comparative 

smallness  of  the  masses  is  also  confirmed  by  the  laws  which  Kepler  was  enabled  to  an- 
nounce, for  tliese  laws  were  deduced  from  observation,  notwithstanding  tlie  various  causes 

which  disturb  the  elliptic  motion ;  hence  appears  the  reason  why,  in  the  commencement  of 

this  chapter,  the  sun  was  supposed  to  be  immoveable,  and  to  exert  its  action  on  the  planets 

as  on  so  many  points,  which  do  not  react  on  the  sun,  neither  was  the  mutual  action  of  the 

planets  on  each  other  taken  into  account ;  the  same  simplifications  were  employed,  when 

the  motion  of  a  satellite  about  its  primary  was  considered. 
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gravity  observed  here  on  earth,  is  only  a  particular  case  of  a  general 
law,  which  obtains  throughout  the  universe. 

The  attractive  property  of  the  heavenly  bodies  does  not  appertain  to 

them  solely  in  a  mass,  but  is  peculiar  to  each  of  their  molecules.     If  the 

sun  only  acted  on  the  centre  of  the  earth,  without  attracting  in  particular 

each  of  its   parts,   there  would  be  produced  in  the   sea,  oscillations 

much  greater,  and  very  different  from  those  which  we  observe  ;  there- 
fore the  gravity  of  the  earth  to  the  sun,  is  the  result  of  the  gravitations 

of  all  its  molecules,  which  consequently  attract  the  sun,  in  the  ratio  of 

their  respective  masses.     Besides,  each  body  on  the   earth   gravitates 

towards  its  centre,   proportionally  to  its  mass ;  it  reacts    therefore   on 

the   earth,  and  attracts  it  in  the  same  ratio.     If  this  was  not  the  case, 

and  if  any  part  of  the  earth,  however  small,  did  not  attract  the  other 

part,  as  it  is  attracted  by  this  other  part,   the  centre  of  gravity  of  the 

earth  would  have  a  motion  in  space,  in  consequence  of  the  force  of  gra- 
vity, which  is  impossible. 

The  celestial  phenomena,  compared  with  the  laws  of  motion,  conduct  us 

therefore  to  this  great  principle  of  nature,  namely,  that  all  the  molecules 

of  matter  mutually  attract  each  other  in  the  proportion  of  their  masses, 

divided  by  the  square  of  their  distances.  We  may  perceive  already,  in 

this  universal  gravitation,  the  cause  of  the  perturbations,  which  the 

heavenly  bodies  experience  ;  for  the  planets  and  comets  being  subject 

to  their  reciprocal  action,  ought  to  deviate  a  little  from  the  laws  of 

elliptic  motion,  which  they  would  accurately  follow,  if  they  only  obeyed 

the  action  of  the  sun.  The  satellites  in  like  manner  deranged  in  their 

motions  about  their  primaries,  by  their  mutual  attraction,  and  by  that  of 

the  sun,  deviate  from  these  laws.  We  may  perceive  also,  that  the  mole- 
cules of  each  of  the  heavenly  bodies,  united  by  their  attraction,  should 

constitute  a  mass  nearly  spherical,  and  that  the  result  of  their  action  at 

the  surface  of  the  body,  should  produce  all  the  phenomena  of  gravitation. 

We  see  moreover,  that  the  motion  of  rotation  of  the  heavenly  bodies, 

should  slightly  alter  the  sphericity  of  their  figure,  and  flatten  them  at 

the  poles,  and  that  then,  the  resultant  of  their  mutual  action,  not  pass- 
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ing  accurately  through  their  centres  of  gravity,  ought  to  produce  in  their 

axes  of  rotation,  motions  similar  to  those,  which  are  indicated  by  ob- 
servation. Finally,  we  may  perceive  why  the  molecules  of  the  ocean, 

unequally  acted  on  by  the  sun  and  moon,  ought  to  have  an  oscillatory 

motion,  similar  to  the  ebbing  and  flowing  of  the  sea.  But  the  deve- 
lopement  of  these  different  effects  of  universal  gravitation,  requires  a 

profound  analysis.  In  order  to  embrace  them  in  all  their  generality, 

we  proceed  to  give  the  differential  equations  of  the  motion  of  a  system 
of  bodies,  subjected  to  their  mutual  attraction,  and  to  investigate  the 
exact  integrals  which  may  be  derived  from  them.  We  will  then  take 

advantage  of  the  facilities  which  the  relations  of  the  masses  and  distances 

of  the  heavenly  bodies  furnish  us  with,  in  order  to  obtain  integrals  more 

and  more  accurate,  and  thus  to  determine  the  celestial  phenomena,  with 

all  the  precision  which  the  observations  admit  of. 
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CHAPTER  II. 

Of  the  differential  equations  of  the  motion  of  a  si/stem  of  bodies,  sub- 
jected to  their  mutual  attraction. 

7.  LET  m,  m',  m",  &c.  represent  the  masses  of  the  different  bodies  of 
the  system,  considered  as  so  many  points  ;  let  ̂ ,  i/,  z,  be  the  rectangu- 

lar coordinates  of  the  body  m ;  a/,  y',  z',  those  of  the  body  m',  and 
corresponding  expressions  for  the  coordinates  of  the  other  bodies.  The 

distance  of  m'  from  m  being  equal  to 

v/  {a^-xy  +  (T/'—yy  +  (z'—z}\ 

its  action  on  m,  will  be,  by  the  law  of  universal  gravitation,  equal  to 

  n^   

i^—^y+ii/'—^y-^iz'—zy 

If  we  resolve  this  action,  parallel  to  the  axes  of  a\  of  y,  and  of  z,  the 

force  parallel  to  the  axis  of  ,r,  and  directed  from  the  origin,  will  be 

  m(y—x)  * 
W-^y+{jj'—yy-^(,z'^zy)Y^ 

E    2 

*  The  force  parallel  to  the  axis  of  x:  -7   ,     .,,"*>   ;      •:  ̂ — x)  : 

   mm' 
JTD     -xi  1  /  /   ;;  ,  ,  - — r^        ,  ..    /  be  differenced  with 
V(x— x)-+(y'— y)^+(2_2)-  ;  and  if  ̂ y_a,,i+(^'_^)i  +  (2'_j)i 
respect  to  x,  and  then  divided  by  m.dx,  it  will  become 

_  _j[__.      nim'.(x' — x).d.T: 
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or 

^  dx  ) 

We  shall  have  also, 

1     /*  J   mm"   A 

m  '<     'v/(y'— ̂ )'^  +  {i/'—j/y+(z"—z)^  > V  dx         y 

for  the  action  of  m"  on  m,  resolved  parallel  to  the  axis  of  x,  and  corres- 
ponding expressions  for  the  other  bodies  of  the  system.    Consequently  if 

  T^m'    mm'' 

+  "^'"^''  +  &c  • 

A.  representing  the  sum  of  the  products  of  the  masses  m,  rti,  »»",  &c, 

taken  two  by   two,   and  divided  by   their   respective  distances ;    — . 

j— 7-^f  *  will  express  the  sum  of  the  actions  of  the  bodies  rn,  m",   kc. 

on  m,  resolved  parallel  to  the  axis  of  x,  and  directed  from  the  origin  of 

« 
1    f  '^^  \    i^j  """' 

'm''\dx)~  nT  X  V(j'— f)'+(y— y)^+(;'— z)'  "^ dx 

mm"  .  ■>  vi'.{x'—x) 

__..     .,  .
  -^"\  

 
dx ^/(x"-^)^■f  (y-^)^  +(z"_z) »  ̂      •  3       (C:r'-x)»+(y =_y)'-Ks'-«)*) ' 

"  {x"-x) 

4-  jT-r,   ,.,,,,,   .,,,.,   r^TT-^  4-  &c.  =  the  sum  of  the  actions  of  the  bodies 

m',  m",  »»'",  &c.  on  m,  resolved  parallel  to  the  axis  of  ir. 
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the  coordinates.  Therefore  dt  representing  the  element  of  the  time, 

supposed  constant ;  we  shall  have  by  the  principles  of  dynamics,  ex- 
plained  in  the  preceding  book, 

O  =  m   . —  \   i . dt^        I  dx  S 

In  like  manner  we  shall  have 

d^u       ̂   dx-) 
di*        Idt/S 

dt^        I  dz  ]• 0  =  m.- 

If  we  consider,  in  the  same  manner,  the  action  of  the  bodies  m,  m",  &c. 

on  m' ;  that  of  the  bodies  m,  m',  on  m",  and  so  of  the  rest,  we  shall 
have  the  following  equations,  namely, 

dt*        \dci/y  '  dt*        Xdy'S  ' 

df        \dz"S 

The  determination  of  the  motions  of  m,  m',  m",  &c.,  depends  on  the 
integration  of  these  differential  equations ;  but  as  yet  they  have  not 

been  completely  integrated,  except  in  the  case  in  which  the  system  is 
composed  of  only  two  bodies.      In  other  cases,  we  have  not  been  able  to 
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obtain  but  a  small  number  of  perfect  integrals,   which  we  proceed  to 
develope. 

8.  For  this  purpose,  let  us  first  consider  the  differential  equations  in 

•r,  x\  af',  &c. ;  if  we  add  them  together,  observing  at  the  same  time, 
that  by  the  nature  of  the  function  x,  we  have 

we  shall  obtain,  0  =  l.m.       ̂   •     We  shall  have  also,  0  =  S,m.  -—  ; etc  t»* 

d'z 
0=  l.m.   .     Let  A',  Y,  Z  represent  the  three  coordinates  of  the  cen- 

tre of  gravity  of  the  system  j  we  shall  have  by  the  nature  of  this  centre 

l..m  l.m  2,m 

therefore  we  shall  have 

d'X      ̂          d^Y     ̂         d*Z 
^  = -dT'  ""  =  -dT''  "^  = -dT' 

and  by  integrating,  we  shall  obtain 

X  =  a+bt ;    Y  =  a'+  b't;  Z  =  a"+b"t  ;t 

•  Suppose  that  there  are  only  three  bodies,  then  l.m.——  =^-j-y  +  \  'TTj'r  \~7T'  / 

_       m'm.{(x'—x)—(x'—x))       ^  mm"({x"—a:)—{x"—x)  )    _  , 

-i-  , — "'  '"  U*^  ̂ -^  )—v'^      ■^);    3^  _Q    ti)g  sgjpg  proof  may  be  extended  to  any  num» 

ber  of  bodies. 
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a,  a',  a",  b,  b',  b",  being  constant  arbitrary  quantities.  We  may  per- 
ceive by  this,  that  the  motion  of  the  centre  of  gravity  of  the  system  is 

rectilinear  and  uniform,  and  that  consequently,  it  is  not  deranged  by 
the  reciprocal  action  of  the  bodies  composing  the  system  ;  which  agrees 
with  what  has  been  demonstrated  in  the  fifth  chapter  of  the  first  book. 

Resuming  the  differential  equations  of  the  motion  of  these  bodies, 

and  multiplying  the  differential  equations  in  y,  y',  y'',  Sec,  respectively  by 

a:,  of,  x'\  &c.,  and  then  adding  them  to  the  differential  equations  in 

*,  **,  *",  &c.  multiplied  respectively  by  — y,  — y',  — y" ,  &c. ;  we shall  obtain 

\ 

r  x"d'y"—y"d'x"  1    ,  , 

but  from  the  nature  of  the  function  x,  it  is  evident  that 

c  rfx  )  ^  dx  }       „ 

X. 

■m—m-''-'
 

grating,"  =  a,  and  X=at+b,  the  constant  quantity  a  depends  on  the  velocity  of  the 

centre  of  gravity  at  the  commencement  of  the  motion,  and  b  depends  on  the  position  of 
this  centre,  at  the  same  instant. 
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consequently,*  by  integrating  the  preceding  equation,  we  shall  obtain 

In  like  manner  we  shall  have, 

xdz — zdx ^        f  xdz — zdx  > 
=  ̂•"^•1 — dF-y^ 

f  ydz—zdy  \ . 

1     'dt    r 
c"  ='E.m. 

c,  c',  (f,  &c.  being  constant  arbitrary  quantities.  These  three  integrals 
involve  the  principle  of  the  conservation  of  areas,  which  has  been  ex- 

plained in  the  fifth  chapter  of  the  first  book. 

Finally,  if  we  multiply  the  differential  equations  in  x,  x',  x',  &c.,  re- 

spectively by  dx,  dx,  dx",  &c. ;  and  those  in  y,  y',  y' ,  &c.  respectively  by 

dy,  dy',  dy",  &c. ;  those  in  ;:,  z',  z",  &c.,  respectively  by  dz,  dz',  dz", 
&c.  ;  and  then  add  them  together,  we  shall  obtain 

_        _,       (dx,d'x4-di/.d''i/4-dz.d^z)        ,     , 
O  —  ̂ .m.—   '    ■%  ,    —  dx,  T dr 

*  Suppose  that  there  are  only  three  bodies,  then  i/(    j—  )  +  v(-p-  l'*'-^ Y"/^)"" 

n".(   '^'^'y"—if'd'^x'    \    _        mm'.{y{,x'—x)—y' ( x'—x) ) 
(  [x-xy+[y'—y)'-\-[^-zy  )  ^ 

,         mm"(y{i^'—x)—y"{x"—x)  )  ,        m"m(  )y'(x»—x')—y''{x'—x') )    , 

'^  {(x'-xy-\-(y"—yY+[^'-z)^)i  +  ( (x/z-y)  -  My"-y') ' + (^"-^r )  * 
     mm'(x{y' — y) — x'(y' — ;/) )     ̂   mm\x[y" —y) — x"{lj' — ^j))    , 

(  {x-xY+{i,—y)'^{z-zY-y  —{(3!--xY^{y"-y)  -^{J< -z^f 
_    »»^/m'(y(y"-y)-^'(y/-y'))       ,_ 

t  Bymultiplying  |^^     |^  J  + &c.  by  ̂.,  cf^.  rfx",&c.;{  A  | ,  ̂  |,  J  ,+ 
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and  by  integrating, 

h  being  a  new  arbitrary  quantity.  This  integral  contains  the  principle 

of  the  conservation  of  living  forces,  which  has  been  treated  of  in  the 

fifth  chapter  of  the  first  book. 

The*  seven  preceding  integrals  are  the  only  exact  integrals,  which 
we  have  hitherto  been  aljle  to  obtain  j  when  the  system  is  composed  of 

only  two  bodies,  the  determination  of  their  motions  is  reduced  to  differ- 

ential equations  of  the  first  order,  which  can  be  integrated,  as  we  will 

»ee  in  the  sequel ;  but  when  the  system  is  composed  of  three  or  a 

greater  number  of  bodies,  we  are  then  obliged  to  recur  to  the  methods 

of  approximation. 

9.  As  we  can  only  observe  the  relative  motions  of  bodies ;  we  refer 

the  motions  of  the  planets  and  of  the  comets,  to  the  centre  of  the  sunj 

and  the  motions  of  the  satellites,  to  the  centre  of  their  primaries. 

Therefore  in  order  to  compare  the  theory  with  observations,  it  is  neces- 
sary to  determine  the  relative  motions  of  a  system  of  bodies,  about  a 

body  which  is  considered  as  the  centre  of  their  motions. 

Let  M  represent  this  last  body,  m,  m,  m",  &c.,  being  the  other  bo- 
dies, the  relative  motion  of  which  about  M,  is  required  ;  Let  (,  U  and  y 

be  the  rectangular  coordinates  of  M,  ̂ +x,  n  +  t/,  y+z,  those  of  WJ  ; 

l-i-x',  n-t-j/',  y-f  r",  those  of  m',  &c.  ;  it  is  manifest  that  x,  y,  z,  will  be 

the  coordinates  of  vi,  with  respect  to  M ;  that  /,  y',  z',  will  be  those 
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4c,  by  dy,  dy',  dxj' ,  &c.  and  then  adding  these  quantities  together,  their  aggregate  is  equal 

to  the  differential  of  a  considered  as  a  function  of  x,  x',  &c.  i/,  y,  &c.  z,  «',  &c.,  and  •.•  it 
is  equal  to  dx. 

*  Three  of  these  ii\tegrals  are  furnished  by  the  principle  of  the  consei-vation  of  areas, 
three  by  the  principle  of  the  conservation  of  the  n.otion  of  the  centre  of  gravity,  and  one 
bj  the  conservation  of  living  forces. 
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of  m'  referred  to  the  same  body,  and  so  of  the  rest.     Let  r,  r',  &c.,  re- 
present the  distances  of  m,  m',  &c.  from  the  body  M,  so  that 

and  let  us  also  suppose 

m'm 

Vi^v-  xY  +  {jsJ—yy  +  (2'-z)* 

mm" -L —  —  +   &c. 

This  being  premised,  the  action  of  m  on  M,  resolved  parallel  to  the 

axis  of  X,  and  tending  from  the  origin,  will  be  — j- ;  that  of  vfi  on  M 

resolved  in  the  same  direction,  will  be  — -7-,   and  so  of  the  other  bo- 

dies  of  the  system.     Therefore,  to  determine^,   we  will  have  the  fol- 
lowing  differential  equation : 

dt'  r'    " 

and  in  like  manner. 

d'n 

""-  
di^ 

dt' 

mz 
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The  action  o£  M  on  m,  resolved  parallel  to  the  axis  of  .r,  and  directed 

from  the  origin,   will  be   —,  and  the  sum  of  the  actions  of  the 

bodies  m;  m",  &c.  on  m,  resolved  in  the  same  direction,  will  be  — . m 

f  -7-;-  j ;   consequently,  we  will  have 

and  substituting  in  place  of  — -1  its  value  S.^,  we  will  obtain 
di  r^ 

dt^         r*  f '        m     I  dx  b 

in  like  manner,  we  will  have 

d*z   ,    Ms       ̂   mz        1    C  d\  1      ,_, 

F  2 

*  — .  •{  -7—  >    is  equal  to  the  sum  of  the  actions  of  the  bodies  m',  m",  &c.  on  m,  re- »i     (^  ax  3 

solved  parallel  to  the  axis  of  x,  •.•  if  we  add  to  this  expression  the  action  of  M  oh  m. 

which  is  equal  to   ,  we  will  have  the  actions  of  all  bodies  of  the  system  on  m,  ana 

r' 

d^ip^x)        Mx 
•■•  hj  the  principles   of  dynamics  established  in  thfr  first  book,  — —   \r  ~^ 

  1_   (d\l    _ 

m  '  \dx  $   ~~    ' 
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If  in  the  equations  (I),  (2),  (3),  we  change  successively  the  quantities 

m,  X,  1/,  z,  into  m',  x',  y',  s!  ;  tw^  a!',  y",  z',  &c. ;  and  reciprocally,  we 

will  obtain  the  equations  of  the  motion  of  the  bodies  w,  m",  &c.  about 
M. 

If  we  multiply  the  differential  equation  in  ̂ ,  by  M+S.m.  ;  that  in  x, 

by  m ;  that  in  «',  by  wi',  and  performing  similar  operations  on  the  other 
differential  equations  ;  by  adding  them  together,  and  observing  that  by 
the  nature  of  the  function  a,  we  have 

''-m-m^^-^ 
we  will  obtain 

from  which  we  obtain  by  integrating 

•  The  differential  equation  in  ̂ ,  becomes  by  this  multiplication,  (M-j-2.m.)  — 

_  M.2.  —  — 2.W.2.  ̂   =  0 ;  and  if  the  differential  equations  in  s,  jf,  x",  &c.  be  multi- 

plied  by  m,  m',  m",  &c.,   respectively,   and  then  added  together,   their  sum  will  b«  = 

if  this  expression  be  added  to  the  preceding,  we  will  have,  observing  the  quantities  which 

^j    +
 

2. TO, 

|-^  1=0,  and  by  integrating  we  have  (M+2.OT.)- 1  "^  | +2.m.  j -^  ̂  =</, 

V  (Af+2.«)^4-  2.m^  =  c+dt,  and  •.•  if  ̂ ^i_- -a -^^^j;^  =  b,  we  shaU  have^_ 

^e  expression  given  in  the  text. 
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a  and  b  being  two  constant  arbitrary  quantities.     We  will  obtain  also 

n=a'  +  b't   ^-""y    -; 

a',  ft',  fl",  6",  being  constant  arbitrary  quantities :  we  shall  thus  obtain 
the  absolute  motion  of  M  in  space,  when  the  relative  motions  of  w,  m'. 
Sec,  about  it,  are  known. 

If  we  multiply  the  differential  equation  in  x,  by 

and  the  differential  equation  in  j/,  by 

and  in  like  manner,   the  differential  equation  in  a/,  by 

and  the  differential  equation  in  y,  by 

Af+S.7»  ' 
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and  if  the  same  operations  be  performed  on  the  coordinates  of  the 

other  bodies  of  the  system,  by  adding  all  these  equations  together,  and 
observing  that  by  the  nature  of  the  function  x, 

we  will  obtain 

dr  M-^^.m  dt'         M+^.m  dt' 

.« 

ax 

•  Performing  these  operations,  the  difFerential  equation  in  x  becomes  ~  —  my.  —r-^  — 

. ,        M  mx  (  d\  ]  m  d-  x  ,    Mmx       2  mil 

m  mx  l.mi/        (  d?.  "t  ,  ,.  ■         .    • -zrr:   .  2.  — -  .  l.mu   — — ■ —  .  J  — —  )-  ;  and  corresponding  operations  being  per- 
M+2.m  r^  ^       M+~.m     \  c/x  )    '  ^  °    ̂  

formed  on  tlie  differential  equations  in  x',  x",  &c.  we  obtain,  by  adding  them  all  together, 
d^x       , ,  i/x  mx  C  d>^  t  l.mij  d^x     , 

"       dt*  T^  ^       r^   ̂     ̂    \  dx  S  ̂   M  +  2.m  dt''    ̂  

2.my.M  ̂   m,        ̂ .m.^-mj,    ..J^  _  J=?f^    2.  j--j  ;    multiplying    the   differ. 
Af+2.m.        >•»  +   M+2.m  '       r»         M+2.m         I  dx  i 

?.mx  ,  ,        ,     '^■mx 
ential   equations  in  y,i/',i/",  &c.  by  mx-m.  ^^_^^  ̂^^  ,  «  *' -»« -^^^s.,^ '  &c,  we  OB- 

d^u                   xu                   my  5  '^^  ?  *" 
tain   for   the  equation  in  ̂ ,  mx.—^+  M.m.^  +  mx.2.—   ^'I'^ij^       M+Tm.' 

i-y  mM        y  5,»nx        ^   my  'S.-mx        5^?   .      ]f 

the  same  operation  be  performed  for  the  equations  in  ̂ r'andy",  &c.  we  obtam,  by  addmg 
ihes0  equations,  and  concinnating 

rf*y     .     ,,      m.xij  my         „      \  dx  \  d  y 

2.mx.2.^  +  ,V.2.-^+2.;«r.2.-f -2.x.|_  \  ̂  2.m.  ̂ ^.  ..mx.^ 

iW  +  2.m 
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of  which  equation  the  integral  is 

Const"'.  =  £.ff».  ̂     ̂   ,f — -—  ^rp--   S.W.  -jf at  M-{  S.7»  rf/ 

E.m?/  dx 
+  — 7 — t: — .    2.WJ.- 

orc  =: 

M^^.m  '    "•'"•  (f?    ' 

M.l.m.^^^Jl:^^^ 

x.mm'.  { i^'--Udy'-dy)-iy'-y-^d^-d^)  | .  ̂.^ 

  .  2.— ̂ +2.ni«.2.  <  — p-  \  ; 

JV/+2.m 

this  equation  being  added  to  the  equation  obtained,  by  taking  the  sum  of  the  equations  i* 

X,  K,  &C.  gives 

f     'i.my.  d's  2  m.x  d^y  "»  S.tkx.S.    I  </a  ")  l.my.'S.    f  <^*  1 

1  M+S.nt   ■'"■'S«        M+2.m  df  J        Ai+2.m  1^3  ~" M+2.m  \'dx  ]' 

the  quantities  which  destroy  each  other,  by  the  opposition  of  signs  are  omitted. 

se* 

page  31. 
The  first  term  of  the  second  member  of  this  equation  is  evidently  an  exact  differential,  »ee 

page  2,  and  the  integral  of  the  remaining  terms  which  do  not  vanish  r:   —■ .  2.m.   
Af+2.»«-  cT/ 

/'S.m.dy              dx           2-mj;                du    ,      f   'S.nidx  du rr   .  2.OT.-T   ■.  2.7n.-^+   /    .  2.m.-2-. 
M-»-2.m           dt        M  +  2.m             dt  ̂   J  M+2.m  dt 
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*  being*  a  constant  arbitrary  quantity.     By  a  similar  process  we  may  ob- 
tain the  two  following  integrals  : 

•  If  there  are  but  three  bodies 

*"J     »"^y __        m'x'.m'dy  m"x".     m"du"  mx.m'dy' 

Af+m+;«'^m"  *   dl        (3/-|»i-f.«i  ■\n}:')d~  {M-\,n\m' \vi: '  )dt  ~  kMA-m-\-m' ^mn^dr 

mx.m'dy'i   m'x.mdy  m'x'.m"dy"  m'x".mdy 
(M+m+m'Jrm'-)dt     (.M  + ,«  +  m'  +  m")  d~{M-\-m-lrin' +  m").dt  ~  (M-\-  m  +  m'+")rf<~ 

m"x".m'di,'   my.mdx  m'y'.m'dx  m"y'.m"dx" 

)<lt 

M+m+m  -^m'.)dt  '^  (M-^m  +  nf  +m')dt'^  {M-\-m-{.m'-Jfm')dt  "^  (Ai-)-m+m'+m"> 

,       .      my.m'dx'  my.m"dx"  m'y'.mdx  m'j/.m"ds;' 

(M-]rm-\.ni^m')dt  "'■(M+  ra-f „;'+,«//)</<+  yM^m\m'^m")dt  '^  {M\m  +  m'  +  m  .)dt 

,  m"y".mdx  m"  y"  m'dx 

^\M^;;^^^;7+^;^t+  [M^m^rn-i.m")dt  '   "'^^'W'^S  both  sides  of  t
his  equation  by 

M+2.7n.  we  have 

Af+r.m.  Const.  =  M.  T  m.Mzi^  4-  ̂ .  (^''^Z-/^^')   ,  „..  jxVy'-y'-'^VO  |  ̂ 

^^.[xdy—ydx-\-x>dy'—iifdj!^  .         „   Udy—ydx-'r3^'dy'~u"dsf') mm.   ________  I  „,,„    _v — £ — J       — J   J   
(/<  ^  dt 

A.  ̂ „.'(''dy'-}i'<tx'  +  x-di/'-y"dx')              ,    {xdy-ydx)     ,       „  (x'dy'-t/d^ 
dt  +»"   ^  f-™-  rfT 

H-m"^  i^^^i^-5'-!!^       „,  (^cLf-ydx)  ,Jxdy'-t/dx')         ,„  {x"dy"-y"dx^) 

J   ,  {jfdx'—xdif)  ,  „{ydx"—xdy")   ^         ,  {y'dx—x'dy) -f-  mm'.   — i.   +  mm".^   ;   :i— '  +  mm'.-^   ;   ^ 
lit  dt  ^  dt 

^^■rr^'.'^'^-^A^!i^^^.,^y:dx-^:d^  ^^ dt  ^  dt  ~  dt 

„„,>\idy—ydx-ifx'dy—y'dJ\,        ,  {ydJ—xdy')    ,        Av  di —i' dy)  .  . mm   -^ — ^   ——■ — ^   ■  +  mm'.  -■?   = — i-i  -\-mm'.^   ;   £.'+4c.= 
dt  ^  dt  ~  dt 

.  {{x—T).(dy'—dy)—( u'—y).(dx'—dx)') 
«'«--^   -^-^   y^'y      yn     —"'')\    ...  making   the  factors   of  n/m",  m'm",  *f. 
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at 

^.mm.  <  ̂   —   -—^   <-^    > ;  (5) 

[ydz — zdy') 
c"-=.MX.m.- 

dt         ̂  

(6) 

c'  and  c"  being  two  new  arbitrary  quantities. 
If  we  multiply  the  differential  equation  in  x,  by 

^     ,         „     H.m.dx 2mdx  —  '2m.- 

the  differential  equation  in  y,  by 

„     ,        -      l.m.dv -~mdy-^m.—^, 

the  differential  equation  in  z,  by 

li.m.dz 2mdz — 2m. 

and  if,  in  like  mannfer,  we  multiply  the  differential  equation  in  x',  by 

PART  I.   BOOK  II.  G 

also  to  coalese,  and  obliterating  the  quantities  whicl>  destroy  each  other,  we  have 
(M+2.m).  Const.  =  c=the  second  member  of  tlie  equation  in  the  text,  it  is  evident  that 
the  same  proof  is  applicable  to  any  number  of  bodies. 
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M+Hm  ' 
the  differential  equation  in  y',  by 

2m'.dy'. — 2ot.  ^    ■ 

the  differential  equation  in  2',  by 

2'm!.dz'.~'2m\- 

and  so  of  the  other  bodies ;  if  we  then  add  together  these  different 

equations,  observing  that 

we  will  obtain 

A_£>v      idx,d'x-\-dy.d^i/ ^-dz.d'z)       Q'E.mdx  d^x 

2I..m.dy  ̂        d^y        £E.m.dz    ̂        d'z   .  ̂,,      rwrfr 

*  The  differential  equation  in  x,  being  mul(iplied  by  this  quantity  becomes  = 

+  M.   — \-2mdx.l.-~-  —2A—-\dx  —  —   .m.-   -rrr^—  ■ 

dt* 
mx                       2m              .      »«x  ,          2  ,    /^  dx  \    .„ 
— —X.mdi,~——   S.mdx.'S.-—4- rr;   .S.mdx.l  -r-  1,  if  corresponduig  operations 

be  perfonned  on  the  differential  equations  in  x',  x",  &c.  we  will  obtain  by  adding  them  toge- ther, 

dxd^x    .   ,,„    mxdx  ,  „        ,       mx       ̂      (dxl    . 
2z.m. — — --  +M.22.   — +22.7nrf*.2.— -  —22.-?  y  >  dx— 

dt^  r*  r*  \  OS ) 
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which  gives  by  integrating 

const  -  Z  TB  Jdx^+dy^-^dz^)    —(•E.mdxy—(J:.mdyY-'i'£.mdzy
 

'    '  dt*  {M-\.Y..m')dt'' 

— 2M.S.— —  2A, r 
or 

h=MX.mX   ^  •'        L  + 

dt"" 

Z.mm'.  \ (dx'—dxy+(di/'—dyy-\-(dz'—dzy  ^  * 

"  dt^ 

d'x  2M  ,       mx         2.S.m  ,        mx  2 

dt^       M+2.W         ,  r'       M+2.W  r*     ̂   M-\-^.m. 
M+2.M 

^t]''"^^ 

2M 

this  equation  by  reducing,   and  observing  that  —  rrr   .  2.wrf'.r.2. 

22.»»  ,       mx  „        ,       mx  ,    ,       ,  2  ,        dx 
2.>«rfx.2. — —  =  —  22.»«(ir.2   ,  and  also  that   .  2.mdx.^,   =0, 

M+2.m  r^  r'  M+2.m      '        '  *  </x 
becomes 

22.mrfx.-v-  +  M.22.   2S.-?  —  J-  .rfx— 22.  Pidx.^.m.— — ; 
dt*  H  \dxi    dt^ 

M+2.m if  this  equation  be  added  to  the  differential  equations,  which   result  by  performing  corres- 

ponding operations  on  the  equations  in  y,  if,  y'\  &c.  z,  «',  /',  &c.,  observing  also  that 
2xdx->[-iydy-\-'2zdz=2rdr,  we  shall  obtain  the   differential  equation  of  the  text. 

'•  ̂S]  ■  '^"  +  '-  [|]  •  <^  +  ̂-  [Zzl  •  '^'='^'  seepage 28. 

•    If  there  are  but  three   bodies,  we  have   by   multiplying  by   (Af-f-m-j-wi'+m"); 

Const.  .(M+ )«4-»n'+"'")  =  h;   and  if  we  only   consider  the   coordinates  parallel 

to  the    axis    of  x,   we  will   have    M  (mdx^  +  m'dx'^  +  m"dx"^)  -{-  {in  -}-  m'  +  m"). 

(mrfx*+»i'c?x  *  +  m"rfx"*)— (w  +  m'+?)i")rfx+fl'x'+rfx")]s  =  Af.2.n;i;^+mVx' + 
m'^rfx''-|-m"-rfx"^+mm'rfx"+»;m'</x'*+mH!"t/x*+  wm"rfx"'+n2'7H"e?x'»4-M'ni''rfx"«— 

vi'^dx-^—m'^dx^—m" '  </x"  *  —2mm'dxd3?—^mm"dxdx"—2m'm"dxdx".=MX.mdx^  +  wm' 

(rfx— rfx')*+(7nm'r.(rfx— £fx")^+m'7?i".  [d£—djf'Y,  =M2.mdx'-i-  Z.mm'  (di'—dxY  ;  si- 
milar expressions  may  be  obtained  for  the  differentials  of  the  coordinates  parallel  to  the 

axes  of  z  and  y,  and  if  to  these  be  added  —{^M.'Zm  -|-2a)  multiplied  by  M+S.m,  we 
will  have  the  expression  in  tlie  text. 

.*^ 
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h  being  a  constant  arbitraiy  quantity.  These  different  integrals  were 

already  obtained  in  the  fifth  chapter  of  the  first  book,  relatively  to  a 

system  of  bodies  which  react  on  each  other  in  any  manner ;  but  consider- 

ing their  utility  in  the  theory  of  the  system  of  the  world,  we  thought  it 

necessary  to  demonstrate  them  here  again. 

10.  The  preceding  being  the  only  integrals  which  have  been  ob- 

tained in  the  actual  state  of  analysis ;  we  are  compelled  to  recur  to 

the  methods  of  approximation,  and  to  avail  ourselves  of  the  facilities 

which  the  constitution  of  the  system  of  the  world  furnishes  us  with 

for  this  object.  One  of  the  greatest  arises  from  the  circumstance  of  the 

solar  system  being  distributed  into  partial  systems,  composed  of  the 

planets  and  their  respective  satellites ;  these  systems  are  so  constituted 

that  the  distances  of  the  satellites  fi-om  their  primaries,  are  considerably 
less  than  the  distance  of  the  primary  from  the  sun  ;  it  follows  from  this, 

that  the  action  of  the  sun,  being  very  nearly  the  same  on  the  primary 

and  on  the  satellites,  they  move  very  nearly  in  the  same  manner,  as  if 

they  were  only  subject  to  the  action  of  the  primary.  The  following  re- 
markable property  also  follows,  from  this  arrangement  of  the  planets  and 

satellites,  namely,  that  the  motion  of  the  centre  of  gravity  of  a  planet, 

and  of  its  satellites,  is  very  nearly  the  same,*  as  if  all  these  bodies  were 
concentrated  in  this  centre. 

In  order  to  demonstrate  this,  let  us  suppose  that  the  mutual  distances 

of  the  bodies  m,  m'.  Sec.  are  very  small,  compared  with  the  distance  of 
their  centre  of  gravity,  from  the  body  M.     Let 

x=X-i-x, ;  1/=  Y+y, ;  z—Z-Vz. ; 

x'=X+<;  y'-Y^y'r,  z-Z^z',; 
&C.; 

*  See  Princip.  Math.  Lib,  Ist-  Prop.65» 
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X,  Y,  Z,  being  the  coordinates  of  the  centre  of  gravity  of  the 

system  of  bodies  m,  m',  m",  &c. ;  the  origin  of  these  coordinates, 

as  also  that  of  the  coordinates,  x,  y,  z,  x',  y',  z',  &c.,  being  at  the 

centre  of  M.  It  is  manifest  that  x„  y,,  z^,  x,',  &c.  will  be  the  coordi- 

nates of  W2,  7w',  &c.  relatively  to  their  common  centre  of  gravity  ;  we  shall 
suppose  these  to  be  very  small  quantities  of  the  first  order,  in  relation  to 

X,  Y,  Z.  This  being  premised,  we  will  obtain,  as  we  have  seen  in  the 

first  book,  the  force  which  solicits  the  centre  of  gravity  of  the  system  pa- 
rallel to  any  right  line,  by  taking  the  sura  of  the  forces,  which  solicit  the 

bodies  parallel  to  this  line,  multiplied  respectively  by  their  masses,  and 

then  dividing  this  sum  by  the  sum  of  the  masses.  Moreover,  we  have  seen 

in  the  same  book,  that  the  mutual  action  of  bodies  connected  together 

in  any  manner,  does  not  derange  the  motion  of  the  centre  of  gravity  of 

the  system  ;  and  by  No.  8,  the  mutual  attraction  of  those  bodies,  does 

not  alter  this  motion,  consequently,  in  the  investigation  of  the  forces, 

which  actuate  the  centre  of  gravity  of  the  system,  it  is  sufficient  to 

consider  the  action  of  the  body  M,  which  does  not  belong  to  this 

system. 
The  action  of  the  body  M  on  m,  resolved  parallel  to  the  axis  of  x, 

Mx and  in  a  direction  tending  from  the  origin  is   ,   therefore  the 

entire  force  which  sollicits  the  centre  of  gravity  of  the  system  of  bodies 

ffi,  7n',  &c.  parallel  to  this  line,  is* 

—  MX.-— 

and  by  substituting  in  place  of  x  and  of  r,  their  values,  we  have 

« 
By  what  has  been  stated  in  No.  20  of  the  first  book,  it  appears  that  — - dt'         Z.m 

now  in  the  present  case  2.m.P=— Afs.-—  .  for  P  =—— — . 
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r*  -  ((X+^.)*  +  (F+3/,)«4-(Z+^,)») 

If  we  neglect  very  small  quantities  of  the  second  order,  namely  the 

squares,  and  the  products  of  the  variables  x,,  ?/,,  z^,  */,  &c.  j  and  if  we 

denote  by  R,  the  distance  \/X*  +  F*+ZS  of  the  centre  of  gravity  of 
the  system,  from  the  body  M ;  we  shall  obtain 

X  _^    X         X,  (Xr^+I>£f^)  * 
~~  W^  R'    "~  R' 

a!       x'' 
we  shall  have  the  values  of  -^j- ,  -777,  &c.  by   distinguishing

  
the  let- 

ters X,  y,  z,  &c.  by  one,  two  accents,  &c. ;  but  by  the  nature  of  the 

centre  of  gravity, 

0=S.ff2X,;  0=:S.7m/,;  0=^7nz/y 

therefore  we  will  have,  neglecting  quantities  of  the  second  order, 

T.^„  mx 

^•^•—  MX 

S.m  R^    ' 

((x+x,)*+(y+3/,)^+(z+2/)'    ^  ̂   '^^      '  ̂^     ̂ ''  ̂ ^  ̂   '>  ̂ 

by   neglecting  quantities  very  small  of  the  second  order,  X.(X'+2Xx,-{-Y'+2Yi/,+ 
3 

'2 

Z»  +2Zz,r^  +  iX-S^^+  Y^+Z')-^=X{X'+  Y'-+Z^)~''—~X.{2Xx,+2  Y>/,+2Zz,)R' 

+  x,{ X»  +  Y'+Z^ )   ̂=  (by  substituting  R'  for  X*+Y'+Z^)  •;p  +  "^  — 

(Xx  +  Yv+Zz.)  ^        ,^     mx       I       MX.'S.m 

S.mx,  rX2.«x,+  y2.n>.v,+Zv.>.z)  )  _  _  MX      ̂ ^^  ̂ ^^  ̂ ^^  ,^^  ̂ ^^^  ̂ j.  ̂j,, 

«econd  member  of  this  equation  ranish. 
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consequently,  the  centre  of  gravity  of  the  system  is  sollicited  by  the  action 

of  the  body  M  parallel  to  the  axis  of  a:,  in  very  nearly  the  same  manner 
as  if  all  bodies  of  the  system  were  concentrated  in  this  centre.  The  same 

conclusion  evidently  obtains  for  the  axes  of  7/  and  of  z,  so  that  the 

forces  by  which  the  centre  of  gravity  of  the  system  is  actuated  parallel 

to  these  axes,  by  the  action  of  M,  are   pT~>   pT"  * 

When  we  consider  the  relative  motion  of  the  centre  of  gravity  of  the 

system  about  M,  we  should  transfer  in  an  opposite  direction,  the  force 
which  sollicits  this  body.  This  force  resulting  from  the  action  of  ttz,  m\ 

ml',  &c.  on  Mf  resolved  parallel  to  x,  and  acting  in  a  direction  tending 

from  their  origin,  is  S.  — j ;   if  quantities   of  the   second   order    are 

neglected,  this  function  is  by  what  precedes,  equal  to 

XS.wi 

R' 

In  like  manner,  the  forces  by  which  M  is  sollicited,  in  consequence 
of  the  action  of  the  system,  parallel  to  the  axes  oi y  and  of -2,  in  a  di- 

rection tending  from  the  origin,  are 

F.E.TW         .  ZX.m ■,  and 

R^           R» 

It  appears  from  this,  that  the  action  of  the  system  on  the  body  M, 
is  very  nearly  the  same,  as  if  all  the  bodies  were  condensed  in  their  com- 

mon centre  of  gravity.  By  tiansferring  to  this  centre,  and  with  a  con- 
trary sign,  the  three  preceding  forces  ;  this  point  will  be  sollicited  pa- 
rallel to  the  axes  of  .t,  of  _y,  and  of  z,  in  its  relative  motion  round  M, 

by  the  three  following  forces  : 

-<M+S.»j).-^;  -(M+E.m).-il;  _(M-}-E./b).-^. 
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These  forces  are  the  same  as  if  all  the  bodies  7n,  m,  m",  &c.  were  united 

in  their  common  centre  of  gravity  ;*  consequently  neglecting  very 
small  quantities  of  the  second  order,  this  centre  moves  as  if  all  the  bodies 

were  concentrated  in  this  point. 

*  The  action  of  m  on  M  resolved  parallel  to  the  axis  of  x  =  —  ,   ••■  the  sum  of  the 

r' 

actions  of  all  the  bodies  m,  m' ,  m",  &c.  on  M  ;  =  2.—,  =  by  what  precedes  •" 

*.•  if  this  action  be  transferred  to  the  centre  of  gravity,  with  a  contrary  sign,  this  centre  in 

its  relative  motion  about  M,  will  be  soUicited  pai-allel  to  the  axis  of  x,  by  the  force  — 

(Af-f 2.ni).— —  ;  now  if  all  the  bodies  m,  m',  ??i",'  dc.  were  concentrated  in  their  common 

centre  of  gravity,  this  centre  would  be  acted  on  parallel  to  axis  of  x,  by  the  force — (M-J- 

2.m.)X,  •••  this  centre  moves  as  if  all  the  bodies  were  concentrated  in  it,  consequently  it  de- 
scribes very  nearly  an  ellipse  about  M,  the  quantities  which  are  neglected  are  of  the  order  of 

the  square  and  higher  powers  of  x,  and  it  is  easy  to  shew,  that  the  aberration  of  the  force, 

by  which  the  common  centre  of  gravity  is  sollicited,  from  the  inverse  ratio  of  the  square  of 

the  distance,  is  much  less  than  the  aberration  of  the  forces  solliciting  any  of  the  bodies  com- 

posing the  system,  from  the  inverse  square  of  the  distance.  For  if  tiiere  are  but  three  bodies, 

and  if  the  distance  o(the  greatest  Mfrora  the  remaining  m  and  m',  be  much  greater  than  the 

distance  of  m  from  m',  then  if  72  be  the  distance  of  M  from  the  common  centre  of  gravity 

of  m  and  m',  p  and  q  the  distances  of  this  centre  from  m  and  m',  respectively,  and  28-  the 
angle  which  r=p-^g,  makes  with  R,  the  distance  of  M  from  vi,  —  R — p.  cos.  ■et,  the 

distance  of  M  from  m'  =R4-y.  cos.  ■a,  :•  the  attraction  of  M  on  m,  resolved  parallel  to 
MR  M 

R  =    -3  =  MR{R-^  +3R-*p.  cos.  zr+6R-^  p^  cos  t«ar+&c. ~  — -}- 

SMp.COS.  w    ,      GMp    .COS. '■a)       ,      „  .       ,1  ^i_  ..•  c    n/r  I 
  i-=r   1- — Pi   ■ — '-  +  &c. ;  m   like  manner,  the  action  01  M  on  m,  re- 

R^         ̂   R*  '  ' 

„,       „  MR  M        3Mi7.cos.sr    ,    eAT^'.cos^ 
solved  paraUel  to  R^-jr;   w,  =  -rp   «1   f"      /?;   '  ~*'"- 

(/i-j-y.  cos.  ot)^  R-  it-*  li* 
now  we  know  from  what  has  been  already  established  in  the  first  book,  that  the  accelerating 

force  by  which  the  centre  of  gravity  of  in  and  m',  is  sollicited  in  the  direction  of  R,  is  ob- 

tained by  dividing  the  sum  of  the  motive  forces,  by  which  »i  and  »i' are  sollioited  in  this 
direction,  by  7ii-\-m',  :•  this  force  is  =  to 

(   t''!^   +  __i^'^_  I  .  -L.  =  by  substitation 
(.(iJ— ;j.  COS.  ar)^    '  (yi-fy.  COS.ro)^  J     lli+m' 
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It  follows  from  what  precedes,  that  if  there  are  several  systems,  of 

which  the  centres  of  gravity  are  at  considerable  distances  from  each 

other,  compared  with  the  respective  distances  of  the  bodies  of  each 
PART  I.   BOOK  II.  H 

f  Mm       SMmp.cos.v,  ̂ GMmp-'.  cos,  'ct  ,   ̂   Mm'        S Mm' q.  cos. -a 

J   — ^'    '^    (mp^  4-m'<7' )+  &c.,  the  first  term  gives  the  law  of  elliptic  motion  ;  the  se- 

cond  term  vanishes  by  the  nature  of  the  centre  of  gravity,  •■•  the  third  and  following  terms 

are  those  which  cause  an  aberration  from  the  law  of  elliptic  motion  in  the  centre  of 

gravity.      The    actions   of  m   and  7n'  on  M,  resolved   parallel  to  R,  are  respectively 

-=;   ,   '■   ,  which  become  by  reducing,  -=— -,  — ;rr  >  and  if  these 
{R— p.  COS.  ■vt)^'  {R-\-g.  COS.  z,

)*'  ^  ^'    R^'    R- 

be  transferred  to  M  with  a  contrary  sign,  the  entire  force  by  which  the  centre  is  urged,  is 

  p-^   .    It  appears  from  this  discussion  that  the  centre  of  gravity  of  the  earth  and 

moon  describes  very  nearly  an  ellipse  about  the  sun  ;  now  a  comparison  of  this  expression, 

with  that  which  gives  the  action  of  M  on  m,  disturbed  by  the  action  of  m'  on  M  and  on  m, 
shews  that  the  curve  described  by  the  centre  of  gravity,  approaches  much  nearer  to  an  ellipse 

than  the  curve  described  by  m,  for  the  force  on  m,  acting  in  the  direction  of  R — p.  cos.  w 

_  M+m  m'.{R— p.  COS.  ■a)  ,f   1   R-j-q.cos.ir)  \ 

~  (R—p COS. -sry  "^      ~"      ~r'  '■'"■  l{/J+y.  cos.  ̂ =)^  r^  )' 
cos.  6,  (  being  the  angle  at  which  r  is  inclined  to  a  radius  drawn  from  M  to  m,  this  ex- 

pression becomes  by  rejecting  very  small  quantities  of  the  second  and  Iiigher  orders, 

M4-m-l-m'      .         w'.  COS.  S  ,     ,       ,  .        .,      ,  .,. -  +  rm   —  ,    and  the  last  term  is  evidently  greater  than 
(R — p.  COS.  ■a)''        [R-\-q.  COS. -sr) 

6Af.  COS.  *i<r  jMT)'-4-m'(7'        „,,     ..  ,.  ,   .  ,.    ,  ^^  •  w   r — •    The  force  which  is  perpendicular  to  R — p.  cos.  •a  is  equal  to 
R"-  '     in-\-m'  "^    '  -^ 

,    f  R+q.  cos.  v!  1  !.,,.'"'•  sin.  t         ,    ̂  
m'.  }    !—   —   — .  S. .  sin.  fc=  by  reducing   ̂ -   rj  ;  but 
l  r^  (/?  +  j.  cos.  w)*  J  '  (R-\-q.  COS. -ay 

if  the  force  of  M  on  m,  be  resolved  parallel  to  r  it  will  be  =  ;  =   rr ,  and  the 
^  (R—f.COS.-sr)* 

force  of  M  on  m'  parallel  to  r  =-=:   —>  '•'  the  accelerating  force  on  the  centre  of '^  (R-^-q-  cos.  try 
C  Mmp  Mm'.q         1       1  f  Mmp 

gravity  parallel  tor=  \^R_pJ^_^y-^Rj^^_,,,^^y\;^:;;^^{-Rr 
SMtnp' .  cos.  TO       Mm', Mm'q       SMm'fl. 'cos.  ar  1         1  ,  /     _a 

R^   ir+   2_   1  _p-,=  because  «p-^'y=0. 3MC0S  33-  I,     J.  U        u 
rr— —       ,.  ("iy^+w'g');  the  part  of  this  force  which  is  perpendicular  to  it  disturos  the 
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system  ;  these  centres  will  move  very  nearly  in  the  same  manner,  as  if  the 

bodies  of  the  respective  systems  were  concentrated  in  them  ;  for  the  ac- 

tion of  the  first  system  on  each  body  of  the  second  system,  is,  by  what 

precedes,  very  nearly  the  same,  as  if  all  the  bodies  of  the  first  system  were 

united  in  their  common  centre  of  gravity  ;  the  action  of  the  first  system 

on  the  centre  of  gravity  of  the  second,  will,  therefore,  by  what  has  been 

just  established,  be  the  same  as  in  this  hypothesis,  from  which  we  may 

conclude  generally,  that  the  reciprocal  action  of  different  systems,  on  their 

respective  centres  of  gravity,  is  the  same  as  if  the  bodies  of  each  system 

proportionality  of  the  areas  tlescribed  by  the  centre  of  gravity  to  the  times,  and  it  is  evi- 

dently  less  than  — - — '■   '   — •,  See  Princip.  Math.  Lib.  1.  Prop.  66.  Cor.  3,  4,  &c. 
'"  (E+q.  cos,  ̂ Y  "^  r  >     ' 
The  distance  of  the  centre  of  gravity  from  M  differs  from  the  distance  of  m  from  M  re- 

til  1 

solved  parallel  to  R,  by  p.  cos.  ct,  =  ,  •  r.  cos.  w.    (by  the  nature  of  the  centre  of 

gravity").    In  like  manner  the  abberration  m  longitude  =p.  sm.  ss-  =  — — — ;.  r.  sm.  ■a,  •••  it 

varies  as  the  sine  of  the  angle  of  elongation  of  M  from  m  ;  if  i  be  the  tangent  of  the  latitude  of 

the  earth,  the  distance  of  the  earth  from  the  plane  passing  through  M  and  the  centre  of  gravity 
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^.    See  Book  7,  and  Newton  Princip.  Math.  Prop.  65,  66,  67,  68.     What  has  been R 

stated  at  the  commencement  of  this  note,  shews  the  truth  of  Newton's  65  and  67  Prop. 
Lib.  1.    And  it  would  be  easy  to  demonstrate,  as  Newton  states  in  Prop.  64,  that  when  the 

force  varies  as  the  distance,  the  centre  of  gravity  describes  an  accurate  ellipse  about  M,  for 

the  force  soUiciting  m  parallel  to  the  axis  of  x,  =  —  Mx,  •••  the  force  which  solicits  the 

centre  of  gravity  parallel  to  this  axis,   — —  — —  MX   '■   ■',  now  this  last  terra 

vanishes,  if  we  add  to  this  force,  the  force  2.mx  =  X2.m-fS.m.j;;  by  which  M  is  sollicited 

in  a  contrary  direction,  the  entire  force  on  the  centre  of  gravity  parallel  to  this  axis  =  — 

(M-{-'S,.m.)X,  V  the  centre  of  gravity  describes  an  accurate  ellipse,  and  m  describes  an  ellipse 

about  the  common  centre  of  gravity  of  Man  d  m' ;  the  periodic  time  in  this  elb'pse  depends 
on  the  number  of  bodies  composing  the  system,  and  it  varies  inversly  as  the  square  root  of 
the  sum  of  the  masses. 
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were  concentrated  in  them,  and  that  consequently  those  centres  move,  as 

they  would  do,  in  the  case  of  this  concentration.  It  is  manifest,  that 

this  conclusion  equally  obtains,  whether  the  bodies  of  each  system  are 

free,  or  connected  together  in  any  manner  whatever,  because  their  mu- 

tual action  does  not  affect  the  motion  of  their  common  centre  of  gravity. 

Therefore,  the  system  of  a  planet  and  its  satellites  acts  very  nearly 

in  the  same  manner  on  the  other  bodies  of  the  solar  system,  as  if  the 

planet  and  its  satellites  were  united  in  their  common  centre  of  gravity  ; 

and  this  centre  is  attracted  by  the  several  bodies  of  the  solar  system,  as 

in  this  hypothesis. 

Each  of  the  heavenly  bodies,  being  composed  of  an  infinite  number 

of  molecules,  endowed  with  an  attractive  power,  and  their  dimensions 

being  very  small  compared  with  its  distance  from  the  other  bodies 

of  the  system  of  the  world;  its  centre  of  gravity  is  attracted  very 
nearly  in  the  same  manner,  as  if  the  entire  mass  was  concentrated  in 

it,  and  it  acts  itself  on  the  several  bodies  of  the  system,  as  on  this 

hypothesis  j  therefore  in  the  investigation  of  the  motion  of  the  centre 

of  gravity  of  the  heavenly  bodies,  we  may  consider  these  bodies  as  so 

many  massive  points,  placed  in  their  centres  of  gravity.  But  the 

sphericity  of  the  planets,  and  of  their  satellites,  render  this  hypothesis, 
already  very  near  to  the  truth,  still  more  exact.  In  fact,  these  several 

bodies  may  be  conceived  to  be  made  up  of  strata  very  nearly  spherical, 

and  of  a  density  which  varies  according  to  any  given  law  ;  and  we  novr 

proceed  to  show  that  the  action  of  a  spherical  stratum  on  a  body,  which 
is  exterior  to  it,  is  the  same  as  if  its  mass  was  united  in  its  centre. 

For  this  purpose,  we  will  establish  soiue  general  propositions,  relative 

to  the  attractions  of  spheroids,  which  will  be  very  useful  in  the  sequel. 

11.  Let  X,  y,  z,  represent  the  three  coordinates  of  the  attracted 

point,  which  we  will  denote  by  m ;  let  dM  represent  a  molecule  of  the 

spheroid,  and  a/,  y',  s^,  the  coordinates  of  this  molecule,  j  denot- 

ing the  density,  which  is  a  function  oi'af,  y,  z',  independent  oia;,y,z-y we  will  have 

dM  zz  ̂ .djfdg.dz'. 
H  2 
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The  action  of  dM  on  m,  resolved  parallel  to  the  axis  of  x,  and  tendiqg 
towards  the  origin,   will  be 

  ^,dx'.dy'.dz',(x — x) 

{{^—'^y-viy-y'y^iz—z'rf^ ' 

and  it  will  consequently  be  equal  to 

  ^  J  ^.dx'.dy'.dz'  ^ 

{.  dx  } 

therefore  if  V  denote  the  integral 

p   ^.daf.dy'.dz'   ^^ 

J  y/{x-xy-^iy—j/Y^^{z^^Y  ' 

e.dx' .di/ .dz' *  The  action  of  dM  on  m,  is  expressed  by  ,   rrrr} — TvTTT   ^  »    ■•"  ̂ ^^  force 

p.di!.di/  .dJ  .         , 

paraUel  to  the  axis  of  ̂ :^^_^,^._^^^_^,^,_^^^_^^.  : :  (^-x  ): 

^.dif  .di/ .dif 
•^{x-xr+{y-y'Y+^-^r  .  consequently  it  is  =^(^_y).+(_yly).+(,_^),)i .    »!« 

p,dx'  .dy'  .d:! 
expression    ,-,         ,^,  , ,~    yx.  ,  ,      iTxTT'  differenced  with  respect  to  x,  and  divided  by 

p.dx'.dy.'dz'Jx—x')  .. 

dx.  becomes— ^j^__^,;,^^^_^,,)r)^  :  V  th^  express.onor 

r  ,  e.dx'.dy'.dz'  -i   3  a.   ,,        ,,       ,        /,,  ■  ,        ,.,  y ,  expresses  the  actidn  of  a  molecule  of  the  sphe- 
l   ̂ /ix—x)^+(t/—i/y+(.z—zy  5 dx 

roid,  on  a  point  without  the  surface  of  the  spheroid,  consequently,  if  we  take  the  sum  of 

the  corresponding  expressions  for  all  the  molecules  of  the  spheroid,  «.  e.  if  we  take 

  }d  f  ^'  ̂ '  — >    =  —    ■(  -r  f  I  this  quantity  expresses  the 

dx 
action  of  the  spheroid,  on  the  point  m,  resolved  parallel  to  the  axis  of  «;  the  characteristic, 

d  refers  solely  to  the  coordinates  x,  y,  t,  it  does  not  denote  an  operation  the  reverse 

of  that  indicated  by  the  characteristic  yt 
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extended  to  the  entire  mass  of  the  spheroid ;  —  <  ——  ?-  will  repre- 

sent the  entire  action  of  the  spheroid  on  the  point  vt,  resolved  parallel  to 

the  axis  of  cT,  and  directed  towards  their  origin.  V  is  the  sum  of 

the  molecules  of  the  spheroid,  divided  by  their  respective  distances  from 

the  point  attracted ;  in  order  to  obtain  the  attraction  of  the  spheroid  on 

this  point,  we  should  consider  F"  as  a  function  of  three  rectangular  coor- 
dinates, of  which  one  may  be  parallel  to  this  line,  and  then  take  the 

differential  of  the  function,  with  respect  to  this  coordinate  ;  the  coeffi- 

cient of  this  differential,  affected  with  a  contrary  sign,  will  express  the 

attraction  of  the  spheroid  parallel  to  the  given  line,  and  directed  to- 

wards the  origin  of  the  coordinate  to  which  it  is  parallel. 

Denoting  the  function  ((4: — a/)*+(?/— ̂ ')*+(^ — 2;')*)"%    by   S,     we will  have 

As  the  integration  only  respects  the  variables  a/,  y,  z',  it  is  manifest 
that  we  will  have 

but  we  have 

^-{dx'S'^idT/*  S^  i^J'' 

•  ̂    — (^— x')        d»e  _  _i 

J   3(t— /)t  _— (^— r')'— (v— v')*— f2— «')'4-3f*— y^' 
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consequently  we  will  have  also 

This  remarkable  equation  will  be  extremely  useful  in  the  theory  of  the 

figure  of  the  heavenly  bodies  ;  we  may  make  it  to  assume  other  forms, 
which  will  in  different  circumstances  be  more  convenient ;  for  instance, 

let  a  radius  be  drawn  from  the  origin  of  the  coordinates  to  the  point  at- 
tracted, which  radius  we  will  represent  by  r,  let  9  be  equal  to  the  angle, 

which  this  radius  makes  with  the  axis  of  x,  and  w  the  angle  which  the 

plane  passing  through  r  and  this  axis,  makes  with  the  plane  of  the  co- 
ordinates X  and  7/  ;  we  will  have 

a;  =  r.  cos.  9 ;  i/  =r,  sin.  6.  cos.  w ;    z  =  r.  sin.  6.  sin.  w ; 

consequently  we  shall  obtain 

by  means  of  these  expressions,   we  can  obtain  the  partial  differences  of 

IB  like  manner,  -— ,  -— - ,  are  respectively  equal  to 

d'Z        d-S    .    d'<i 

rfx*         t/y*         dz- 

-3(«:-'y-3(j/-^0'-3(g-/)'  +3{ji-:^y+S{y-y'y  +  S(z-zy  _  ̂  

* 
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r,  6,  and  w,  with  respect  to  the  variables  x,  i/,  z  ',  from  which  we  can 

deduce  the  values  of  ̂-^-^^   /—r-iiA-rxi*  ̂ "   partial   differences  of 

V,  with  respect  to  the  variables  ?•,  0,  and  zj.  As  we  shall  have  occasion 
frequently  (o  consider  these  transformations  of  partial  differences ;  it 
will  be  useful  here  to  trace  the  principle  of  them.  V  being  considered 
first  as  a  function  of  the  variables  x,  7/,  2,  and  then,  of  the  variables 
r,  6,  and  w,  we  have 

i  dx  * 

In  order  to  obtain  the  partial  differences,  \ — >  A-t\  i\-^\  t  it  is  only ^  idxS  IdxyidsS 

necessary  to  make  x  the  sole  variable  in  the  preceding  expressions  for 

r,  cos.  9,  and  tan.  -sr,  consequently,  if  we  difference  these  expressions, 
we  will  have 

{rfr  ">                .    C  6?9  >            sin.  9      d-sr 

^|=cos.9;|^|.=   —'>-^=0; 

by  substituting  '"'■  {  ̂  C  '  {  ̂  }  >  we  obtain  the  value  o*"  |  ̂  } »  which  has  been  given IN  the  text. 
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which  gives  ' 

m=-'-m- 
sin.  0     (dV 

.4^1 

By  this  means  we  can  obtain  the  partial  difference  1  —r-  c  ,  in  partial 

differences  of  the  function  V,  taken  with  respect  to  the  variables  r,  6, 

and  V.     By  differencing  this  value  of^-y— C    a  second  time,  we  shall 

obtain  the  difference  \  -^  ̂   in  terms  of  the  partial  differences  of  V, 

taken  relatively  to  the  variables  r,  9,  and  n-.  We  can  obtain,  by  a  si- 

milar process,  the  values  of -5 —^  >,  and'S    .  ̂   r* 

By  the  preceding  operations,  we  can  transform  the  equation  (A)  into 
the  following : 

^       Cd'F?       cos.0   (</F)       C  dT   >    ,       U\rV}     ,n^, 

sin.  *( 

_  _  ■/y'+z'       .  j  <^'*  1  _  2xVJ/^"+2^_  2.sin.  6.  COS.  ̂    .     J  ̂  7         . 
7*       '  '■     l'rfx«  j  ~  r*         ~  7^  '     Ida  )'* 

tcfx^i  ~  *^  '  '■'  1  "^  )  "~    a!) «  *  dx*  "^  dr'lx^''   di'-  'cfx'"^  d6'  dx^^ 

d*V  dV   sin. »«   ,     d^V    sin.  ««        <fF    2sin.«.  cos.  «   •  COS.  *P+  — .   -^—  -I   •    ; 
dr-  '     ̂   dr'      r      ̂     (/O"   *      r»      ̂     </«  r« 

C  dr  7        y         .  frfV)         1         v'        xMz*       COS.  *«+sin. »».  sin. '» 

-{|}.  Bin.  *.  =  -.^,v{|-J  =^^^p^=^,  bysubsUtuting  for  -  sin.  »  its 
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ralue    ;  and  by  substituting  r.  cos.  S  for  x,  and  r.  sin.  ̂ .  cos.  ■d-  fqr  ̂ ,  we  obtain, r 

'^       COS.  i.  COS.  -KT 

d^i  1  X  x^*    2xy'  cos.  «  cos.  9.  cot. '« {</'«!__   x_  xy^   2xy  _     cos.  « 

1^  3  —  V'^M^-»'*~~  (^^+~')'-'"'        V^y-f;'Jr*~  sin.«.r' 

2cos.«.sin.<.cos. 'ot    f  f/sr  T        ,      tan.w  r         r,,  ,  «*  1 

sm.  «.  r 

1  +tan.  ■'•cj un 

sin »in.  IP       cd^-a  ■)          2j/z      _  2.  sin.  v.  cos.  a-  f  ̂   1      C  dV  \     {  dr  •* 

m.i.r'  Xdy^l  ~{y^+z^Y  sin.  "«.  r'         '  ''1  dy  \~  \1?  J  *l'^  J 

.     (dV\       (d6-\  (dV  ̂      Cd-^f         fdV}       .      ̂   ,    CdVi 

+  U]'\Ty\+{-dz}'{Ty\={77\-''^-'-'^^^--+{-di}' 
COS.  S.  cos.  ■a  CdV  "h         sin.  ar        ..   f'^'^  \ 

r  \rf^  j  '  rTsmTT'  ''  \  dy^  j 

Crf^O        C«f"^'7     C'^'''?    .    C^^^l     id^'u,^       d'V  .    ,  ,       dV 

ldpi+id^yiW'l'^\d^\'\^'s=^''^-  '■'''•  "^-i;^' 

cos. '^+ sin.  '<■  sin,  'u        W'F?     cos,  ̂ g.  cos,  'ct        S'^^?     ̂   cos.  <— cos.  ».  cos.  V 

2  sin.  <.  cos,  i.  cos.  ̂ 1^  ̂         rf'  F       sin-  *«t  dV    2  sin.  sr.  cos.  «r      c?r    «  ___ 

P  J  '^  d-a-'-  *">».  sin.  ̂ T      "5^*       FTsmTTS      '  1^~T'" 

>in.  *«.  cos.  *Kr  (  «?0 

7   »- is?  (••■"•' 

.     ,    .  d'r        1         z»        x*+2/'        COS.**. +sin sm.  4.  sui.  «r;  -; — =   =   ^—  =   
dz"         r        r^  r^ 

sin.  *.  cos 
)s.  *.  sin.CT       _   S^^\     cos.  *.  sin.  w    ^■^  ^    rf'O 

"^*£__         COS.*  COS.  *.  sin.  'iff 

V^'-f«'.r»'^(i(»+z»)-Tr»      V^»^z».r*      r^  sin. «  sin.  «.  r» 

2  sin.  S.  COS.  «.  sin. 'ar     fcfw'}  ^          cos.  w     rf'w  2zv 

r*  '  \dz  J  ""  ̂ *+s«  ~  r.sin.  «'    dz^  ^*+T^  ~" 

2sin.ti7.  cos.g     fc?F-)      ̂ dV  y     S'^f\^SdV\     WHj.f'^^l      V'^'l 
sin.»<.r«        '\1^\-\TrV\Jz\^  \di\'\Tz\'^  XdZl'lIz^ 
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if  COS.  6  be  put  equal  to  i*,  this  last  equation  will  become 

f(^ri                .              CdV\    COS.  fl.  sin.  ST    .    idVt     cos.w    id'-V\ 
=  |  — I   .m...sin..+  |_}   .   4.|_}.__;|_} 

C<^'^?      ■     2,    •      «      ,    Cc^^?     Ccos.««.+sin.  »«.  COS.  »o7    ,     td'V\ 

=  J^}- -=«•««'•  *-  +  [^^.^   S-   l  +  ilFi' 
COS. '*.  sin. '■!?  ,     C^^  1    COS.  « — COS.  «.  sin. '■KT         2sin.fi  . 
  [.  \-r-  >   i-T-—   J—  COS.  fi.  sin.  'w    • 

r*  ^  «/«  J  r^sm. «  r' 
iT.   COS.  w 

f'^'^l    COS.  V         5^1     2 sin,  ̂j. 
"*"   l"rf^J  *PTsmT«        Irfari*       rSsin.*«       ' 

if  the  corresponding  terms  are  made  to  coalesce  in  the  values  of  i  -—  j  +  ̂  -7-7  \ 

+  I  -^  ?  ,  we  will  obtain  the  following  expression 

C  d''V  ■)                                                                           dV   r  sin.  ̂ 6 

\  —5-  ̂   .  (cos.  ""^^-sin.  *«.  COS.  *«r^sin.  '^6.  sin.  *«)+  -r-.) — '■   \r 

cos,  "fi.+sin.  '<.  sin,  'ct   .   cos.  M+sia.  ̂ L  cos,  'ct  \      ̂ d^  Vl 

sin.  a<+cos.  'fi.cos.  *g-+cos.  ̂ L  sin,  ̂ ig)       J  <^^  1    J  2  sin.  «.  cos.  fi         cos.  6 ")       ̂ dV\     f2sin.  «.  c r*sin.  ̂  

cos.  (.  COS.  *iiT        2  sin.  i.  cos.  fi.cos.  'w  cos.  0  cos.  fi.  sin.  ̂ -a 

'      r».  sill,  fl  ^  "  "*"   r^.  sin.  i  r'.sin.  < 

2  sin.fi.  cos.fi.  sin,  'ct^  j^  (  rf^T  i      sin.  'w  cos.  *sr    1  _i_  J  '^^'  1 
"~  r»  5        I.  <^a-*  J   r^  sin.  "fi        J-',  sin.  »fi  j        i  ̂  3 

(2  sin,  ig.  cos.  OT — 2  sin,  tg.  cos,  zr^  _    frf^Fi       nf^^l    ̂ j.)*^^^!      ̂  

r'.sin.  »fi  )~   t'^^l''"     {"dV  I'T        l~^J  *T^ 
,    CdF-»       cos.fi  ((i^F  1  1  ,  ,  .  ,  .     . 
-r  \~jT  \—7—- — -+  \  -rr-  f  •  -r— — rr=0,  V  hence  multiplying  by  r«,  we  obtain 

I  rffi   )     r>.sin. fi        l  dw^  i     r».sin.  *fi  tr  j    a    j       ' 

1  rfr»  J        ̂       I  dr  i^  1  c/fi»  )  ̂  i  dfi  5     sin.«         l^'w' i     sin.ifi    "•""'"'' 
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12.  Let  us  now  suppose,  that  the  spheroid  ,is  a  spherical  stratum, 
the  origin  of  the  coordinates  being  at  the  centre  ;  it  is  obvious  that  V 

will  only  depend  on  r,  and  that  it  will  not  contain  /ut  or  w ;  the  equa- 
tion (C)  will  therefore  be  reduced  to 

from  which  we  obtain  by  integrating, 

r 
I  2 

\  ~1F'  S^^'-Xd^S'^^'X'dP]''^''  •'^"'S  considered  as  constant,  •.•  r.  |  -^  J 

may  be  substituted  in  place  of  r».  s    ?  +  2r.  ■{  —  f . 

Ifwe  make  COS.  .  =  ̂ .  then —=  (_).(J^),  and _  =  (_). -^ 

+f -^  V  f  ̂   J)  and  as  rf«  is  constant,  and  rf^=  —  rfO.  sin. «,  d*fi=:  — dS*,  cos.  *; 

d'V      .d-^V.  dV.         ,iV.     ,dV^    rf^  dV              j/<^^\ 

cos.<_^  dV ^  '/l—f^Kft.       _  /rf*FN       ,rfF.    cos.»_  rf*y  . 

sin.«~       <'/**'/lZ:^         *    W«'/'^('5r}'  sin.«  ̂     <//*»*  ̂      ''*' 

-j-y  /«  =  ''({1 — t**  ̂-7-^  ;  hence  it  appears  how  the  equation  (B)  may  be  re- dft 

duced  to  the  equation  (C). 

t  If  the  attracting  body  be  spherical,  the  quantity  V  will  be  always  the  same,  when  r  h 



60  CELESTIAL  MECHANICS, 

A  and  B  being  two  constant  arbitrary  quantities.     Consequently  we  have 

from  what  precedes,  it  is  manifest,  that  - — ^—rc    expresses  the  action (  dry 

of  the  spherical  stratum  on  the  point  m,  resolved  in  the  direction  of  the 
radius  r,  and  directed  towards  the  centre  of  the  stratum  ;  but  it  is  evi- 

dent, that  the  entire  action  of  the  stratum  must  be  in  the  direction  of  the 

radius;    therefore — ]~r~i   expresses  the  total  action  of  the  spherical 

stratum  on  the  point  m.* 
First,  let  us  suppose  this  point  to  be  placed  within  the   stratum. 

If    it  was  at   the   centre   itself,    the    action   of    the   stratum    would 

vanish  :  therefore  when  r=o,  we  have  —  <  —  r-  =  0,  i.  e.  —  =  0,  from 

\  dr  }  r* 

the  same,  and  it  only  varies  when  r  is  increased  or  diminished.  For  suppose  the  attracted 

point  to  move  on  the  surface  of  a  spliere,  concentrical  with  the  attracting  body,  it  is  evident 
that  the  value  of  V  remains  the  same  when  the  attracting  body  is  spherical,  but  when  this 
body  i»  any  other  figure,  V  will  vary  from  one  position  to  another  of  the  point  moving  on 

the  spheric  surface. 

K-apr  )  =  0.  V  -^  =  ̂ ,  and  r  F=  Ar+B, 

it  appears  from  this  equation,  that  if  r^O,  B^O. 

•  From  what  has  been  stated  in  page  42,  relative  to  the  action  of  a  spheroid,  it  ap- 

pears that  —  (-7-/   expresses  the  action  of  the  stratum  parallel  to  r,  but  it  is  evident  that 

the  entire  action  of  the  stratum  is  equivalent  to  this  expression,  for  if  equal  elements  be 

assumed  at  each  side,  equally  distant  from  the  direction  of  r,  their  action  perpendicular  to 

r  will  be  destroyed,  and  the  remaining  action  will  be  in  the  direction  of  r,  and  this  being 

the  case  for  every  two  corresponding  elements,  it  is  true  for  the  entire  spherical  stratum. 
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which  it  follows  that  B=0,  and  consequently  whatever  may  be  the 

value  of  r,  — -|  —r-  >=  0  ;    from  this  it  appears,  that  a  point  situated 

within  a  spherical  stratum  does   not  experience  any  action,  or,  which 

is  the  same  thing,  it  is  equally  attracted  in  every  direction. 

If  the  point  m  exists  without  the  spherical  stratum  ;  it  is  mani- 

fest that  if  we  suppose  it  at  an  infinite  distance  from  its  centre,  the 

action  of  the  stratum  on  this  point,  will  be  the  same,  as  if  the  entire 

mass  was  collected    in   this    centre ;    therefore  if  M  represent  the 

mass  of  this  stratum  ;  — s— :— r  or   —  will  become  in  this  case,  equal 

to  — r-»  from  which  we  obtain  B  =  Af,  therefore  we  have  universally,* 

r' 
*  When  the  point  is  at  the  centre  — j-  =  0,  when  r  =  0,  as  has  been  already  re- 

marked, see  preceding  page ;  this  is  also  evident  from  other  considerations,  and  as  B  must 

he  the  same,  wherever  the  point  is  assumed  within  the  surface,  B  in  all  such  cases  s=  0 ; 

V  V=A,   the  value  of  A  may  be  easily  determined. 

When  the  point  is  infinitely  distant,  the  action  is  the  same  as  if  all  the  molecules 

were    united    in  the  centre  of  gravity   of   the   sphere,  see   page   47,     and  in   this 

•      •           ,       M             idV)          B        M           D      ,T     i^       ̂     .     -^^ 
case  the  action  IS  equal  to   ,  v — \  —  S-    or    — =   ,   •••  B=M;   V=A-\   . 

hence  when  the  attracted  point  is  infinitely  distant,  A=0,  •.•  it  is  always  =0 ;  and  V= 

r         r  ' If  the  attracted  point  be  without  the  sphere,  the  attraction  towards  the  convex  part  is 

equal  to  the  attraction  to  the  concave  part  of  the  surface :  and  when  the  point  is  on  the 

surface,  the  attraction  to  the  spherical  stratum  is  only  half  of  what  it  is,  when  the  point  is 

at  a  distance  from  the  surface.      This  is  immediately  evident  from    the  expression 

u*.du.d'a.d6.sm,i  ^^  ,.,  ,  ,  „  1  ,  .  j  j  j^  •  « 

  -jr   [r — u.  co».«. «.(/)),  which,  when  ip-if)OC-—  becomes  u*.du.dv!.di.  sm,  t. 
T'^^ti,    COS    6 

  '  '  ,  and  it  is  easy  to  shew  that  this  expression  is  the  same  for  two  elements  situ- 

ated on  the  convex  and  concave  sides  of  the  spherical  stratum,  and  which  lie  on  two 

lines  drawn  from  the  attracted  point,  and  making  an  indefinitely  small  angle  with  each 

other,  for  u  sin.  tz=.  a  perpendicular  let  fall  on  r  from  the  attracting  element,  r — «.  cos.  6  = 
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with  respect  to  exterior  points, 

:dV}         M CrfF7  _    M 

'id?  i  ~     r*  ' 

that  is  to  say,  they  are  attracted  by  the  spherical  stratum,  in  the  same 
manner,  as  if  the  entire  mass  was  united  in  its  centre. 

A  sphere  being  a  spherical  stratum,  of  which  the  radius  of  the  in- 

terior surface  vanishes  ;  it  is  obvious,  that  its  attraction  on  a  point  si- 

tuated on  its  surface,  or  beyond  it,  is  the  same  as  if  its  mass  was 

united  in  its  centre.* 

This  conclusion  is  equally  true,  for  globes  composed  of  concen- 
trical  strata,  of  which  the  density  varies  from  the  centre  to  the  surface 

according  to  any  given  law  ;  for  this  is  true  for  each  of  its  strata  ;  thus, 

as  the  sun,  the  planets,  and  the  satellites  may  be  considered,  very  nearly, 

as  globes  of  this  nature  ;  they  attract  exterior  bodies  almost,  as  if  their 

masses  were  concentrated  in  their  centres  of  gravity,  wliich  is  conform- 
able to  the  result  of  observation,  as  we  have  seen  in  No.  5.  Indeed, 

the  figure  of  the  heavenly  bodies  deviates  a  little  from  the  spherical 

form  ;  however,  the  difference  is  very  small,  and  the  error  which  results 

part  of  r  intercepted  between  attracted   point  and  this  perpendicular,  and  it  is  manifest 

from  similar  triangles  that  the  perpendicular  let  fall  on  r,  and  also  the  intercepts  between 

these  perpendiculars  and  attracted  point  are  respectively  as  the  distances  of  the  attracting 

elements  from  the  attracted  point,  and  udS  is  also  in  the  same  ratio  in   both  cases,  see 

Princip.  Math.  Book   I.    Prop.  72,     •.•    for  the  two   elements  at  above   mentioned, 
u.di.u.  uu..  6.(r — m.cos.  ̂ )  .     ,  r     ■,     ,  .    .1  .•  i.-  i_ 
  ■    IS  the  same  for  both,  consequently  the  attractions  which  vary  as 

these  expressions  will  be  equal,  and  this  being  true  for  every  two  corresponding  elements 

existing  on  the  same  right  hnes,  itis  true  for  the  entire  stratum.  Hence  if  the  attracted 

point  is  indefinitely  near  to  the  spherical  surface,  its  attraction  to  the  molecule  contiguous 

to  it,  is  equal  to  its  attraction  to  the  rest  of  the  spherical  stratum ;  if  the  attracted  point  ap- 

proaches still  nearer,  so  as  to  become  identified  with  this  molecule,  it  will  then  be  a  part  of 

the  stratum,  and  its  attraction  will  now  be  only  half  what  it  was  previous  to  its  contact  with 
the  stratum, 

*  For  w  being  the  radius  of  the  homogeneous  sphere  M=  -rr— •  "'»   V  —  <  -j-  f  — 
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from  the  preceding  supposition,  is  of  the  same  order  as  this  difference, 

relative  to  points  contiguous  to  this  surface  ;  and  with  respect  to  those 

points  which  are  at  a  considerable  distance,*  the  error  is  of  the  same 
order  as  the  product  of  this  difference,  by  the  square  of  the  ratio  of  the 

radii  of  the  attracting  bodies  to  their  distances  from  the  points  attracted, 
because  we  have  seen,  in  No.  10,  that  the  sole  consideration  of  the 

great  distance  of  the  attracted  points,  renders  the  error  of  the  preced- 
ing supposition,  of  the  same  order  as  the  square  of  this  ratio  ;  the 

heavenly  bodies,  therefore  attract  one  another  very  nearly  as  if  their 

masses  were  concentrated  in  their  centres  of  gravity,  not  only  because 

they  are  at  considerable  distances  from  each  other,  relatively  to  their 

respective  dimensions ;  but  also  because  their  figures  differ  little  from 

the  spherical  form. 

The  property  which  spheres  possess  in  the  law  of  nature,  of  ac- 

tracting,  as  if  their  masses  were  united  in  their  centres,  is  very  remark- 

able, and  it  is  interesting  to  know  whether  it  obtains  in  other  laws  of 

attraction.  For  this  purpose,  it  may  be  observed,  that  if  the  law  of 

gravity  is  such,  that  a  homogeneous  sphere  attracts  a  point  placed  with- 
out it,  as  if  the  entire  mass  was  united  in  its  centre  ;  the  same  result 

will  have  place  for  a  spherical  stratum  of  a  uniform  thickness  ;  for  if  we 

take  away  from  a  sphere,  a  spherical  stratum  of  a  uniform  thickness,  we 

will  obtain  a  new  sphere  of  a  smaller  radius,  which  will  possess  the 

property  equally  with  the  first  sphere,  of  attracting  as  if  the  entire  mass 

— j-=  when  r=:a, — —  .  a;  for  a  point  which  is  situated  within  the  sphere,  it  is  evident 

the  action  of  the  strata  between  the  point  and  exterior  surface  vanishes,  consequently  this 
case  is  reduced  to  the  former. 

•  This  ratio  may  be  deduced  from  what  has  been  established  in  No.  46,  page  10;  sec 
also  Systeme  du  Monde,  page  255,  and  Book  3,  No.  9.  If  the  force  varied  as  the 

distance,  a  homogeneous  body  of  any  figure  will  attract  a  particle  of  matter  placed  any 

where,  with  the  same  force  and  in  the  same  direction,  as  if  all  the  matter  of  the  body  was 

collected  in  the  centre  of  gravity.  See  notes  to  page  50.  This  will  appear  immediately 

if  the  force  of  each  element  be  resolved  into  other  forces  parallel  to  three  rectangular  co- 
ordinates. 
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was  united  in  its  centre  ;  but  it  is  evident,  that  if  this  property  belongs 

to  these  two  spheres,  it  must  also  belong  to  the  spherical  stratum  which 

constitutes  their  difference.  Consequently  the  problem  reduces  itself 

to  determine  the  laws  of  attraction,  according  to  which  a  sphe- 

rical stratum,  of  an  uniform  and  indefinitely  small  thickness,  at- 

tracts an  exterior  point,  as  if  the  entire  mass  was  collected  in  its 
centre. 

Let  r  represent  the  distance  of  the  attracted  point  from  the  centre 

of  the  spherical  stratum  ;  u  the  radius  of  this  stratum,  and  du  itg 

thickness.  Let  9  be  the  angle,  which  the  radius  u,  makes  with  the 

right  line  r,  -u  the  angle  made  by  the  plane  which  passes  through  the 

two  lines  /■  and  m,  with  a  fixed  plane,  passing  through  the  right 

liner;  m"c?m.c?ot.c?9.  sin.  0,*  will  represent  the  element  of  the  sphe- 
rical stratum.  If  then  f  denote  the  distance  of  this  element,  from 

the  point  attracted,  we  will  have 

f^  =  r*—1ru.  cos.  9-f«*. 

Let  us  represent  the  law  of  the  attraction,  at  the  distance  /"by  <f{f), 
the  action  of  the  element  of  the  stratum,  resolved  parallel  to  r,  and 

directed  towards  the  centre  of  the  stratum,  will  be 

,  ,     ,     ,.    .     ,  (r — u.  COS.  0)     .  ̂ x 
udu.dis.dM.  sin.  ̂ .-   -7.   .  '^\J)\ 

but   we   have 

r — u.  COS.  9 

~{^P 

/ 

in  consequence  of  which,  the  preceding  expression  assumes  this  form 

•  The  three  sides  of  the  element,  are  du  in  the  direction  of  the  radius,  udi  the  ele- 

ment of  the  curve  in  the  plane  passing  through  the  radius  u  and  r,  and  u  sin.<.  dm  the 

element  perpendicular  to  this  plane  ;  see  Book  3,  No.  1. 
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u\du.dzr.dl  sin.  9.  J  ̂  | .  ?>.(/  )  ;• 

therefore  if  we  denote  J^djl  (?(/),  by  (p,(J)  ;  we  shall  obtain  the  entire 
action  of  the  spherical  stratum  on  the  point  attracted,  by  means  of  the 

integral  t^.du.fdvs.d^.  sin.  ̂ 'p,{f),  diiferenced  with  respect  to  r,  and 
divided  by  dr. 

This  integral  relatively  to  w,  should  be  taken  from  t3-=0,   to  n-  equal 
to  the  circumference,  and  after  this  integration,  it  becomes 

^Tt.u^.du.fd^.  sin.  6.  ip/y)  ; 

TT  expressing  the  ratio  of  the  semi-circumference  to  the  radius.  The 

value  ofy differenced  with  respect  to  6,  will  give 

TU 

and  consequently, 

2,r.«Vw./d/9.  sin.  G.  ̂ X/)  =  27r.i^  •  ffdf.  <?,{/). 

PART  I. — BOOK  II.  K 

*    The  attraction  in  the  direction  o^  J"  :z:  ti^du.dvr.di.  sin.  t.  <p(J'),  and  as  r   u. 
COS.  6  =s  the  distance  of  the  attracted  point  from  a  perpendicular  demkted  from  tfae  at- 

traoting  element  on  the  direction  of  r,  it  is  evident  that  u^du.d-a.di,  sin.  «.?{y).  •   '— — — 

is  equal  to  the  action  of  the  attracting  element  in  the  direction  of  r, 

_  _  ,r  dy  "l  _  r — u.  COS.  9  ̂   c?/._  tf«.  sin.  * 
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The  integral  relative  to  6,  must  be  taken  from  9  =  0,  to  9  =  7r,  and  at 

these  two  limits,  we  have  J'^z  r — u,  andy  z:  r  +  u;  consequently  the 

integral  relative  to  j^  must  be  taken  horn  /"=  r — u,  to J'=  r+Uy 
therefore  let  X/W-  <?,(./)  =  ̂   (f)  >   ̂^'^  shall  have* 

   -ffdf.  <p(J)  =   .  3  t^r+w)— ij.(r— w)^. r  r  L  J 

The  coefficient  of  dr,  in  the  differential  of  the  second  member  of  this 

equation,  taken  with  respect  to  r,  will  give  the  attraction  of  the 

spherical  stratum,  on  the  point  attracted,   and  it  is  easy  to  infer  from 

thence,  that  in  the  case  of  nature  in  which  <p(X)  =  T^"'^   *^^^  attrac- 

*  The  action  of  the  entire  stratum,  in  the  direction  of  rzz.v.'^du.fd-a.di,  sin.  i.  <  -^  I , 

Q  [f)  =:  u^dic./d-a.di.  sin.  6.  "  '  =:  u^du./dia.  di.  sin.  6.  (p,{J)  differenced  with  res- 

pect to  r,  and  divided  by  dr,  dr  and  di  being  independent  variables.  The  attracting 

force  for  each  molecule  =  ti,''.du.  dzr.di.  sin.  *•  ]  ̂  f  •   <?(  /))  *•'  in  order  to  obtain  the 

entire  force  a  triple  integration  is  requisite,  with  respect  tajl  to  6,  and  to  sr. 

In  order  to  integrate  with  respect  to  di.  sin.  6.  ?i,  (y"),  this  expression  is  reduced  to  a 

function  of  y  only,  and  as  _/"  is  here  considered  as  a   function  of  6  only,  r  comes  from 

under  the  sign  of  integration  ;  by  substituting      for  di  sin.  6,  we  get  2wu^du.J'di.  sin.  i. 

^If)  =  -^  .duffdf,  (p,{f),  and  a.%df\s  only  concerned  as  far  as/  is  a  function  of 

t,  and  as  the  limits  between  which  the  integral  of  the  first  member  of  this  equation  ought 

to  be  taken,  are  6—0,  6=7r,  to  which  limits  the  corresponding  values  of/ are  r — u,  r-j-"> 

i.  e.  the  least  and  greatest  values  of/,  it  is  evident  that  by  makiDgJ'/df.(p,[/)  =  Mj')> 
the  integral  of  the  second  member  will  assume  the  form  in  the  text. 

t  <?(/)=j5.  ■■'/df.  <?{/)  =  Hf)^-jr'  and//i/:oX/)=^K/)  =  -/=at 

the  limits, — r—u,  +r—u;  •••  i|/(?-+2i)_4(r— ;()  =  —  2k,  consequently,  the  differential 
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tion  is  equal  to  — ^^   .  that  is  to  say,  it  is  the  same,  as  if  the  en- 

tire mass  of  the  spherical  stratum  was  united  in  its  centre  j  which  fur- 
nishes a  new  demonstration  of  the  property,  which  we  have  already 

established,   on  the  attraction  of  spheres. 

Let  us  now  determine  <?(y),  from  the  condition  that  the  attraction 
of  the  stratum  is  the  same  as  if  its  mass  was  united  in  its  centre.  This 

mass  is  equal  to  4:Tr.ti"du,  and  if  it  was  collected  in  its  centre,  its 
action  on  the  attracted  point,  will  be  47r.w*c?M.(?(r) ;  therefore  we  shall 
have 

o       J    S d.]—.{mr-^u)~^(r—u)-^\     ̂       ,.       ,  .     ,-p,. 27r.ttf/M.<       L  r   ̂ ^  3  >  =  4!Tr.vrdu.  ?(/•)}  (D) 

and  by  integrating  with  respect  to  r,  we  shall  have 

4'(r+u) — »]^(r — u)  =:Qru.Xdr.  (?{r)  +  rU, 

U  being  a  function  of  u,  and  of  constant  quantities,  added  to  the  in- 

tegral* ^u.fdr,(p{r).  If  we  represent  ̂ (r-\-u) — ■^(r — u),  by  R,  we  shall 
obtain  by  differentiating  the  preceding  equation. 

id'R\       ,       ,  .  ,  „       d.(p(r) 
(.  dr-j  dr 

K2 

coefficient  of  the  second  member  of  this  equation,  with  respect  to  r=  —   '— — .  {—2?/)  = 

;  iiru*dtp=  the  mass  of  the  spherical  stratum,  for  5ra'=  the  area  of  a  circle  whose 

r' 

radius=«,  •••■ixu'  =  the  surface  of  the  spherical  stratum,  and  ̂ jtu.  'du=  the  mass  of 
the  stratum,  of  which  the  tliickness  =;  du. 

*  Multiplying  both  sides  by  dr,  and  dividing  by  2ic.udu  we  obtain  by  integrating 
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but  by  the  nature  of  the  function  R,  we  have 

t~d^s  -  Cd^V'^ 
consequently, 

or 

o     ̂ ^  ̂   ̂   .     r.d.<p(j)->  (d"Ul 

3<r-)         d.<p(r)  _    1     ̂ d'U 
iu'idu'  V r  dr  2m 

Thus,  the  first  member  of  this  equation  being  independent  of  u,  and 

the  second  member  being  independent  of  r,  each  of  these  members 

t  For  ffdj.  <Pif)^^f),  -.-fdj.  <f,{f)=d.  ̂ (f),  and  df^<pji/)->rdrf.  ?(/)  = 
d'Mf),  •■•  (dr+duy.  (<?,(r-\-ic)+(r+u).  ̂ (r+u))=  d'4{r+u),  {dr  ~duY  (?),(r_jO  + 
{r—u).q>{r-u))=d\i,{r-u); 

^_d\-^{r-^u)—d\-^{r—u)  _  d^R    __  d\4.(r+ii)—d'4{r~u)  _  d'R 
dr'  ~    dr'    ~  dti"  ~    du'    ' 

In  order  to  obtain   the  attraction  to  a  sphere,    we  should  integrate  the  expression 

  '   W'^-i-^) — ■4'('' — u)  from  m=0  to  u  =  L,  L  being  the   radius  of  the   spliere, 

and  then  the  differential  of  this  function  taken  with  respect  to  r,  and  divided  by  dr,  will 
give  the  attraction  of  the  sphere. — See  Book  12,  No.  2. 
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must  be  equal  to  a  constant  arbitrary  quantity,  which  we  will  denote 
by  3 A  ;  therefore,  we  have 

  +  — -7- —  —  j^  , 
r  dr 

from  which  we  obtain  by  integrating, 

B 

(p{r)z=Ar+-^i 

B  being  a  new  arbitrary  quantity.  Consequently,  all  the  laws  of  at- 

traction, in  which  a  sphere  acts  on  an  exterior  point,  placed  at  the  dis- 
tance r  from  its  centre,  as  if  the  entire  mass  was  collected  in  this 

centre,  are  comprised  in  the  general  formula 

Ar-\ — -. 

In  fact,  it  is  evident,  that  this  value  satisfies  the  equation  (Z)),t  whatever 

may  be  the  values  of  A  and  B. 

If  we  suppose  A  zzO,  we  shall  have  the  law  of  nature,  and  it  is  evi- 
dent that  in  the  infinite  number  of  laws  which  render  the  attraction 

very  small  at  great  distances,  that  of  nature  is  the  only  one,   in  which 

*  Since  u  does  not  occur  in  the  first  member,  nor  r  in  the  second  member  of  tliis  equa- 

tion, the  equality  of  these  members  can  only  arise  from  their  being  respectively  equal  to 
a  constant  quantity,  independent  of  both  u  and  r. 

Multiplying  both  sides  by  r*dr,  we  shall  have 

2r.ir.?)(r)-|-r'.rf.(p(r)=3^r'.rf>-.  •.•  r'.<pr=  Ar^-\-B. 

t  In  this  hypothesis  fdf(p(f)  =  A.fd/.f+  B/  -^  =  ̂   -  y-  =  H/)-    and 
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spheres  are  endowed  with  the  power  of  attracting,  as  if  their  masses 
were  united  in  their  centres. 

And  if  a  body  be  situated  within  a  spherical  stratum  of  a  uniform  thick- 

ness throughout,  it  is  in  this  law  only  that  the  body  will  be  equally  at- 
tracted in  every  direction.  From  the  foregoing  analysis,  it  appears 

that  the  attraction  of  a  spherical  stratum,  of  which  the  thickness  is  ex- 

pressed by  du,  on  a  point  placed  in  its  interior,  is  equal  to 

^  dr  ^ 

In  order  that  this  function  should  vanish,  we  should  have 

^{ii-{-r)—^(u — r)  =  r.  U, 

U*  being  a  function  of  u,  independent  of  r,  and  it  is  easy  to  perceive 

(y4+4.r3M+6r'M''44rM^-t-M'*)  — B{r-l-u),  and  n}^(r— u)=  — .  (r*—^r^u-\-6r''u''— 

■ira'+u*) — B[r — u),  :•  ̂ {r-\-ii)—-^{r — u)—  A.[r^u-\-ru^)~'2Bu;  and 

d.i-.  {i'ir-YtC^—Mr—u)  \  =  d.  i^.A{r^u  +  ru^)—'2Bu)\ 
dr  dr 

3Ar3u+Au'r—Ar^u—Au3r4-2Bu      „  ̂       .     2Bu 
=  •■     I  ■ . .  ■   ■   =2^rM  -f-   —  ; 

r'  r'- 

and  if  we  substitute  for  (p{r)  its  value  Ar  •{    ,    in  the  second  member  of  the    equa- 

tion (D),  it  comes  out  equal  to  2Aru-\   j-. 

•   U  being  the  constant  arbitrary  quantity  which  is  introduced  by  the  integration  of 
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tliat  this  is  the  case  in  the  law  of  natvire,  in   which    'p(J')  zz-r:^. 

But  in  order  to  demonstrate  that  it  only  obtains  in  this  law,  we  shall  re- 

present by  ̂ '(f),  the  difference  of  4'(/)>  divided  by  df;  we  shall 

likewise  denote  by  V(X)>  ̂ ^^  difference  of  ̂ '(f)  divided  by  df,  and 
so  on ;  we  shall  thus  obtain  by  two  successive  differentiations  of  the 

preceding  equation,  with  respect  to  r, 

^"(u+r)—^\.'Xu-~r)  zz  0* 

As  this  equation  obtains,  whatever  may  be  the  values  of  ti  and  r,  it 

follows  that  ̂ "{J")  mu^t  be  equal  to  a  constant  quantity,  whatever  may 

be  the  value  ofj";  and  that  therefore  4'"'(y)=  0}  but,  we  have  by 
what  precedes, 

from  which  we  deduce 

d,  —  (%|.(«-|-r)— ̂ )fl— r)),  differenced  with  respect  to  r,  if  ■          ■  ■    w    only 

equBl  to  U,  its  differential  with  respect  to  r  must  vanish,  for  then  the  quantity  to  which  this 

JO
 

differential  is  equal  vanishes :  ue-  4wM\rfK^r=0.     ^^  <P{f)  ̂ ^^-jiif^f*  9(f)=^^j(-/)~ 

—  — ,  mdfdff(pXf}  -—/Bdf-  —  B{f),  :•  ̂ u  Jg.  r)~^(u-r)  =  B.(—r—u)- 

CI  ")  9Sr 
3.{—u+r)=  —2Br;    -.'  d.>—.  ■^[uJf-r—^u—r)  S    =  —  rf.    =  0;   r  is B.(—u-\-r)=.  —^Br:    •.'  d.i—.  ̂ (u-i-r—d^lu—r)  >    =  —  rf.    =  0:   r  is  less 

IT 
than  u  when  the  point  is  assunied  within  the  sphere,  •>•  the  limits  of/  must  be  taken 
ji+f,  u — r. 

*   d-M-+-)^-M—r)   ̂   u=,^'{u+r)-nu-r) :  and  r{^^r)-V(«-r)  = 



\ 
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and  therefore 

0  =  2.  K/)  +/  <pXf)  J 

which  gives   by  integrating,  ?>(/)  z:  —  ,•  and  consequently  the  law 

of  nature. 

13.  Let  us  resume  the  equation  (C)  of  No.  11.  If  this  equa- 
tion could  be  generally  integrated  in  every  case,  we  would  ob- 
tain an  expression  for  V,  involving  two  arbitrary  functions,  which 

could  be  determined  by  seeking  the  attraction  of  the  spheroid  on  a 

point  situated  in  a  position  which  facilitates  this  investigation,  and  then 

comparing  this  attraction  with  its  general  expression.  But  the  inte- 
gration of  the  equation  (C)  can  only  be  eflFected  in  some  particular 

cases,  such  as  when  the  attracting  spheroid  becomes  a  sphere,  in 
which  case  the  equation  is  reduced  to  one  of  ordinary  differences  j  it  is 

also  possible,  in  the  case  in  which  [the  spheroid  is  a  cylinder,  of  which 
the  base  is  a  curve  returning  into  itself,  and  of  which  the  length  is 

infinite  :  we  shall  see  in  the  third  book,  that  this  particular  case  involves 

the  theory  of  the  rings  of  Saturn. 

Let  us  fix  the  origin  of  the  distances  r,  on  the  axis  itself  of  the  cy- 
linder, which  we  shall  suppose  to  be  indefinitely  extended  on  each  side 

of  the  origin.  Denoting  the  distance  of  the  point  attracted,  from  the  axis 

by  r',  we  shall  have 

r'  =  r.v/l— ̂ *. 

dp  -     rfr    ~''• 
lJ/'(^t+r)  is  always  equal  to  \J-"{m — r),  now  this  could  nqt  always  be  the  case  unless 

each  of  them  was  constant. 

•  M/)  =ffdf.  9JJ);  :■  ̂ >{J)  =/.  ̂ ,(/),  and  V{/)  =  <P.(f)  +  /•  K/),  and 

+"'(/)=  ?(/)  +  ?(/) +/<5'(/)  =  0,  multiplying  by fdf^e  obtain  2f<!>(f)df  + 

/'n/)-4f^0,  •.■fK<p(f)z=B,  and  <?(/)=  ji' 
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It  is  obvious  that  V  depends  solely  on  r'  and  -r,  because  it  is  the  same 

for  all  points,  i-jlatively  to  which,  these  two  variables  are  the  same  ;* 

consequently  it  only  involves  f/.,  inasmuch  as  /■'  is  a  function  of  this  va- 
riable ;  which  gives 

thus,  the  equation  (C)  becomes, 

PART  I.   BOOK  ir.  L 

•  /  .  —  a  perpendicular  let  fall  fi-om  the  attracted  point,  on  the  axis  of  the  cylinder,  t  = 

the  angle  which  ;-  makes  \vith  the  axis,  •/  T^=r.  sin.  t=r.  V'  1 — ^^«  ;  if  the  base  of  the  cylin- 
der was  circular,  F  would  be  always  the  same,  when  /  was  the  same,  i.  e-  it  would  be  a 

function  of  r'  only,  but  as  this  curve  may  be  an  ellipse,  or  any  other  curve  which  returns 
into  itself,  F  must  depend  also  on  the  angle  which  the  plane  of  x,  y  makes  with  the  plane 

passing  through  r,  and  the  axis  of  x,  i.  e,  on  w. 

,    TfiMfi  dr.dfcft  dr.dfifi  r.dft.' 

'^  VI— jK»'  ^/l— ̂ »  VI— jk"'  VI— ;«» 

(1-^^)4' '■■  ■^~    (i-^»)i  '''d;^~id?^\'[d^\'^\d/r 

Sd*r'\(d-Vl     ,,        ,^     ̂        i'^^l    ,     d^V    .       (d'.rVl       ^     ,    ̂    .     . 

[TP^in^r  (l-''')-2^-  {^  }  +_:5l  +  ''-  i  -rfF-  1  =  ̂^  (subst.tut,ng 

1-^- 
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from  which  we  obtain  by  integrating, 

Vzz  <p(r.'.  COS.  OT+r'.  \/ — 1.  sin.  t3-)+i]/(/.  cos.  -st — r'.  \/ — l.  sin.  ■ar);* 

■••  '^'■•'•^•=7p^-  dV^^.d-V;  hence  r.|^  |  =-^.  ,Vl_^«+r'. 

( 1  — ft' ).  ̂  -—J  ̂   .     By  substituting  these  values,  the  equation  (C)  becomes 

1— i" 

(fp    2r.(l— fc') ^   ; .  — ^ — ■ — j^  :=.  0,  and  if  both  sides  of  this  equation  be  multiplied  by  1 — fi*,  we  wiH 

obtain  the  expression  given  in  the  text,  by  substituting  }'  for  r.v/l — fc'. 
d^V  d^V 

*  This  integral  may  be  deduced  a  priori  in  the  following  manner :  let        ̂   :=  r,        ,^ 

—  t,   =  o,  then  we  will  have   r-\-r'-.t-^r'.q  =  0;    the  general  expression  Rk*  + 
dr 

Slc+T=.0,  Lacroix,  torn.  2.  No.  752,  753,  &c.  becomes  i'+Z'^rO,  •••  k  =  ±r'.\/—l, 

antldu=   — r.  (di-'  +/c.rfsr),  dv=—r-r-  (d>'  +  k'd-a)  become  by  making ——,  — —  = dr  dr  dr     dr" 

respectively  — p,  and  substituting  -j-  s/ — \.r',  — v' — i./,  fori  and  A';  du=    —  + 

V'— 1.  rfcr,  dv=  —j   v' — 1.  dvT,  consequently  K=log.  Z-}-*^ — l.tn,  i=  log.  r'—^ — 1. 
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?(?•')  and  4/(r')  being  arbitrary  functions  of  r',  which    may  be  deter- 

I,  2 

.  ,       du  1  dt 
w,  are  particular  integrals  of  the  preceding  differential  equations ;  let  —y  =  — 7  =  n;    -r-, 

1        ,   du     ^j,    
=  -7~" '  TT"  ='^— 1.  =  m;  —-  =  —  V— 1.  =  m  ;  g  =  np'  +  nq',  (see  Collection  of 

r/  q' 

Examples  of  differential  and  integral  calculus,  page 466,)  =  —■  +— y-S    *"  =  — ""z  "1" 

aZ—p'—o'+fl'-ffl'  =0,  -.•  4/=0,  i.e.  4^  =  0,  and  F  =  <p'(«)+^(u)  =^  ip'(log.  /+ 

•^n  t^)4-  iJ.'(log.  )■'— •liT.  w))=  respectively,  ((?'  log.  r'+log.  e""*'^— ̂ •)+J''(log.r'— 
—^VZT       

log^  ^=?''(log.  (r'.lcos.  «7+i/— 1.  sin,  w))+^'((log.  r'.(cos.  ro— V— 1.  sin.  w)) 

—  ip{r'.  cos.  jT-fr' V — 1.  sin.  to)  +  4'{>^'  cos.  ar — /.  %/ — 1.  sin.  w),  by  substituting  cos,  w 

±v — 1.  sin.  «r  for  e~    ̂         ,  and  assuming  the  arbitrary  function  <p  =  the  function  ip'. 
log.     This  integral  evidently  satisfies  the  preceding  equation,  for 

/ ̂ "\  _  d.(p{r'.  cos.  w+r'.V' — 1. sin.  ■a)     d.(r'. cos,  isi+r'y — 1.  sin,  ■a) 

^  '''■  /         rf.(/;cos.a-+rVZ:f  sin.sr)  ^^^ 

^^   '^•('•'•cos  CT— r'.V^— 1.  sin,  to)^    ̂    (/.  cos,  to— /  V^^  sin,  p) 
tf.(r'.cos.  TO— ?-'.\/-IT.  sin.  ar)  dr' 

rj_E^_   q".i?.(/.cos.  to4->^.\/— 1.  sin.TO)      rf.(/.  cos.TO+r'.^— 1.  sin,  to)'- 

^'^''"  ̂        d.{y.  cos.  ar+;^  ̂ Hr.  sin. ■^)»   *  dr"* 

rf.  ̂(r.  cos-TO+Z-y/  —  1.  sin,  to)       </'.(/.  cos.  to+/V — 1.  sin,  to) 

(/.(r'.cos.  TO-f-rV-ir.  sin.TO)     *  ^'''* 

■     t^^4-(/.C0S.TO — /.\/— l.sin  ;s-)      d.{r'.  cos,  ar— /.y/I^.  sin,  to)' 

(/.()-'.  cos.  -sr—r'.V—l.  sin.  to)*   *  d)'' 

,'- 

,    d.  Mr'  cos.  TO— /.v^— 1.  sin,  to)       c?*.(/.  cos.  zr—r'.'/—l.  sin,  to) 
rf.(r'.  COS.  TO— /,\/  —1 .  sin.  to) 
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mined,  by  investigating  the  attraction  of  the  cylinder,  when  ■a-  is  equal 
to  cipher,  and  when  it  becomes  equal  to  a  right  angle. 

but rf.(r'.  COS.  tiT±r'V — 1.  sin.  157)  ,     / — -     . 
— i   -y-.   =COS.  •sr±V — 1.  3in.  w,  .*. dr 

d'-.^r'.  COS.  ■srit.r'.  ' — 1.  sin.  ■iit)_ 

dr" 

i 

Sin.  ■a) (dV\       of.ifi(r'.cos.  OT+r'.^/— l.sin.  w)     ,,  ,    ,    ,   
:rj  )  =  —^          ,—   '-.  {/.  cos.  m+r'.'/—l. 
"■^  -^        d(/.lcos.  OT+r'.V — l.sin.is-) 

rf.-4-(r'.cos.  w — /.v — 1.  sin.  Iff)    ,  ,  ,     ,      . 
+  —^   p=   '.  (/.  cos.  «7— r'  .V— 1.  sin,  ■a) 

diy.  cos.  w — /.v — 1 .  sin.  w) 

,    ,d^V.       d'.i?(r'.cos.iff+/.\/IIi.sin.  57)    ,,  ,        ,       ̂ , —     .  .    ,    v 
r'^.(—-.\  —   i   — =   '.  /*.(cos.  *ar+2V— l.sin.w.cos.»— Sin.ijr) 

\dr'^  }      d(r'.cos.  w+jV_l.sin.  ̂ )^ 

,     rf».4'('"'- COS.  sr—r'.v' — l.sin.  jsr)    ,,  ,  ^, — -     .  .      ,    , 
-\   —   —^^   ^^.r'*.(cos.  'ot— 2v — 1.  sin.  «r.  cos.  is— sm.  'w) 

</.(/.  cos.  zr — r' .  V — 1 .  sin.  <aY 

(AX\  —  d-<p{r' .co%.vs-^r' .*/  —\ .  sin.  -0)       d.jr'.  cos.  ■a+r'V — I.  sin,  to) 

''"''       rf.(r'.  COS.  sr+r'.v'iri.  sin.  w)     '  ^ 

rf.4-(j-'.  COS.  CT — r'.^/  —  1 .  sin.  ■sr)       rf.(r'.  cos.  w — /.  \/ — 1.  sin,  ■p) 

rf.(j-'.  COS.  ■a—r'.^—\.  siii.  ot)  "'" 

J'r        c?'.(p(/.  COS.  ar+r'.y/^T.  sin,  to)        d.(r' .  cos.  ̂ +r'.\/—i.  sin.ar)' 

(/to=    "£?.(/.  cos.  ot+Z-'*^-^.  sin.  to)»   *  ''■='" 

fl?.(?i(r  cos.TO+r'.\/— 1.  sin,  to)      rf'.(>-.  cos.  TO+r'.\/ — 1.  sin,  o-) 

rf  (/.  cos.  TO-f /.  ̂ /  — 1.  sin.  to)  d^T^ 

,     d'^.^{r'.  cos,  a- — r'.y/ — 1.  sin,  to)      rf.  (y-'.  cos,  to — r^.v*  — 1.  sin,  g")^ 

(/.(/.  cos.  TO— r'.  \/Iir.  sin.  ar)*  *  ^^^ 

rf.  ■v|'(r'.cos.  ar — r'.ij — 1.  sin.  to)      d'.{r'.  cos.  sr — r'.^/ — 1.  sin.  to) 

rf.(/.  cos.  TO— r'.v/— 1.  sin.  to)     '  '''»* 
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If  the  base  of  the  cylinder  is  a  circle,  F  will  be  evidently  a  function 

ofr',  independent  of  13- ;  the  preceding  equation  of  partial  differences 
will  consequently  become, 

which  gives,  by  integrating, 

t  dr'i  -   r'  ' 

<^.(r'.cos.«r±/V— 1.  sin.  jsr)  ,    .        ,   ,    , — - — i   r      = — /.SUl.W±/.v' — 1.C0S.W. aw 

dK(r'.  COS.  u±r'.'y^r.  sin.  zr)  ,  ,     ,—-..       ,        (tl'S   -T-j    = — r.cos.  wrpr. v' — l.sin.  w);  •.•  \  ̂ „^J 

rf'.«)(»^.  COS.  ■CT  +  r'.\/ — 1.  sin.  w)       ,.  ,  .     ,        ̂     , — -    .  ,    , 
=   ■   ■   ;    .  r'».(sin.  ̂ ■a—'2V — 1  .sin.  w. cos.  «r — cos.  'w) 

d.{y,  COS.  «r+r'.\/ — 1.  sin.  ot)^ 

,    ̂.^'(r'.  COS.  3-4/.  \/ — l-sin.  w)      ,       ,,  ,    ./— T    •        \> 
4»  —^      .    (-^  j'.(C0S.  zr-f-  V — 1.  sm.  -a)) 

d:{/,cos,  •sr  +  r'.v' — l.sin.  w) 

^dK4^(/.  COS.  ̂ -V^.  >^.sin  ̂ )^  ̂^  ̂^.^_  '^,)+2v/=T.  sin.  «.  cos.  «_cos-  U). d.{r'.  cos.  -a — >/ — 1,  /.  sin.  *ot) 

rf.il/(r'.  cos.  TO — /.V — l.sin.  w)       ,      ,  ,  ./ — r   •       v« 
,   — ii   ^=   '—  .  (_r.  (cos. -n— V— l.sin.  to)). 

rf.(r'.  cos.  ar — r'.^. — 1.  sin.  to) 

substituted ;  consequently  this  integral  satisfies  the  given  differential  equation. 

When  TO  Tanishes  F=  ̂ (r')-\-^{r'),  and  when  to=:90°,  V=<p(t'-»/—\)-\-^—r'.'/—\), 

and  as  the  attraction  in  the  direction  of  r'  =  -j  -rr-  > ,  ?(/),  and  ij'(r')  may  be  determined. 
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H  being  a  constant  quantity.  In  order  to  determine  it,  we  will  sup- 

pose /  very  great  with  respect  to  the  radius  of  the  base  of  the  cylinder, 

which  consideration  permits  us  to  regard  the  cylinder  as  an  infinite 

right  line.  Let  A  represent  this  base,  and  z  the  distance  of  any  point 

of  the  axis  of  the  cylinder,  from  the  point  where  r'  meet  this  axis,  the 
action  of  the  cylinder  supposed  to  be  concentrated  in  its  axis,  and  re- 

solved parallel  to  r',  will  be  equal  to 

f- 

Ar.  dz 

the  integral  being  taken  from  ;:=  —  oc,  to  ̂   =  oc  ;  which  reduces  this 

integral  to  — —  ;  this  is  the  value  of  —  \—r-,>j  when  r'  is  very  consi- 

derable.     By  comparing  it  with  the  preceding  expression,  we   obtain 

H  =  2 J,  and  it  is  evident  that  whatever  may  be  the  value  of  r,  the 2A 

action  of  the  cylinder  on  an  exterior  point,   is  — —.* 

*  If  the  base  of  the  cylinder  be  circular,  V  will  be  always  the  same,  when  /  is  given, 

•••  V  will  be  a  function  of  r',  independent  of  w ;  dividing  by  /,  and  multiplying  both  sides 

by  d/,  we  obtain 

r  =  >/r'*-\-z';  .'.  the  attraction  in  a  direction  perpendicular  to  the  base,  :  to  the  at- 

traction towards  the  assumed  point  =  — — ; — -  )  ;;/  :  v^/^+z',  hence  as  Adz  is  the  dif- A'/dz 

ferential  of  the  area  of  the  base;  —   —  ?   is  the  differential  of  the  entire  force  and  its 

[r   +z  )'^ Az 
integral  =    .    /-,^       =,    (see  Lacroix,    No.  192),  when  z  =  OC  this  integral  becomes 

A  A 
—  ,  and  when  z  =  —  OC,  it  becomes  —  —r  ;  and  as  we  want  the  attraction  of  the  pomt 
r'  r 

to  the  cylinder  between  these  two  values  of  z,  the  difference  of  the  expressions  in  these 



PART  I.— BOOK  11.^  79 

If  the  attracted  point  lies  within  a  circular  cylindrical  stratum,   of  an 

uniform  thickness,  and  of  an  infinite  length  ;  we  have  also  —  ) — -i 

2A 
two  cases,  =  — — >  must  give  the  attraction  required. 

Wlien  r  is  very  considerable  with  respect  to  the  radius  of  tlie  cylinder,  it  is  the  same 

thing  as  if  the  mass  of  the  cylinder  was  concentrated  in  its  axis.  When  the  point  is  situ- 

ated within  the  cylinder,  F  is  of  a  different  form  from  what  it  is,  when  the  point  is  situ- 

ated without  the  cylinder ;  and  as  it  is  of  the  same  form  wherever  the  point  is  assumed 

witliin  the  cylinder,  whatever  it  is  in  one  case,  it  will  be  the  same  in  all.  The  length  of 

the  cylinder  must  be  infinite,  otherwise  the  point,  even  when  situated  in  the  axis,  would 

not  be  equally  attracted  in  the  direction  of  the  axis. 

When  the  base  is  circular,  —   )  — -  i  =  —7-  •.•  —  |  -—  i  .  clr  —  H.  — —,  •  •    V 
(^<tr   y         r  \  dr   \  r 

=H.  log.  r'-j-  C.     The  cylinder  being  of  an  infinite  length,  the  attraction  perpendicular  to 
the  axis  is  the  only  attraction  which  it  is  necessary  to  estimate. 

Therefore  the  force  varying  inversely  as  the  square  of  the  distance,  there  are  two  cases 

in  which  a  point  is  equally  attracted  in  every  direction ;  the  first  is  when  the  point  is  situated 

in  the  interior  of  a  spherical  stratum,  (it  will  be  proved  in  the  third  book,  that  this  conclu- 

sion maybe  extended  to  the  case  of  elliptic  strata,  the  interior  and  exterior  surfaces  being 

similar,  and  similarly  situated ;)  the  second  is  that  in  which  the  point  is  situated  in  the  in- 

terior of  a  hollow  cylinder,  whose  base  is  circular  and  length  infinite. 

If  the  cylinder  was  concentrated  into  a  right  line  of  a  finite  length,  the  attraction  in  a 

direction  perpendicular  to  this  line  =  — — ^ — —I.  of  which  the  inteijral  is    / 
^    ̂   (j^  +  z'^Y  ^  V(r'+z^)r'. 

And  if  a  is  ̂   the  length  of  this  line,  the  entire  attraction  in  a  direction  perpendicular  to  it 

"  ...  .      .         1 
—    y   ,  ,;  hence  if  a  be  infinite,  the  attraction  is  as  —  ;  the  attraction  in  the  direc- 

z  zdz 
tion  of  a,  is  as  ;-— — —3  ;  •.•  the  differential  of  the  force  = —r-n — rr^*  the  integral  of  which 

-1  1  1  1 
IS      ,- ,  .    ;   +  C,  when  2^0,   C=  — -  ,  •.•the  entire  attraction  =  -—  —  ' 
Vr'-\-z^  "    '  r'   '    ■  /        K^r^+z" 

— — 7==^r=-  =  when  z  ■=.  a;   ;     ;   •.•   the  attraction  in  the  direction  of  a 

is  to  the  attraction  in  the  direction  of  r'  ::</ r'^-\-a'^ — r' :  a\    hence  it  is  easy   to  de- 
termine the  direction  in  which  the   point   would  commence  to  move ;  it  may  be  easily 
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:r   — ;-  ;  and   as  the  attraction  vanishes,  when   the    attracted   point r 

is  on  the  axis  itself  of  the  stratum,  we  have  H  zz  0,  and  consequently 

shewn  that  a  point  placed  in  the  vertex  of  a  triangle  is  attracted  towards  the  segments  made 

by  the  perpendicular  with  a  force  reciprocally  proportional  to  the  secants  of  the  angles 

which  the  base  makes  with  the  sides.    For  if  r'  be  the  altitude,  and  a,  a,  the  segments  of 

the  base,  it  is  evident  from  the  expression  -; —      that  the  attractions  to  the  segments 

(I    a'  are  as    /  =  to  — r-  >   but    these   expressions   will   be    evidently    pro- 
V'a^-l-r'"-         Va'^+r'' 

portional  to  the  reciprocals  of  the  secants  of  the  angles  at  the  base  of  the  triangle.  If 

the  attracted  point  exist  in  a  perpendicular  to  the  plane  of  a  circle  which  passes  through 

the  centre,  x  being  the  distance  of  the  attracted  point  from  the  circumference  of  a  circle,  con- 

centrical  with  thegiven  circle,  the  distance  of  the  centre  from  this  point  being=;-',  then  ■xr.fjc'^ 
— r'*)=the  area  of  this  circle,  and  ̂ .■xxdx  is  the  differential  of  the  area,  and  as  the  attraction  in 
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iTT.r'.dx       „,.,,.  ,  .  IW         ̂         ,      ,  ,    , 
=r   ,  or  which  the  mtegral  is   1-  C,  and  when  x  =  r  the  attraction  va- x'^  X 

■ishes,  •••  C=r  2a-,  and   the  corrected  integral  =  1t.(\   I,  hence  the  attraction 

of  a  point  situated  in  the  vertex  of  a  cone  to  all  circular  sections  of  the  cone  is  the  same, 

and  for  similar  cones  the  attraction  varies  as  the  side  of  the  cone.  If  the  attracted  point 

exist  in  the  produced  axis  of  a  finite  cylinder  witli  a  circular  base,  of  which  the  radius  =«, 

r'  being  as  before  the  distance  of  the  attracted  point  from  any  point  in  the  axis,  \/n''-f»"'* 
will  be  the  distance  of  the  circumference  of  the  cylinder  from  this  point,  the  attraction  to- 

r 

wards  this  circumference  is  as  I  —  , ,  and  the  differential  of  this  attraction  is  as 

a,       '
'' ,-^       ,^  of  which  the  integral  =  r* — v'a'l-)-'^,  r,  and  r^,  being  the  greatest 

and  least  values  of/,  the  attraction  to  the  entire  cylinder  =  —  r,  +  /,,  —  v'a»+r^„  -j- 

^a^-f-r/;    r,  —  r//=  the  length  of  the  cylinder.     If  the  length  be  infinite  r,  =V^a*-f-r/', 

•.•  the  attraction  is  as  r, — •</ a^-\-r^,  and  if  a  be  infinite  the  attraction  is  as  r, — r,, ,  the 
length  of  the  cylinder. 
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a  point  situated  in  the  interior  of  the  stratum  is  equally  attracted  in 

every  direction. 

14.  We  may  apply  to  the  motion  of  a  body,  the  equations  A,  B,  and  C, 

of  No.  11,  and  then  elicit  from  them,  an  equation  of  condition,  wlrich 

will  be  found  very  useful,  in  verifying  as  well  the  computations  of  the 

theory,  as  also  the  theory  itself  of  universal  gravitation.  The  differ-- 

ential  equations  (l),  (2),  (3)  of  No.  9,  which  determine  the  relative 

motion  of  m  about  My  may  be  made  to  assume  the  following  form  : 

dt-  ~  I  dx)i '  df  ~  IdyS'  di^  ~  IdzS'  *^'^ 

„,    .             ,^    M-{-m        ̂    m'.(xx'  +  7/u'  +  zz')        a  ,   •    • 
Qbemg  equal  to   E.   ^^   ^j^   ^  +  —  ;   and  it  is  easy 

to  perceive  that  we  have 

:d-'Q)       (d^Q)       {d'Q 0  = 
dx % 

provided  that  the   variables  x,  y',  z',  x\  &c.,  whfch  Q  contains,  are 
independent  of  x,  y  and  z. 

PART  1.  BOOK  II.  M 

\dx\       (x"+^^-|-z  )4        "•    r-^  ■        m'\dx\''   \dyS  (j"  +  i/«  +  z*f 

-^•"TT  + -;;r 4 5^  r  i  "S  5  =  -  F+T+T)! -^•— + — •  i 5;  1= ''"* 
mx  mV  mx  rf*x  Mr  mx         1 

dx«             (x^+3^H2^)t       (x'4-_y^-|-2*)l       7/t'lrfxM  ~ 

/_   — m^      %m.{x—if       . 
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The  variables  a;  y,  z,  may  be  transformed  into  others,  which  are 

more  convenient  for  astronomical  purposes,  r  being  the  radius  drawn 

from  the  centre  of  M  to  that  of  m,  let  v  represent  the  angle  which  the 

projection  of  this  radius  on  the  plane  of  x,  and  of  y,  makes  with 

the  axis  of  x ;  and  6,  the  inclination  of  r  on  the  same  plane  ;  we  sh^U 
have, 

X  z=.  r.  cos.  6.  cos.  V; 

y  =.  r.  cos.  9.  sin.  v  ; 
z  —  r.  sin.  9. 

By  referring  the  equation  (£)  to  these  new  variables,  we  shall  have  by 
No.  11, 

\d'Ql  .„    UQ)  ,    id-Q}       UPQ)       sin.  6.     UQ) 
O  =  r«. 

dr'  \      "  'IdrS'^  IdvA  "^  MGM        cos.  ̂ .'  Id^V^    ̂  

cos.  ̂ 9 
Multiplying  the  first  of  the  equations  (i)  by  cos.  6.  cos.  v ;  the  se- 

cond, by  COS.  9.  sin.  v;  the  third,  by  sin.  9;  and  then,  in   order  to 

abridge,  making    . 

d*r        r.dv*  „.       nc?9* iVi'=:  :lj._ — ^j:ri_ .  cos.  ̂ 9  — 
dt'         dt'    '  '""  "        dt*  ' 

— "'  Sm'(y' — yY  \4.Ar 

(x'-:r)^  +  (i>'-y)^M^-zy)\  +    ((x'-.r) •+(y-^) '+  {z-zf  ) "** 

f   — »/   %m'(z'—zY   ,\4.&c 

rf'Q       rf'Q         (j'Q  _— 3(M+ffl).r^-f3(M+OT).r'' 

— 3m^(J'-I)'4-(/— y)H(z'— z)-)^ 

((x'— .r)-  +  (»/-t/)^  +  (z'-^)')' 

-|-3ffl'.,;  ,      (,  7/3^.Vl  +';--)     s  :=0.    In  the  expression  for -.W  +  ;^  +  VTi 
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we  shall  obtain,  by  adding  them  together. '  dr 

In  like  manner,  if  we  multiply  the  first  of  the  equations  (0.  by 

—  y.  cos,  9.  sin.  v ;  the  second,  by  r.  cos.  6.  cos.  v,  we  shall  obtain  by 
their  addition 

N'  being  supposed  equal  to  </.j /'«.—— .  cos.  *9  (. 

di 

Finally,  if  we  multiply  the  first  of  the  equations  (Oi  by  — r.  sin.  J. 
COS.  V  ;  the  second  by  — r.  sin.  9.  sin.  v ;  and  if  then  we  add  them  to 

the  third,  multiplied  by  cos.  9,  we  shall  obtain,  by  making  P'  equal  to 

,   rf«9        ,   dv^       .     ̂   ,      ̂ r.dr.d^ r^.—,   hr*.   .  sm.  9.  cos.  9  + 
dt'    '        dt*  dt'      ' Id^y 

are  only  considered  the  first  terms  in  each,  but  as  the  other  terms  are  precisely  of  the  sauie 

form,  it  is  evident,  that  the  sum  of  the  three  differential  coefficients,  for  each  of  the  other 

terms  respectively  constitute  a  result  equal  to  cipher. 

*  dx  ■=!  dr.  cos.  6.  cos.  v — dS.  r.  sin.  6.  cos.  v — dv.  r.  cos.  i.  sin.  v ;  '.•  d'^x  =  dH.  cos.  *. 
cos.  u — dr.di.  sin.  i.  cos.  v — dr.dv.  cos.  6.  sin.  v — d'-S.  r.  sin.  C.  cos.  i' — di.dr.  sin.  6.  cos.  v — 

di^ .  r,  cos.  6.  cos.  v  -f  di.dv.  r.  sin.  6.  sin.  u  —  d^v.r.  cos.  6.  sin.  v  —  dv.dr.  cos.  i.  sin.  v  -|- 

dvM.  r.  sin.  i.  sin.  v — dv'^  .r.  cos.  6.  cos.  v,  •.'  d'^x.  cos.  6.  cos.  d  =  d*r.  cos.  '^.  cos.  *t> — 2rfr. 

«(<.  sin.  6,  cos.  S.  COS.  -v — 2dr.dv.  cos.  ̂ S.  sin.  v.  cos.  i' — d^i,  r.  sin.  <.  cos.  6.  cos.  'v — (/<'■.  r. 

COS.  *«.  COS.  "ii-|-2c?i;.rf«.  r.  sin.  (.  cos.^.  sin.  r.  cos.  v — d^vr.  cos.  *^.  sin.  u.  cos.  v — rfu'.  r, 

cos.  »«.  COS.  "^u ;  di/=:  dr.  cos.  «.  sin.  v — rd6.  sin.  S.  sin.  v  -\-rdv.  cos.  «.  cos.  v;  :•  d'!/=d^r. 

COS.  i.  sin.  II — rfnrfS.  sin.  6.  sin.  v  +  dr.dv.  cos.  «.  cos.  u — dr.df.  sin.  <.  sin.  v — rdS'^.  cos.  J. 
sin.  v—rdLdv.  sin.  «.  cos.  v — rd'K  sin.  d.  sin.  v\-dr.dv.  cos.  *.  cos.  v — rdv*.  cos.  ̂ .  sin.  v— 

rdv.de.  sin.  ̂ .  COS.  V  -|-  rd'' v. cos.  (.   cos.  v;   v  d^i/.   cos.  6.   sia.v  =  d'^r. cos. '(.Bin. 'v. 
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The  values  of  ?;  v,  and  6,  involve  six  arbitrary  quantities,  which  are 

introduced    by   the   integration  of    the    preceding   differential    equa- 

— Qdr.de.  sin.  6.  cos.  6.  sin.  ̂ v -{■2dr.dv.  cos.  ̂ 6-  sin.  v,  cos.  v — rd$^.  cos.  '6.  sin.  'v — rd^t. 

sin.  <.  COS.  (1.  sin.  ̂ T) — rrfn'.cos.  ̂ 6.s'm.^v-i-rd'v.cos.  'i.  sin. r.  cos.  v — Src'^.rfr.sin.  *.  cos.  *. 

sin.  t).  cos,  u;  dz—dr.  sm.6-\-rd6.  cos.  fl  ;  •.•  d'z—d^r.  sin.  6.  -\-2drdS.  cos.  6  -\-rd^e.  cos.  i 

— rdi^.  sin.  S;  •••  d^z.  sin.  6=d'r.  sin.  '^6-[-2dr.dL  sin.  ̂ .  cos.  6-\-rd'(.  sin.  L  cos.  ̂  — rdt'^. 

,      rf^x  (i*u  .         ,    d'z    .  d^r         ids'" 
sin. I  6,  consequently,  -j-^cos.  6.  cos.  v-\-  -~  cos.  6.  sin.  v-|-  —3-  sin.  S=-t-i   —rj- ctt  ctt  ('i  (*(•  at 

rdv-  ^  dx  dy  .  dz         .  d'x 
  ; — .  cos.  '6,  but  -r—  =  cos.  (.  cos.  V ;  — p-  :=cos.  «.  sin.  ii ;  -7-  =  sin.  S.  •.•  -—— dt^  dr  dr  dv  dt^ 

,     '^'i/  .     •        a-  '^^^       •     . COS.  *.  COS.  11  +     ,      .  cos.  L  sin.  v-j- — -r-.  sin.  ̂ = 
di^  dt^ 

In  like  manner,  if  d'x  and  its  value  be  respectively  multiplied  by  the  differential  of  x, 

on  the  hypothesis  that  v  is  the  only  variable  quantity,  we  shall  obtain  ;  — r.d'^x.  cos.  *. 

sin.  1)=   rd'r.  cos.  'i*.  sin.  v.  cos.  vf2dr.de.r.  sin.  d.  cos.  S.  sin.  d.  cos.  v-^2dr.  dv.r.  cos.  =e. 

sin.  ̂ v+d^6.  r" .  sin.  u.  cos.  r.  sin.  ̂ .  cos.  i-\-di'^.r'^.  cof,  '^  sin.  t).  cos.  v-\-d~v.  r».  cos.  *#. 

sin.  'u+rfi)'  r-.  cos.  ̂ <.  sin.  v.  cos.  u — Idv.di.  r^.  sin.  «.  cos.  6.  sin.  'r ;  and  multiplying  d^y 

and  its  value  by  the  differential  of  y,  taken  on  the  same  hypothesis,  we  obtain  r,d''y. 
cos.  *.  cos.  v—r-d'r.  cos.  *^.  sin.  v.  cos.  i) — 2c?r.  dS.  r.  sin.  ̂ .  cos.  i.  sin.  ».  cos.  D_j_2rfr.  dv, 

r.  cos. '^.  cos.  ̂ u — r'^di'^.  cos.  »*.  sin.  v,  cos.  d — r*<f  *S.'sin.  i.  cos.  ̂ .  sin,  v.  cos.  v — r'.  <fo*. 

cos.' S.  sin.  1).  cos.  t'4»'^rf^u.  cos.'^.  cos.^u — 2r'^ .di.dv.  sin.  *.  cos.  S.  cos.*u;  .•   r.d^.'-  cos.f_ 

sin.  'j+rd'y.  cos.  «.  cos.  t)zr2rcfr<^t).  cos.  '^6+y^d^v.  cos.  *« — 2r*rfu.  dS  sin.  (i.  cos.  *. 

„  ̂      dx  .  dy  C  (^^x  1 
=  (/.(r*.(fv.  COS.  '^);   -5-=  —  »•  cos  «.  sm.  u;  -j-  :=  r.  cos.  <!.  cos,  v,  -.•  —  i  -^  >  . 

r.cos.e.sin..+  |^|.  r.  cos.  ..  cos.  .  =  J-j.  j— j  +  |^j.  |^^ 

—  i  —  \:=zN'.     Multiplying  d^j  and  its  value,  by  the  differential  of  x,  taken  on  the 

supposition  that  6  is  the  variable  quantity  ;  — rd'^x.  sin.  9.  cos.  v=  —  rd'r.  sin.  *.  cos.  I. 

COS.  'v+2rdr.d6.  sin.  '«.  cos.  'ii4-2r(/r.rfu.  shi.  6.  cos.  «.  sin.  v.  cos.v  +  r*d6^.  sin.  «.  cos.  t. 

COS.  *w   ^r'di.dv.  sin.  '«.  sin.  ij.  cos.  v  +  rVu'    sin.  «.  cos.  6.  cos.  ̂ v  +  r'^.d^i.  sin.  '«. 

COS.  'D+r'd'v.  sin.  «.  cos.  6.  sin.  r.  cos.  v. ;  performing  a  similar  operation  on  d^y  and  its 

Talue,  we  obtain  —d^y.r.  sin.  6.  sin.  v^—rd^r.  sin.  «.  cos.  «.  sin.  ̂ 5i-j-2) rfr.(^<'.  sin.^i.  sin.  *« 

— 2r<ir.c/v.  sin.  6.  cos. «.  sin.  u.  cos.  v  ■\-  r^di^.  sin.  ̂ .  cos.  9.  sin.  'v  -j-  2r^.d6.  dv.  sin.  '<• 
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tions.*     Let  us  consider  any  three  of  these  which  we   will  denote  by 

a,  b,  c  ;  the  equations  M'  =  \  —  {  will  furnish  us  with  the  three  fol- (  dri 
lowing  equations : 

idr  ]'\da§'^  Xdr.dvyXdaS       \dr.d^]'\da}  ~  \  da   J' 

\dr-yldb}^  \dr.dvS'XdbS  "*'  Xdr.dl^yidb^  "  t  db   >  ' 

\  dr'S'ldc  J  "*■    Idr.dvS'ldcy    ̂   Idr.dri'  ldc\  -~  I    dc    V 

We  can  obtain  by  means  of  those  equations,  the    value  of  ̂    ,  a  y 

and  if  we  make 

idv\     cd^^        cdv^     rdn 
"'={Tb\'{d-A-Uj'{dby' 
''  =  uru}-{da}'U\' 

sin.  v.cosiv  -J-  r'dv^. sin.  6.  cos.  f.  sin.  't'-+-  r^.d^S.  sin.  'S.  sin.  'v — r'd'v.  sin.  *.  cos.  i. 

sin.  V.  COS.  v;  and  in  liiie  manner  d'^z.r  cos-  6:^rd''r.  sin.  1  cos.  tf-j-2rrfr.  dS.  cos.  '< — r'^dt'. 
+  ,  ,              ,                 (/-.T.r     .                         d^ii.  r     .           .         ,     d^z.r 

T^d'^L  cos.  ̂ ,  •.•   T—  sin.  ̂ .  cos.  V   ^^-^-  sin. «.  sni.  t)  H   = — 
dt^                                  dt^                                 dt^    ' 

2rdr.de        r'^.dv^     .  d')    ,        dx  .  \dy 
cos.  i—   \-     sin.  6.  COS.  6-\-t  ".— — ,  but  — —  =  r.  sm.  6.  cos.  v ;  — r-  =  —  r. 

sin. «.  sin.  v. 

dz  ,  (  rf*«"l  J^V  ]         •  ■        .    f '^'^  7 —  =  cos.  « ;  and  —  <  -r-,  f  .  r.  sni. «.  cos.  v —  <  -r-^  >  .  r.sin.  6.  sin.  n-J-  <  -rrr  f  ̂-cos. «. 

'2r.dr.d6  d-6   .  (dv"] 
r:   j-T   r-''  --I— sin.  «.  cos.  fl+r«. -{—-!-  =  P. 

di"      ~        dt^  ^       \dt^  i 

•  The  vakes  of  r,  v  and  6  are  determined  by  the  integration  of  equations  of  the  second 

order,  •••  two  arbitrary  quantities  are  invoWed  in  the  determination  of  each  variable. 
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^'  -    UayidbS        LJbS'    Id^V' 

-  ldc]'W'^dc^~^d'J'^dc^'^dby' 

'^  ldhl'\dc^'\da^~^Jbl'lTa^'\Tc^' 
[drl    {dv\    ff/6  7        Ulrl    (idvl    \d^\ 
^dc^'^la^'^Tb^-l'ckl'idb^'^d'J' 

we  shall  have 

*  From   the  value  of  J  —   I  =  M' ;  it  is  evident  that  M'  is  a  function  of  r,  v  and  «'; 

»nd  as  these  coordinates  are  functions  of  a,  b,  c,  and  conversely,  it  follows  that 

I    da    I        1    dr    \-  IdaS'^  \   dv    \'  ida]'^  \    dS    \'\da\~ 

fhy  substituting  for  M'  its  value  -I  -j-  \  \ 

Xdr^   r  \da  i"^  Xdr.dvS'  1 «'«   j         I  dr.dS  ]'  \daS  ' 

by  similar  operations  we  obtain  the  values  of  j  —jj-  }•  •  \ —j-  \,  &c.    Multiplying 

J  — —  I    and  its  value,  by  m  and  its  value,  J.— jr-J    and  its  value,  by  n  and  its  value, 

'  dM'  •% 
^  —j—  i  and  its  value,  by  p  and  its  value,  we  obtain 

/rf'Ql       idr\,(dv\       (di\         (dv\      f"'M  ̂     .   ̂  ''"'^ 
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Ib  like  manner  if  we  make 

(.drl     Sdn       Sdrl    S '^^  I 
'''=  Ida^'  idc^-lTc^'ld-ay' 

Sdrl    Sdn        idr}     ̂ dn 
P'=  lTbyiTa\-\TJ'Uby' 

iTc\-{dc\-U\)=''"iiir\- 

id-a\-id-a\'id-c\)'='n-drl 

Sd^\  s^lfS^'l  /^\_/£!\  f 'l!.\)4.  S JIB} 
X  dr^  ]'ldcS  ̂   Idal'Xdb]        \db]'\daP^   Idr.dvy 

{dv\(idv\     Cd0-)         Cdvf      (dCW,     i   dQ\     ̂ dil    (  <:dv1 

\dcS^\da]'ldb\-  IdbS'Xda])^   ld7MriToy\lday 

id-bS~idbS'id'aS)^^'t'd^y 
Adding  these  three  expressions  together,  and  observing  that  the  coefficients  off  J , 

I  — —  )  are  respectively  equal  to  cipher,  and  that  the  coefficient  of  (  )  =  S,  we  will 

obtain  the  expression  given  in  the  text.     We  can  by  a  similar  process  obtain  the  values 

•f  f——\,  ( -T-j  )i  now  if  we  substitute  these  values  in  the  equation  (F),  and  also  M' 

and  ̂ ''  for  ■(  J-  f  ;  i  -J-  ( >  3"d  multiply  by  €  and  cos  *e,  we  will  arrive  at  the  equa- 
tion (G). 
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the  equation  N'  -rzf  —\  will  give 

Finally,   if  we  make 

Idby  IdcS        Idcy  ldb)i  ' 
^dr-)     cdv-i        cdr)    Cdv') 

Ldcy  Cda^        CdaS'  tdcS' 

P"
 

   \drn     \dv)  (rtr^      S"'^? 

~  id^iS'  (M)   ~  ldh\  '  Idal' 

The  equation  P^—  -s  -j^  r  will  give 

Consequently,  the  equation  (F)  will  become, 

0=wi.r*  cos.«8.  5  —7—(  +n.r'^  cos.  *e.  <  —rr-  >-\-p.r^.  cos.  '9.3^  f ^   da  '  t  db  J  I  dc  y 

+  rw".  cos.  9\  \  —  ̂   +  n".  cos.  ̂ ^-{-tA  +  /'•  cos.  '9.  |  -^  |  . 

+  S(fZrM'.  cos.  ='^— P'.  sin.  ̂ .  cos.  ̂ ). 

In  the  theory  of  the  moon,  we  neglect  the  perturbations,  that  its 
action  produces  in  the  relative  motion  of  the  sun  about  the  earth,  which 

implies  that  its  mass  is  indefinitely  small.  Then  tlie  variables  a/,  y',  z', 
which  are  relative  to  the  sun,   are   independent  of  j:,  y,  z,  and  the 
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equation  (G)  obtains  in  this  theory  ;  it  is  therefore  necessary  that  the 

values  found  for  r,  v  and  9,  should  satisfy  this  equation,  which  fur- 
nishes us  with  a  means  of  verifying  these  values.  If  the  inequalities 

which  are  observed  in  the  motion  of  the  moon,  are  the  result  of  a  mu- 

tual attraction  between  these  three  bodies,  namely,  the  sun,  the  earth, 

and  the  moon,  the  observed  values  of  r,  v  and  6,  deduced  from  obser- 

vation, should  satisfy  the  equation  (G),  which  furnishes  us  with  a 

means  of  verifying  the  theory  of  universal  gravitation  ;  for  the  mean 

longitudes  of  the  moon,  of  its  perigee,  and  of  its  ascending  node, 

occur  in  these  values,  and  a,  b,  c,  may  be  assumed  equal  to  these 

longitudes. 

In  like  manner,  if  in  the  theory  of  the  planets,  we  neglect  the 

square  of  the  disturbing  forces,  which  we  are  almost  always  permitted 

to  do;  then,  in  the  theory  of  the  planet,  of  which  the  coordinates  are 

,r,  7/,  z,  we  can  suppose  that  the  coordinates  x',  yf,  z',  x',  &c.  of  the 
other  planets,  are  relative  to  their  elliptic  motion,  and  consequently, 

independent  oix^y^z;  therefore  the  equation  (G)  obtains  in  this 

theory.* 
15.  The  differential  equations  of  the  preceding  No. 

drr       rdv' — T-s-.  cos.  *9 — r. — -=  }——i dt-  •  dt^       Idr^ de 

d.Cr^.——.    cos.  ̂ 9)  ,„  , 
^       dt  -S^Q)  J.;    (H) dt  Xdv^ 

di'  ̂       df  ^       dt'  I  d&  S 
PART  I>   BOOK  II.  N 

*  We  arrived  at  the  equation  (G)  on  the  supposition  that  x,j/,  z  were  independent  of  a/  w', 

»',  &c.  In  the  case  of  elliptic  motion  x,  y,  z,  are  independent  of  x',  y',  z',  and  conversely, 
and  as  when  the  square  of  the  perturbating  force  is  neglected,  the  motion  is  q.p.  elliptic, 

it  follows  that  x,  y,  z,  are  in  this  case  independent  of  x',  y' ,  z' .  See  page  49,  of  the 
text. 
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are  only  a  combination  of  the  differential  equations  (?)  of  the  same  No. ; 
but  they  are  more  convenient,  and  better  adapted  to  astronomical  com- 

putations.    We  can  assign  other  forms  to  them,  which  may  be  useful  in 
different  circumstances. 

Instead  of  the  variables  r  and  9,  let  us  consider  u  and  s,  u  being 

equal  to   -,  that  is  to  unity  divided  by  the  projection  of  the  ra- 

dius  vector,  on  the  plane  of  x  and  of  y  ;  and  s  being  equal  to  the  tan- 
gent of  6,  or  to  the  tangent  of  latitude  of  m  above  the  same  plane,  by 

multiplying  the  second  of  the  equations  (H)  by  rdv.  cos.  *9,  and  theu 
integrating,  we  shall  obtain 

I  ti.dtS  -^  \dv  \      u^ 

h  being  a  constant  arbitrary  quantity ;  consequently  we  have 

dv 

dt  — '•V*-.^/{f}.^" 
If  the  first  of  the  equations  (H)  multiplied  by  — cos.  6,  be  added  to 

the  third  multiplied  by  — '- — ,  we  shall  obtain 

u 1      dx^        ,  idQ)  ,     ̂   ̂dQ) 

^  u      df  Idu^  IdsS dt 

from  which  we  deduce 

There  are  two  distinct  objects,  one  to  verify  the  values  of  r,  v,  6,  and  the  other  to  verify 

the  theory  of  universal  gravitation. 

dv  /do:^ ,,    ,  ̂ /.    dv   /dQ.\ 
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(u'.dt)       u.dt  C  (  du)       u    (ds)J 

If  we  consider  dv  as  constant,  we  shall  obtain  by  substituting  for  dt  its 
value,  which  has  been  already  given 

~  dir    .         jdv  }     ti'dv        du        u"  \ds\ 

* 

Cay )       vr 

N  2 

rfV  </t)'  ,  rf««  rf««  rf,,i 

=rfr.  (X)S.  S — rdi.  sin.  9;  -.'rf'. —  =:d^r,  cos.  0 — 2dr.dd.  sin.  ̂ . — rf'^.  r.  sin.  6   rdi^.  cos.  «■ 

•.•  by  concinnating  and  substituting  —  rf*. — ,  for  its  value,  and  noting  that  r.f— ) 

(dv'^\  fdv'\  .  1  dv'' 
-—).  COS.  e  —  J-.l -J— ) .  COS.  6.  sm.  ̂ 6,  we  obtain  —d^.^  4-  r.—r- 
dt^  ̂   ^df- '  u    '^        dt^  • 

cos 

de 

fdQ\  f^(i\    sin.  i  du 

(-),  .„.    *  =  _  ...c». ,. ...-  (f).  COS.  ,=(f ).  ...  CO..  ..  (f )  =  (f ). 

/ofQ\     /du\    sin. «        /rfQ\     ,rf.j»    sin.S       fdQ\      .     ,  /<;Q\ 

£i:i:i;sin..=^;andL=;^v(f).(l+.0— =  ('?)•«.  and  .ak- r  Vl-t-s*  r        vl4-«2       ̂ ds  '    ̂     '      '     r  ds  ' 

ing  the  two  cofficients of(-   )  to  coalesce,  we  obtain  d^   i   '"-r-  =M'.(sin.««+cos.'C). 

dt' 
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In  the  same  manner,  by  treating  dv  as  if  it  was  constant,  the  third  of 

the  equations  (H),  will  become 

(^  —  j  +  us\  —  ) .     Substituting  for  dt  we  obtain 

Mt-  \/'.-w(J«).  ̂ )  H-  i,..V-w{^^)4 

\dv  J'   u^ 

fZu 

H—  I  -1   I  —   > ,    V  dividing  by  dv,  and   the   radical 
du)    ̂     u\  ds  i 

quantity  we  obtain  the  expression  which  is  given  in  the  text. 

ds  ,  ̂   d^s  2sds^  .        \+s^  ,  d'i  d^s  2s 

'1+s"  1+s^       (l+s'Y  u'    '  dt'~   u-dt'        (l+s^) 

ds^        ,  .  ,  s  ^     dv'-      .      ̂   .      s      dv'      ̂     ,       2sds 
   ,  (sin.  6.  COS.  6  =z    ,   •••  r^.  —, — .  sin.  6.  cos.  6= —    -— -  :  2rdr=   
,c-.dt'  '  ̂   l+s'  dt~  u^  •    dt'   '  u' 

^du.(l+s')       „    ,    ,  2s-ds^         2du.ds      ,  d*6         r'     A^i  1       r"   ^—^ — ,  V  2rdr.d6  =z   „   ;    but  r^.      =  —  .d.i  —  c  =  — ;-. 
M»        '  {l-^s-y         u^      ''  dt^         dt       t-dt^       dt 

J  —   '——  f  ;  •.•  by  substituting  for  d'0,  d6  and  r*  their  values  already  given,  and 

d't 
for   ; —  its  value 

dt^ .,-.V.^./{g}.A^Jgi.V;..+v]fj-.^ dv 
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Therefore  in  place  of  the  three  difFereutial  equations  (H),  we  shall 
have  the  following : 

"  -  "rf^  "^  ''  """  Idv  /•  u'dv  " \du  J        u'Xds  5 

By  making  these  equations  to  assume  the  following  form,  we  avoid 
fractions  and  radicals, 

(K) 

+"  •-r•-;- 
-.  V,  the  third  equation  (H)  becomes  = 

s      dv* 

dv.'Uh^ 

r  d's  2s.ds^  Cds_    2u.du  1 

X^TdF^  (l+«*).M^flfi*  ■   ■*"   i  a'*  dv.dt  J 

2.^s'  2duAs_^Uai    \'t\^\^3\yi\\    =    oy  substitut- 

_— .p^  +  _ .  2«rf«.p' + -,.  ̂ .  </.+ .-^-r-t- T+T?. -^;;^ 

— 2rf«.»d^.p'_       $"^1    «a+i'^-Sj-.(14-,»);  equal  evidently  to  the  third  equa- 
tion  (K). 

+ 
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^_d-t  ,    ̂du.dt        „    fc?Q|    dt\^ 

"*"  /r  tldvi  'ic.dv~  \duS       m  *  |  </s  )  3 '  (L) 

+iv-  Uv  \-dv\-''n-du\  -^'^^n-ds\v 

By  making  use  of  other  coordinates,  we  might  form  new  systems  of 

differential  equations  ;  suppose,  for  example,  that  the  coordinates  x  and 

y,  of  the  equations  (i)  of  No.  14,  are  transformed  into  others,  relative 

to  two  moveable  axes  situated  in  the  plane  of  these  coordinates,  and  of 

which  the  first  indicates  the  mean  longitude  of  the  body  m,  the  second 

lying  perpendicular  to  it.  Let  x,  and  ?/,  represent  the  coordinates  of  m, 

relatively  to  these  axes,  and  let  nt  +  i  denote  the  mean  longitude  of  m,  or 

dv^.—r-  ;  and  by  substituting  -r-,  - — , 

*  By  differentiating  the  first  of  the  equations  (K),  we  obtain  d't 

— 2du.dv  J  ,    '^Q 

dividing  by  dv^ ;  we  obtain-p^  =   — .  u\\-    J- ,  in  the  second  and  third  equa- ^    '  dv^        udv^         dv3  lav  i 

tions,  the  second  should  be  multiplied  by  the  denominator,  and  then  divided  hyh-,  the 

third  should  be  multiplied  by  the  denominator,  and  afterwards  divided  by  A^M^ 
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the  angle  which  the  moveable  axis  of  a;,,  makes  with  the  axis  of  a: ;  we 
shall  have 

x=x,.  cos.  (nt+t) — ^^.  sin.  (nt+i)  ; 

y=-X^.  sin.  (jit-\-i)-\r  y ,.  cos.  (n^+  0  ; 

from  which  we  collect,  on  the  supposition  that  dt  is  constant, 

d'^x.  COS.  {nt-^C)-\-d^y.  sin.  {nt-\-i)—^x—n^x,.  dt^~^ndy,.dt; 

d^y.  COS.  {nt+t)~-d''x.  sin.  (nt^ri')-=d^y,—n-yf.dt^-\-^ndxM. 

By  substituting  in  Q,  in  place  of  x  and  of  y,  their  preceding  values, 
we  will  obtain 

This  being  premised,  the  differential  equations  ij)  will  give  the  three 
following ; 

df  '  dt       IdxS 
\dQ\ 
'-d~y:. 

d^yj      „         _      dx^        ̂ dQ-) 

-   df       Idz  S' 

*  dxzzdx,.  COS.  (nt-{-i)—dy^.  sin.  (n<-f  f)—  nx,.dt.  sin.  (n<+£)— nj/^.(?i.  cos.  (n<-ft)- 

dy=dx^.  sin.  (n<4.e)-j.rfy^.  cos.  (n<+s)H-nx,.</i.  cos.  (nt+i)—ni/,.dt.  sin.  («<+i). 

d^x=d'x^.cos.(nf+6)— ti*^^.  sin.(n<+6)— 2»diB,.rf<.  sin.  {«<+0— 2«fi?5/,.</f.  cos.(«/  +  t). 
—n'^x,.  dt^.  COS.  (n<+e)  +  w*J/'.di'.  sin.  (k<-[-s). 

d\y=d^Xr  sin.  (wf +6)+c/^?/^,  cos.  (nf+s)+2«(/j:,.(/<.  cos.  {nt+,)—2ndi/^.dt.  sin.  (««+f) 
— ?^'a:_.c?i^  sin.  (?!f-f-s)— n'y,.  r/i*.  cos.  (ni-fe). 

V  d^x.  cos.  (nf+s) +  «?»«/.  sin.  (ni+i):zd''x,—2ndi/^.dt—n^x,.dt^. 
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After  having  deduced  the  differential  equations  of  a  system  of  bodies 

subject  to  their  mutual  attraction,  and  also  the  only  exact  integrals,  which 

we  have  hitherto  been  able  to  obtain,  being  determined ;  it  remains 

for  us  to  integrate  these  equations  by  successive  approximations.  In 

the  solar  system,  the  heavenly  bodies  move  very  nearly  as  if  they  were 

only  subject  to  the  principal  force  which  actuates  them,  and  the  dis- 
turbing  forces  are  inconsiderable  ;  we  are  therefore  permitted  in  a  first 

approximation,  solely  to  consider  the  mutual  action  of  two  bodies, 

namely,  that  of  a  planet  or  of  a  comet,  and  of  the  Sun,  in  the  theory 

of  the  planets,  and  of  the  comets ;  and  the  mutual  action  of  a  planet 

and  its  satellite,  in  the  theory  of  the  satellites.  We  will,  therefore, 

commence  with  determining  rigorously  the  motion  of  two  bodies  which 

attract  each  other ;  this  first  approximation  will  conduct  us  to  a  second, 

in  which  we  will  consider  the  first  power  of  the  disturbing  forces  ;  af- 
terwards we  will  take  into  account,  the  squares  and  products 

of  these  forces;  and  proceeding  in  this  manner,  we  will  determine 

the  celestial  motions  with  all  the  precision  which  the  observations 
admit  of. 

d*i/.cos.(nt+i)—d^a:.  sin.  {nt-}-t)=d^!/^-\-2ndx^.dt—n\i/,.cit^. 

=  _.„.,„,+„•.■  {^«}  =  {f}.coM..+.)-{|}..in.  (.<+.). 

x^—x.  COS.  («i-fO+3/-  ̂ '"-  ("'+0  ;  2/i—^-  <^os.  (ref+t)— ar.  sin.  (nt-\-i)  ;  hence  may  be  in- dx      dy 

ferred  the  values  of  — --^  — f^ ,  &c.  &c. dx      dx 

^.  COS.  (»*+.)  ={g}.  cos.(»^+.)=  {g}.cos.H«^+0-{g}.  sin.(».  +  0. 

COS.  (.HO;  ̂ .  sin.  («/+0=  {f  }•-•(«'+')=  {g}  •  -•  ̂ (''H^)+  {g}  . 

sin.  {nt  +  i).  cos.  (n«  +  s).  .•.  —~—  cos.  («<+0  +  — tt"-  sin.  (nt-\-i)  =  -j-f   n-x^.dt — 
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CHAPTER  III. 

First  approximation  of  the  celestial  motions,   or  the  theory  of 

elliptic  motion. 

16.  It  has  been  already  demonstrated  in  the  first  Chapter,  that  a 

body  attracted  to  a  fixed  point,  by  a  force  which  is  inversely  as  the 

square  of  the  distance,  describes  a  conic  section ;  but  in  the  relative 

motion  of  the  body  m  about  M,  if  this  last  body  be  considered  at  rest, 

we  should  transfer  to  m  in  an  opposite  direction,  the  action  which  m 

exercises  on  M ;  therefore,  in  this  relative  motion,  m  is  sollicited  to« 

wards  M  by  a  force  which  is  equal  to  the  sum  of  the  masses  divided  by 

the  square  of  their  distance,  consequently  the  body  m  describes  a  conic 

section  about  M.  But  the  importance  of  this  subject  in  the  theory  of 

the  system  of  the  world,  requires  that  it  should  be  resumed  under  new 

points  of  view. 

For  this  purpose,  let  us  consider  the  equations  (K)  of  No.  15.  If 

M+m  be  made  =  ji*,  it  is  evident  from  No.  14,  that  if  we  only  con- 

sider   the    reciprocal    action    of   AI  on   m,   Q  is  equal   to    —  or  to r 

fJ.U 
/        o,  the  equations  (K)  will  consequently  become, 

dt=   
 ̂"^ 

h,u ,2     > 

PART  I.  BOOK  II. 
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0  =:  —X  +s. 

The  area  described  by  the  projection  of  the   radius  vector,   during dv 

the   element    of  time   dt,  being  equal  to  i.  — =■  ;t  the  first  of  these IT 

equations  indicates  that  this  area  is  proportional  to  this  element,  and 

that  consequently  in  a  finite  time,  it  is  proportional  to  the  time.  By 

integrating  the  last  equation  we  obtain 

s  ■=.  y.  sin.  (u— 8),t- 

*  [f\  =  _^_,  /^l=_Z^3,   <^m   =0;  therefore  if  these  values 

ofi— >,^— ^,^-r-^    be  substituted  in  the  equations  (K); 

tlie  second  of  these  equations  becomes 

rf'zi     ,  dQ        s      clQ        d^u  fi  ,        u.s^  d'u 
+  " -  -d^l —  T-  ̂ 7r= rxi  +""-"   +  •-   '   

rfu*     ̂   du  u       ds    —  ̂ ^dv^  "^        ̂ Vf+T*"      k^(l+s^)^         dv' 

j^  u   L_   5  J  and  the  third  equation  becomes  •  '    - 
h^[\+s'^y-  dv" 

U.US  uus  d^s      , 

+    •  — :r:  — .  dv.  r"-.  cos.  '«  r:  tbe  element  of  the  area  described  in  a  given  ti»e 

by  the  projection  of  the  radius  vector  ;  see  page  i. 

rf'5  d'^s.ds     .,„,,,.  ■        ds^      ,     . 
X      +  i  =  0 ;  •••  — ;   h  sds  =  0,  therefore  by  integrating  —rrr  +  **  =:  c,  it dv^  dv'  dv 

is  evident  that  s  =  sin.  v.  or  s  =  cos.  ti,  and  that  •.•  s  =  a  sin.  v,  or  «  =  i.  cos.  v,  and 

consequently  s  =  a.  sin.  v-\-b.  cos.  v.  will  satisfy  the  given  equation,  and  be  its  com- 

plete integral ;  as  it  contains  two  independent  arbitrary  quantities.  Now,  a  sin.  v  +  6. 

COS.  V.  may  be  reduced  to  the  form  y  sin  (v  —  6),  by  assuming  a  — -y.  cos.  6,  b—  —  y. 
sin  i,  which  gives  a.  sin.  v  +  b.  cos.  ti  =  y.  (sin.  u.  cos.  6  —  cos.  v.  sin.  f)  —  y.  sin.  (v'—e), 

and  it  may  be  shewn  that  y.  sin.  (d — 6),  Ukewise  satisfies  this  equation.      It  is  also 
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y  and  0  being  two  arbitrary  quantities.     Finally,  the   seconi   equation 

gives  by  its  integration 

«  =T^7rT-5T  •(^l+«'  +  ̂'  cos-  (^'-^)  \  = 

\/l+s* 

r 

.* 
e  and  isr  being  two  new  arbitrary  quantities.     By  substituting  in   this 

o  2 

evident,  that  s  =  a.  sin,  (d— 6)  -[-  o.  cos.   (u— ̂ )  will  satisfy  the  equation        -  +  *  z:  0, 

and  may  be  used  when  convenient,  but  in  this  case  a,  h  and  i,  must  be  selected  in  such 

a  manner,  that  they  may  be  reduced  to  two  independent  quantities. 

*  In  the  equation  -j-^  +  m  —  ,,,,'"    ,^3  ,  let  P  =         '^    •%  ,  and  m  =  a.  sin. 

(u — (l)-4-5.  cos.  (« — <)  will  be  the  complete  integral  of  the  equation  -7-5-  -|-  «=  0;  and  a 

sin.  (v — d)  and  6.  cos.  (v — 6)  will  respectively  satisfy  the  equation  ——^  -f  u  —  0 ;  now  if 

the  expression  a.  sin.  [v  —  6)  +  b.  cos.  (t)  —  S)  be  regarded  as  the  integral  of  the  differ- 

ential equation  — ;   \-  v  —  P  =  0  ;  a  and  b  must  in  this  case  be  functions  of  the  va- dv 

riables  v,  and  as  there  is  only  one  equation  to  verify  by  means  of  a  and  b,  we  can  impose 

certain  conditions  on  them  whicli  will  facilitate  their  determination ;  supposing  them  to  be 

functions  of  v  in  the  equation  a  =  a.  sin.  (v  — «)  -f-  *•  cos.  (u  —  6),  we  shall  have 

du  =■  adv.  COS.  (y  —  S)  —  b.  dv-sm.  [v  —  6)  ■\-  da.  sin.  (u  —  6)-\-  db.  cos.  (u  —  f); 

but  as  there  are  two  quantities  to  be  determined,  and  as  the  proposed  question  furnishes 

us  with  but  one  condition,  we  are  at  liberty  to  select  the  other  condition ;  for  this  pvir- 

pose  let 
da.  sin.  (u  —  ()  +  db.  cos.  (v —  6)  =  0; 

then  duz^  dv.  {a.  cos.  (u —  6) — 5.  sin.  {v — 6)) ;  and  consequently, 

d'u=^  —  dv'^.  {a.  sin.  {v  —  f)  -\-b.  cos.  («  —  t))  -}- dv,  da.  cos. (v  —  I)  —  dv.db.  sin.  (y — 6) ; 

and  this  value  of  d'u  being  substituted  in  the  equation  — -—   \-  u  —  ,— —   -3    gives, dv^  A^(l4-s^)T 

adv'' .  (sin.  (u —  f)  — sin.  {v  —  6))  +Wd^.  (cos.  (d  —  6)  —  cos.  (u  —  *) )  +  da-dv.  cos.  (y — i) 
— db.dv.  sin.  (u  —  6)  — Pdv^  =0;  •••  da.dv.  cos*,  (u  —  S)  —  db.dv.  sin.  (v  — «).  cos.  (w— ') 
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expression  for  u,  in  place  of  s,  its  value  in  terms  of  v,  and  then  sub- 

stituting  this  expression,   in  the  equation  dt  —  — — j-  ;    the   integral   of 

the  resulting  equation  will  give  t  in  a  function  of  v ;  therefore  we  shall 
have  V,  u  and  s,   in  functions  of  the  time. 

— P.  COS.  (v —  6).  dv^  —  0;  and  if  this  equation  be  divided  by  dv,  and  then  added  to  the 

equation  da.  sin*,  (u  —  S)  -\-  db.  sin.  (u  —  6).  cos.  (u  —  6)  =0,  we  shall  have  da  z=  P. 

COS.  [v — 6).  dv,  of  which  the  integral  h  a  —a'  -\-f  P.  cos.  [v  —  6).  dv;  in  like  manner  if 
the  same  equations  be  respectively  multiplied  by  cos.  (v  —  6),  sin.  (v  —  6),  we  obtain  by 

subtracting  the  second,  divided  by  dv,  from  the  first ;  db= — P.  sin.  {v  —  6)  dv;  and  •.• 

hz=.b'  — J  P.  sin.  {v  —  i).  dv.  Therefore  u  =  a.  sin.  (v  —  6)  -\-  h.  cos.  {v  —  6)  =  a'. 

sin.  {v  —  6)  +  sin.  {v  —  6)  J' P.  cos.  (u —  6)  dv.  +6'.  cos.  (v  —  e)  —  cos.  (v  —  i)./P.  sin, 
(■a  — i)  dv  ;  a'  and  b'  are  the  values  of  a  and  b  when  P  —  0 ; 

P  =  ;,,.  . — r;3  =  (by  substituting  for  s^  its  value)  -:   —.   ~3,  therefore 

6m.{v — I) /P.  cos.  (v — 6)dv  =  ̂    -.-i   -.  f   ^   :   3  ,  but 
^        '-^  ^        '  A'  •^(l-f-y\sin.  "(u— e))'' 

cos,  {v  — 6)  dv         _  sin.  (m  —  i)  sin.  (ti — 9) 

•^  /i^(l-|-y=.sin.i(t)— «)^  ̂  A*(l-fy\sin.^-(u— 9)t  '    *"^     ' /j'(H-y'.sin.^(u— (i)i 

COS.  (u — e\dv  y^.sin   ''{t'  — fl).  cos.  (ti — ^^.dv  ,  ,     . 
^   : —   —1.  —   ; —   ^      =  by  reducmg  to  a  cotn- 

^^l+y^sm.  ̂ («— 0)^  A'(l +y-.  sin. '(■!;— «))i  '  ^ 

co%.{v—6).dv                                     K.sin.  (p— «) 
mon  denommator  77--   — —    3 ;  consequently   A   

cos,  (t) — 6).dv  _    ̂   sin,  ̂ {y — 6) 

•^(l  +  y^sin.  ̂ (v  — «;)!  ""F"*  (14-y^sin. ''0^— «)^* 

—  cos.  (u  —  S).  f  P.  sin.  (u  —  6).  dv  = 

,        ,       .\     /.         sin.  (t) — d).  dv  ,  sin.  (n — 6).  dv 

-^.(cos.i.-^).fj,^^--—---,^  ,  ,r.if.^^_^^—-—.^, 

_      —1  cos.  {v—6)  1  COS.  (f— 0   

~   (l+V^)*  F(I+771iir>i::«)' '         1+7'-"       Ani+y^sin.a(x,_9))^ 

1       sin,  (v — 6).  dv  I  ^     sin.  (v—e).  cos.  ■'{v—e).  dv 

l+y''h'{l-i-'y\sm.'{v—e))i       i+ya-'i'-      A"(l+y=,  sin.  =(v— «))  -^ 

:  by  reducing  — —i     fa'n-(t— ^)  +y^  sin.  (t,-0)  (sin.  ̂ (t^-Q+cos.  ̂ (v-ll)).dv ^  +  y'"  A^{l+y^sin.*(«_(l)l 
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The  calculus  may  be  considerably  simplified,  by  observing  that  the  value 

of  s  indicates  that  the  orbit  exists  entirely*  in  a  plane  of  which  y  is  the 
tangent  of  the  inclination  to  a  fixed  plane,  and  of  which  9  represents 
the  longitude  of  the  node,  reckoned  from  the  origin  of  the  angle  v. 

Consequently,  if  we  refer  the  motion  of  m  to  this  plane,  we  shall  have 

s  =0,  and  y  =  0,    which  gives 

=  —  =  -|^<  1-he.  COS.  (v — ;!r)>. 

This  is  the  equation  of  an  ellipse,  in  which  the  origin  of  the  radii  is 

at  the  focus  :  — rr-   j-,  is  the  semiaxis  major,  which  we  will  repre- 

sent by  a ;  e  is  the  ratio  of  the  excentricity  to  the  semiaxis  major ; 

1  sin.  (u — (l).(l +y^).  rfu       sin.  (v — 6).dv 

'  1+yi*    A'(l+ySsin.  ̂ (u— «))4  A"(l-fy'.siu.  ̂ (u— «))T  ' 

ft. sin.  {v — 6).  fcoi.  [v — 9).  dv  ft.  cos.  (v — (l)ysin.  [v — S).  dv 

/j»(l  fy^  sin.  '(v—6)f.  h'(l+y\sm.''{v—6))i 

__  ftsiD.^(v—6)  1  ^  COS.  "(u — e)    

~  F(r+y^^'sin~HJ^— ^^        HV  '  /j'.(H-y^  sin.  i(v—6))^  ~ 

(sin.  ''{v—S)+cos.^(v—e)-^y^.s\n.^v—e)    _      (l +y  ̂ .  sin,^(v-«))^ 

(l+y)'./%»(l-|-y«.sin.  «(d— 9)«  "  (l+y").  A« 

\i 
=  f'-  (i+y«)/^^  '  •'•'*  =  °'-  sip.(v-e)+i'.cos.(.-^)  +  ̂.-^\;;;^,;^.^  ,  and  as  e'. d'u 

cos.  {v — w)  satisfies  the  equation   -yT  +  "  =  0,  we  may  write  this  function  instead  of 

a',  sin.  {v — 6)  -\-  5'.(cos.  (v — C),  and  as  e  is  arbitrary  we  can  assume  it  equal  to  /   — — ,  • 

e,  by  means  of  which  the  expression  for  u  will  assume  the  form  given  in  the  text. 

*  y  is  evidently  equal  to  the  tangent  of  latitude,  when  v — i  =  90,  and  consequently 

it  is  in  this  case  equal  to  the  inclination  of  the  orbit ;  and  as  sin.  (v — 6)  =  —  =  s.  cotan- 
y 

gent  of  inclination  ;  the  orbit  described  must  be  a  plane,  for  this  equation  expresses  the 

relation  between  the  two  sides,  and  invariable  angle  of  a  spherical  triangle. 
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dv 

finally,  tb-  is  the  longitude  of  the  perihelium.     The  equation  dt  zz  -j—, 

becomesj  by  substituting  in  place  of  i/, 

\/[A.  (l+e.  COS.  (y — •B-))^ 

Let  us  expand  the  second  member  of  this  equation,  into  a  series  pro- 

ceeding according  to  the  cosines  of  the  angle  v — ■a-,  and  of  its  multiples. 

For  this  purpose,  we  will  commence  by  expanding   >—-   ,  ̂ _ 

into  a  eimilar  series.     By  makiag 

X  = 

1  +  ̂ 1-e^' we  shall  have 

l+e.cos.  (t;-..)       v'r=?tl+  ̂ .  c^"— ̂ ^-^         l+^.c-^'-'^-'^-^J  '■ 

*    —  =  r  =  -7;   ;   r:  —  — n   -, — ^r- ,  •••  a  =  —   •  ;  hence  h  =1 
u  ^(l-|-e.  COS.  (u — •a))        1+e.  cos.(u— ar)  jit{l — e») 

t  By  reducing  the  coefficient  cX—=^  ̂   \a.  the  second  member  of  this  equadon  to  the 

same  denominator,  it  becomes  equal  to 

1— ̂ " 
(u— ar)7^/_l    _(u_sr)V— 1) 

•1— e=.(l  +  x»  +  ̂(c^        '4-  c 

but  c  — c  =2  COS.  (v — to),  •.•  this  second  member  = 
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e  being  the  number  of  which  the  hyperbolical  logarithm  is  equal  to 

unity.     By  expanding  the   second   member  of  this  equation,   into  a 

series  ;  namely,  the  first  term  relatively  to  the  powers  of  c    ~^'       * 

and  the  second  term  relatively  to  the  powers  c~^~'°)'^—y^  ,  and 
then  substituting  in  place  of  the  imaginary  exponentials  their  expres- 

sions in  sines  and  cosines  ;   we  shall  find 

1  1 

\+e.  cos.  (w — w)        y/i   ^' 

(1 — 2x.  cos.  (u — c3-)+2a^  cos.  2(y — =r)  —2a'.  cos.  3,(u— w)  +  &c.)  ; 

By  representing  the  second  member  of  this  equation   by  ?>,  and  making 

q  —  — ,  we  shall  iiave  generally, 

1   x»  g 
,  ;  and  from  the  equation  a  =   ■  ,   we    obtain 
VI— ««)(14A='  + A.  COS.(t)— ar))  (l-j-v/l_e^) 

~     \Tl/,   n?     )  .  and  1  +  A'  =    S   J=i-;  •.■  by  substituting  for 

!->.*,  andl+A«  we  obtain  2(1— g^+y/l-e')       ^   i   
2.'/l_e"(l+^l— e").(l+e.cos.(u— w))       1  +  e.  cos.  (v—,,) 

*  The  expression  of  the  first  term  gives  the  following  series : 

the  expansion  of  the  second  term  gives 

making  the  factors  of  the  same  powers  of  a  to  coalesce  in  the  two  series,  and  observing 

.    ̂     i.  ilv — a).</ — 1  ,   — i(v—'a)\/ — 1)        i 
that  A  (c  +c  —  A  .  COS.  t{v  -sr),  we  will  obtain  the  value  of 

l+c.cos.(v->)-'  ""^'"^  '^  S'^^"  '"  t'le  text. 
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e-'"-\dr^-^ 
±______iJL 

(1-fe.  cos.(w — •sr))  1'2'3   m.dq^ 

in  which  rfg'  is  supposed  to  be  constant,  and  the  sign  is  +  or  — ,  ac- 

cording as  m  is  even  or  odd.  From  this,  it  is  easy  to  to  infer,  that  if  we 
make 

  :!^    —  (I   gs^— I 

(1+e.cos.  (t;— Tir)7  "~^         ̂  

(14-E^^\  COS.  (v—sr)  4-  -E^^^.  cos,  2(i)— x^)+£(^).  cos.  3(t)— TS-)  +  &c.)  J 

we  shall  have,  whatever  may  be  the  value  of  i. 

(l  +  \/l — e»>' the  sign  being  +,  if  i  is  even,  and  —  if  i  is  odd ;  therefore  if  n  be 

♦  Substituting  —  for  e  we  obtain  — 7;   -.   r  =—   '-    =  ip,  :• 
°     ̂ r  1  "t^e.  COS.  (11 — st)        y+cos.  (d — ar) 

(9+COS.  (u — w))       9'"  y  +  cos.  (i; — w)     '     "      (^+003,(1) — w)'         "  1  9   J  ' 

iaiAd\\  —  \=d-   —■   -^dq=  ,   %   -,  and  di.  1^1  = 
[q)         {g  +  cos.(v — T^y  {ij-f-cos.(v — ar)-5  lyj 

=d.;   ;   rr    .1-  dg  =  ■ — ;   -^   — •  :  hence  generally  we  obtain  d"'  i  —  J- 
(y+COS.  (e— sr))i     •       ̂        (y+COS.  (u— ar))+  ^  '  \  g    j 

^      ±.  1.2.3   w  ±  1.2.3   me    '^ 
7W  4- 1  ?K  4-  1 

(jr+C08.  (v — ■a))  (1-fff.  COS.  (l) — to)) 

t  Substituting  —  for  e,  in  the  value  of  ffl,  we  obtain— =  .(1— 2>.  cos.  («—«;)  + 2a'. 
?  ?       •?»— 1 

1  -2       f  0  ■) cos,  2(i>— «7)—  2a 3.  COS.  3(r— s-)+  &c.)  v  77-;   ,,,  =e     .d.{  —  Vz^\he 
^         '  '      (1  +e.  cos.  V — a)Y  \  9  J 

dq 
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supposed  equal  to  a    '•v /*,  we  shall  have 

)  ^        (5 
.  COS.  (v — u7)-\-E 

COS.  Z(y — zs)  +  &c.)  ; 

(1)  (2)  (3 
ndt  =  dv.  (l-h-  E    .  COS.  (v — 3-)-f  £    .  cos.  2(t'  —  ■o-)  +  E    • 

and  by  integrating 

nt  +  t=v+E     .  sin.  (f — zr^  +  ̂.E    .  sin.  2(t; — w)  +  ̂£    . 

sin.  3(v  —  -sr)  +  &c. 

s  being  a  constant  arbitrary  quantity.  This  expression  for  nt-\-i  is  very 

converging*  when  the  orbits  have  a  very  small  excentricity,  such  as 
the  orbits  of  the  planets  and  of  the   satellites ;  and  we  can,   by   the 

PART  I.   BOOK  II.  p 

preceding  series  differenced  with  respect  to  q,  and  divided  by  e'  ;  the  differential  of  the 
— 2  ,  1  ^  i       „  — 2 

2  terra  =  e 

—2      V  1  ^^—21 
2e.       — r^x3'— — .  ±2e 

(y+^y^_l)H-l
 

=  by  simplifying  and  reducing  to  a  common  denominator, 

—  °*      ■   —,    ,•  ,  which  becomes,  by  substituting  —  for  o, 

,      2<r'(l  +  J  VTH:?)  ^  .        .       .     , ^   3    ^    -  • ,  the  expression  given  in  the  text. 

*  (l—e'')^  occurs  both  in  the  numerator  and  also  in  the  denominator  of  the  value  of  n.o'^, 
as  is  evident  from  the  value  of  dt  given  in  page  101,  compared  with  the  preceding  expres- 

sion ;  when  the  excentricity  of  the  orbit  is  inconsiderable,  e  which  expresses  the  ratio  of  the 

excentricity  to  the  semiaxis  major  will  be  very  small,  •.•  the  value  of  £(0,  in  which  e' occurs 
as  a  factor  will  be  very  small,  and  perpetually  less  and  less. 
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reversion  of  series,  conclude  the  value  of  v  in  terms  of  /;  we  will 

effect  this,  in  the  subsequent  N°'- 

When*  the  planet  returns  to  the  same  point  in  its  orbit,  v  is  in- 
creased by  the  circumference  v/hich  is  always  represented  by  Stt  ;  nam- 

ing T  the  periodic  time,  we  shall  have 

This  value  of  T  may  be  easily  deduced  from  the  differential  expression 

for  dt,  without  recurring  to  series.     In  fact,  let  us  resume  the  equation 

-^        dv  r^.dv       ̂         .  ,,■    rr       r  ̂ *-^^ at  =    ,  or  at  =  — ;   .     from  it,  we  obtam  I  :=  I  — ; —  ; 
h.u^  h  ^       h 

rr^.dv  is  double  the  surface  of  the  ellipse,  and  consequently  it  is  equal 

to  27r.  a*,  tj \—e^  ;  moreover,  A*  is  equal  to  ̂ a.  (1 — e')  j  thus  we 
shall  obtain  the  same  expression  for  T,  as  has  been  given  above. 

If  the  masses  of  the  planets  be  neglected  relatively  to  that  of  the  sun, 

we  have  •/  ̂   =z  ̂ M;  the  value  of  /*  is  then   the  same  for  all  the 

planets ;  T  is  therefore  proportional  to  a'^ ,  and  consequently,  the 
squares  of  the  periodic  times,  are  as  the  cubes  of  the  greater  axes  of 
the  orbits.  It  is  evident,  that  the  same  law  obtains  in  the  motions 

of  the  satellites  about  their  primary,  their  masses  being  neglected  rela- 

tively to  that  of  the  primary. 

17.  The  equations  of  the  motion  of  two  bodies,  which  attract  each 

*  When  the  j  planet  returns  to  the  same  point,  the  terms  of  this  equation  will  be- 
come 

n(i4-r)-l-e  =  o-f-2x+£^  '.sin.  ((r— sr)-}-2!r)+£^  '.sin.  2{(v—a)+2^)  +  &c. 

if  this  equation  be  taken  from  the  equation  nf-f-  e  = 

v+E^^\sm.{v—^)+E^^\  sin.2(u— ar)-f£;^^^8in.3(r— ro)  +  &c.  the  difference  wUI 
he»7'=2T. 
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other  in  the  inverse  ratio  of  the  squares  of  the  distances,  may  be  also 

integrated  in  the  following  manner :  the  equations  (1),  (2),  (3),  of 
No.  9,  become,  when  we  only  consider  the  action  of  the  two  bodies  M 
aud  m, 

(O) 

(/A  being   equal  to   M  +  m). 
The  integrals  of  these  equations  will  give  the  three  coordinates 

X,  1/,  z,  of  the  body  m,  referred  to  the  centre  of  M,  in  a  function  of 

the  time,  and  then  by  No.  9,  we  can  obtain  the  coordinates  ^,  IT  and  y 

of  the  body  M,  referred  to  a  fixed  point,  by  means  of  the  equations 

0=   
 ̂'^ 

dt' 

+ 

IJ..X 

0-  '^'y 

df- 

+ 

+ „3 

Finally,  we  shall  have  the  coordinates  of  m,  referred  to  the  same 

fixed  point,  by  adding  ̂   to  a;,  n  to  i/,  and  y  to  z;  by  this  means  we 
shall  obtain  the  relative  motions  of  the  bodies  M  and  m,  and  also  their 

absolute  motion  in  space.  Therefore  every  thing  depends  on  the  inte- 

gration of  the  differential  equations  (O). 

For  this  purpose,  it   may  be  observed,  that  if  there   is   given   be- 
■  ,  1          (1)       (2)       (3)  (») 

tween  the   n  variables  x    ,  x    ,  x       x     ,  and  the    variable  t, 

of  which  the  difference  is  supposed  to  be  constant,  a  number  n  of  dif- 

ferential equations  determined  by  the  following  : 

dx'     ,     A.d      a;  B.d      x- '  „  (s) 

de        dt'-^         dt'-^ 
P  2 

*  In  every  equation  of  the  same  form  as  that  in  the  text,  if  the  a;  '      ,  x^"    '  '    "' 
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in  which  we  suppose  that  s  is  successively  equal  to   1,  2,  3,   n; 

^,  5,  ...^ being  functions  of  the  variables  a;     ,  x     ,  x     ,    x      , 

and  of  ̂ ,  symmeti-ical  with  respect  to  the  variables  x    ,x    ,      x     » 
that  is  such,  that  they  remain  the  same  when  any  one  of  these  variables 

is  changed  into  the  other,  and  vice  versa,   we  can  suppose 

J'^=  a}V"--'+'^  +  l.^'\J"-'+'^   +  L^'\  /^ 
^(2)^J2)^(„-.+l)^^(2)_^(.-H2)   _^^^(2,^(„). 

(„_i)         (n—t)       (n-i+l)       An-i)      {n—i  +  2)  Jn—i)    (n) X         :^a         .X  +y         .x    +  /«         x     , 

a^  ',  b       h     ;    a     ,  b     ,  &c.  being  arbitrary  quantities  of  which 

the  number  is  equal  to  i(n — ?').  It  is  evident  that  these  values  satisfy 
the  proposed  system  of  differential  equations  :  moreover,  they  reduce 

these   equations,    to  i   differential    equations   between   the   i  variables 

X         '     ,  X    r     .      Iheir    integrals  will   introduce   «*  new 

fjj   i+3)  In) 
X  ,   «     )  quantities  satisfy  this  equation;  then  their  sum  will  also  satisfy 

the  same   equation,  as  will   appear   by   substitution,  and  we  are  at  liberty  to  assume 

^(1)^^(1)    /n_Hl)^^(i)_  ;«-+2)._.^(l),«   In  each  of  the  values  of  ;^\.(2\ 
(n) 

  X      ,  there  are  i  arbitrary  quantities  ;  •••  in  the  sum  of  all  the  values  of  then — t 

quantities  these  are  i.{n — i)  arbitrary  quantities.  In  the  integration  of  a  differential  equa- 

tion of  the  i  order,  there  are  i  arbitrary  quantities  introduced.  .•.  In  the  integration  of  i 

differential  equations  of  the  i  order,  there  must  be  in  all,  i"  arbitrary  quantities. 
This  theorem  is  evidently  applicable  to  the  differential  equations  (O) ;  for  these  equations 

are  symmetrical  wirh  respect  to  x,  y,  z,  and  remain  the  same,  when  any  one  of  the  va- 

..,.,,.  ,_  J         (')       («— «'+!)      («— J+2) nables  is  changed  mto  another ;  •.•  as  x,  y,  z,  correspond  to  jr      ,  ̂   ,  x  ■ 

Sec.  in  the  theorem,  we  are  at  liberty  to  assume  one  of  them  z  equal  to  the  other  two,  mul- 
tiplied respectively  by  arbitrary  quantities. 
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arbitrary  variables,  which  combined  with  the  i.(?i —  i)  variables,  already 

given,  will  constitute  the  arbitrary  quantities,  which  would  be  pro- 

duced by  the  integration  of  the  proposed  difFei-ential  equations. 
The  application  of  this  theorem,  to  the  equations  (O),  gives  2=:ax-i- 

by,  a  and  b  being  two  arbitrary  quantities.  This  equation  is  that  of  a 

plane  passing  through  the  origin  of  the  coordinates ;  consequently, 
the  orbit  of  m  exists  entirely  in  the  same  plane. 

The  equations  (O)  give 

but  by  differentiating  twice  successively,  the^equation  rdr  =  xdx+7/di/ 

-\-zdz,  we  obtain 

r.(Pr+Sdr.d^rzzx.dlx+y.d^y-\-z.d^z 

+  3.(dx.  d*x+dy.d*y+dz.d*z). 

and  consequently, 

By  substituting  in  the  second  member  of  this  equation,  in  place  of 

d^x,  d'y,  d^z,  their  values  determined  by  the  equations  (O'),  and  then, 

*  rd'■r-\■dr*=xd^x  +  1fd^'1/+zd''z■{.dx^■^dl/^+dz^,  :•  rd3r-\-Sdrd'r  =  xd^x+yd^j/+ 

zd^z-]-Sdx.d'x-{-3di/,d^i/  +  3dz.d'z,  and  multiplying  by  r'  we  obtain  the  expression  in 
the  text. 
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in  place  of  (Px,  d-y,  d^z,  their  values  given  by  the  equations  (O)  ;  we 
shall  find 

'=4'--^\+^- »   ,  ̂ ..dj\ 

dt^ 

The  comparison  of  this  equation  with  the  equations  (O'),  will  give,  in 
consequence   of  the   theorem    which    has     been    announced    above, 
(  dx     dy     d2     dr    ,    .  ■ ,       i  ,.  , 
I  -r-j  —jr,  —j-f  -J-,  benig  considered  as  correspondnig  to  the  particu- dt     dt      dt     dt 

•  variables 
the  time  /;) 
lar  variables  x     ,  x     ,x     ,  x     ,  and  r  being  supposed  a  function  of 

dr  zz  X.  dx+  y.dy  ; 

A,  y,  being  constant  arbitrary  quantities  ;  and  by  integrating, 

r  —  —  +xa;+7^,t 

h^ 

—  being  a  constant  quantity.     This  equation  combined  with  the  fol- 

lowing  : 

»  From  the  equation  (O')  we  obtain  r'^.x.  —j—  =  —  Sr^.x.  -^.  dr  —  f^j^ilx,  and  by 

substituting  for  -7-^ ,  we  have  r^x.-—  =3  ̂  —  dr—fudx ;  .:  the  second  member  of  the 

,  „      (x=H-y^  +  2^     ,              (xdx\ydyi^zd£\      „,«»■'/,,       . 
preceding  equation  =  +  3^.  \—Ll-L-.).  dr  —  ̂ .-i   2_^^   3  -^  {xdxSf-ydy 

-\-zdz),  hence  the  second  member  is  reduced  to  — /^..dr,  wliich  combined  with  the  mem- 

ber at  the  right  hand  side,  gives  the  expression  in  the  text. 

f  It  is  clear  from  an  inspection  of  the  equations  (O')  that  the  theorem  already  an- 

nounced, is  applicable  to  them,  and  to  this  last  equation,  since  any  one  of  these  variables 
dr  dx 

may  be  changed  into  the  other  without  affecting  the  constant  quanttjes,  •••    'IT—  ̂ -  "IT 

■^''■-dT' 
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gives  an  equation  of  the  second  degree,  between  either  x  and  y,  x  and 
z,  or  y  and  z,  consequently  the  three  projections  of  the  curve  described 

by  m,  about  M,  are  lines  of  the  second  order,  and  therefore  as  all  the 

points  of  this  curve  exist  in  the  same  plane,  it  is  itself  a  line  of  the  se- 
cond order,  or  a  conic  section.  It  is  easy  to  prove  from  the  nature  of 

this  species  of  curves,  that  when  the  radius  vector  r  is  expressed  by  a 
linear  function  of  the  coordinates  x,  y  ;  the  origin  of  the  coordinates 

must  be*  in  the  focus  of  the  section.     Now  from  the  equation,  rz=   

/* 

+  A.  a;  +  y.y,  we  can  obtain,  in  consequence  of  the  equations  (O), 
^■{-^} 

By  multiplying  this   equation  by  dr,  and  then   integrating,   we  sliall 
obtain 

rfr'  ur° 

rK  -^  —  Qf^.r+  J^^  h'=0,f 

d  being  a  constant  arbitrary  quantity.     From  which  may  be  obtained 

,^  rdr 

'     '  a         fJL, 

this  equation   will  give  r  in  a  function  of  t ;  and  as  by  what  precedes, 

*  It  ig  a  distinguishing  property  of  the  foci  of  conic  sections,  that  if  their  equation  be 
expressed  by  means  of  polar  coordinates,  these  coordinates  will  be  linear,  when  the  origin 
is  at  the  focus. 

d'r  d*x  d^y  r  y.^    ,    y.y  1  <  ^'   ? 

+  ̂ ="--rfF   +  y^  =-^.  ̂ --l-^^:^-^.  Ir—y^'     Multi. 

plying  by  dr,  we  obtain,  -^-^  =  — /».  ~+k\-f;  and  by  integrating  -^ 
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X,  y,  z,  are  determined  in  functions  of  r  J  we  shall  have  the  coordi- 
nates of  w?,  in  functions  of  the  time. 

18.  We  might  arrive  at  these  several  equations,  by  the  following 

method,  which  has  this  advantage,  that  it  detennines  the  arbitrary- 
quantities  in  functions  of  the  coordinates  x,  y,  z,  and  of  their  first  dif- 

ferences ;   which  will  be  extremely  useful  in  what  follows. 

Let  us  suppose  that  V  =  constant,  is  an  integral  of  the  first  order  of 
(ijc       {In       dz 

the  equations  (O),  F  being  a  function  of  .t,  y,  z,  —7-  ,  —  ,   —  :    Let 

X',  yy  z ,  represent  these  three  last  quantities,  and  then  the  equation  V 
=  constant,  will  give  by  its  differentiation. 

dz_ 

dt 
^_  §dV\     dx       <dV\    dy       CdV\ 

Xd^S'  dt'^Xdyj'   dt'^XdzS- 
CdV^     dx         idV\    dy'§dV-k     dz'  , 

but  the  equations  (O)  give 

dx  _        fj.x      dy'  _       \^      ̂ _i   jt-- 
1t~       1^'  ~di~      '^'dt-        r'' 

consequently,  we  have  the  following  identical  equation,  of  partial  dif- 
ferences, 

HSdV)  ,      UV}  ,      SdV)\ 
 ^^^ 

'■W\+^-U'\-''-id7U' 

It  is  manifest,  that  every  function  of  x,  y,  z,  x',  y\  z',  which,  sub- 
stituted in  place  of  (F)  in  this  equation,  renders  it  identically  nothing, 

•  As  F  is  in  an  immediate  function  of  the  six  variables,  x,  y,  s,  x,  1/,  z',  its  differential 
coefficient  with  respect  to  another  variable  t,  must  be  equal  to  the  several  differential  coef- 

ficients of  V,  considered  as  a  function  of  x,  y,  z,  x',  y,  z,  multiplied  respectively,  into 
the  differential  coefficients  of  these  variables,  considered  as  a  functions  of  i. 
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becomes,  when  it  is  put  equal  to  a  constant  arbitrary  quantity,  an  in- 

tegral of  the  first  order  of  the  equations  (O), 
Let  us  suppose 

V=  U  +  U'^-U"  +  &c. 

U  being  a  function  of  the  three  variables  x,  y,  z;  U  being  a  function 

of  the  six  variables  x,  y,  z,  x',  y',  z',  but  of  the  first  order  i-elatively  to 

a/,  y',  sf  ;  U"  being  a  function  of  the  same  variables,  and  of  the  second 

order  relatively  to  x',  y\  z',  and  so  of  the  rest.  Substituting  this  value 
in  the  equation  (I),  and  comparing  separately,  first,  the  terms  in  which 

x,  y,  3',  does  not  occur ;  secondly,  those  which  involve  the  first  power  of 
these  variables  ;  thirdly,  those  which  contain  their  squares,  and  their 

products,   and  so  on  of  the  rest ;  we  shall  have 

(      ̂ dU'i^     S'^U"-)^     S'^U'l-. 

&c. 

The  integral  of  the  first  of  these  equations   is,  as  we  know  by  the 

theory  of  equations  of  partial  differences. 

hao 

PART  I.  BOOK  II. 
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TJi  •=.  func.  {xy'  — yod,  xz'  —  zx,  yz'  —  zj/,  x,  y,  s.)* 

As  the  value  of  V  must  be  linear  with  respect  to  x',  y',  z',  we  shall 
suppose  it  of  the  following  form  : 

U'  =  A.(xy'—yx)+B,(^xz'  —  zx')  +  C.(yz'  —  zy')  j 

A,  B,  C,  being  constant  arbitrary  quantities.  Let  the  value  of  V  be 

continued  as  far  as  the  term  U",  so  that  U'",  V"",  Sec.  may  vanish  ;  the 
third  of  the  equations  (F)  will  become 

The  preceding  value  of  U'  satisfies  also  this  equation.  The  fourth  of 

the  equations  (I')  becomes 

The  integral  of  which  equation,  is 

JJ"  —  funct.  {xy  — 3/a;',  xz'  —  jsa/,  ysi  —  zyf,  x',  y',  z')A 

This  function  ought  to  satisfy  the  second  of  the  equations  (!'),  and 

•  For  the  integration  of  this  equation  see  Euler  Integral  Calculus,  tome  3,  chapter  3, 

No.     ,  and  Lacroix  Traits  Complete,  Tom.  2,  No.  634. 

I  P  being  the  derivative  function  of  V,  —ry  =  —  (i'+z).  F',  — -  =  (i-s).  F*;  —-^, 

=  (X  ■Vy)-F;:-x.-^+y.-^-\rZ.-^=  (-«.(y+«)  +  y.[x-»)-\.z.{x  +y)).F' 

=  0;  -j-=(y'+s').F';   -7—    =(z'— x).  i^';  — -  =  — (x +/).  F';  .-.x. 

+  y.  ̂   +z'.  ~—=  (x'.(/+z')+  y'-(z'-^')  — «.(x'+y).r'=  O ;  Multiplying  the 

  (dU     dx    ,   dU     dy    ,    dU    dx-)      , 
first  member  by  dt,  and  substitutmg  we  obtam  j  -- — •  -jt.+  -j—  .  -^  +  ~t~'  "jT  i  •  " 

=  dV. 
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the  first  member  of  this  equation  multiplied  by  dt,  is  evidently  equal  to 
dU ;  therefore  the  second  member  must  be  an  exact  differential  of  a 

function  of  ̂,  y,  z.  But  it  is  evident  that  we  can  satisfy  at  once  this 

condition,  the  nature  of  the  function  U",  and  the  supposition  that  this 

function  is  of  the  second  order  in  z',  y',  x  ;  by  making 

U"  =  {Dy'—Ex').  (xy'—yx')  +  {Dz'—Fx'). 

(xz'—zx)  -1-  (Ez'~Fy').  (j/z'—zy')  +G.(x"-ty'°-+z'')i 

D,  E,  F,  G,  being  constant  arbitrary  quantities ;  and  then  r  being  equal 

to  ̂ /x^+y'+z^,  we  have 

U  =— -^.  (D,T+Ey+Fz+2G)  ;• 

Q  2 
dU 

• 

"^l- 

—  =_  D^y +  «-)  +£.(2^x'-xy)+J'.(2xz--xi')-}-2G*', 

dU" 

-^  =  D^yx-yx')  —  £.(xx'+«2')  +  F.(2ry— yz')  +20/, 

-^  =  D.{2z'x  _rx  )+£.(2y2'-;:y)-P.{w'+yy)+2Gs'. 
dU"  dV  dU'^l 

da/  '*'^'  rfy  +^-  rfz'  3- 

— Z).((yxy+  zxs/)  +  E.  ( 2yx.x'— X  'yO  +  F.{2zxJ—i^z'  +  2Gxx')  -^ 

+  Z).((2xvy-y^x')-£.(xyx'  +zys:')+F.(2zy.y— y'r')+2Gyy)  J5L 

+  D.{(2xzz'—z'x')+E.(yzi'—z'7/')—F.(xzxi- yzy")  +  202/)  -^, 

=  by  concinnating  and  omitting  those   terms  which  destroy  each  other,  ( — Z).(y^-j-z') 

^-E\x-'Jr~')-i/—F.[x'-^z^y^D.{xy)y'-irD.{xzy-{-E.{yx)x'^E{yzy^F.(zx)x'+F.{zy) 

y  +  2G.(xx'  4- j^y'+sz'))  -^  =  (by  observing  that  y'  4-i'=r^— x^  ;  x'-|-z»=>-»_y^ 
4c.)  the  value  of  17,  differenced  with  respect  to  x,  y,  2,  successively,  for 

1^  =  -  f  •  -0+73  -^^^  +  Ti  (£i/*+^«+2Gx)  =  _  -^.  (2).(y'+z»)-%x  - 
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consequently  we  can  obtain,   by  this  means,  the  values   of  U,  U',  U" ; 
and  the  equation  V  zz  constant,  will  become 

const.  =  —  4-  {Dx+EyJ^Fz+2G)^{A-\-Di/—Ex').{xy'—ya:')*  ■ 

+  {B  +  Dz'—Fs').(xz'—za:')  -i-  {C-\-Ez—F>j').{yz'—zy') 

This  equation  satisfies  the  equation  (I),  and  consequently  the  dif- 

D.xy-F.y.-1Gii),   ̂   =  -  ■^-  F.^.  ̂   .  Fz^+  ̂   (Dxz+Eyz+2Gz)  =  -  fr-  { J 

(.T*4-y*)  —  -Dx2 — Eyz — 2Gz),  •••   if  these  equations  be  multiplied  by  :c',  y',  J ,  respec- 
tively, the  sum  of  the  terms  at  the  left  hand  side  will  be  equal  to  d\],  and  the  sum  of  those 

on  the  right  hand,  will  coincide  with  those  already  given. 

*  This  equation  evidently  satisfies  the  equation  (I),  for 

ir  =  _il.  D.  +  —  .  (,D.v'+Exy+Fxz4-2Gjc)+Ay+Dy"—Ex'y'+Bz'-^Dz-—Fx'z' 
dx  r  r^ 

^=—^,E  +  -^.(Ey''+Dxy-\-Fyzj-2Gy)—Aj^—Di/'se'^Ex''-iCz'  +  Ez'''—F,/:^, 

dy  r  r^ 

'^Z.=  .-fl.F+—.  (Fz^  +  Dxz4-Eyz-{-2Gz)—Bx'—Dz'x'  +  Fx"—Cy'—Ez'y'+Fy'^. 
dz  r  r^ 

,    dV     ,     ,    dV    ,     ,    dV 
dx  dy  dz 

_JLm)f-\-z^)—Exy—Fxz—2Gx).x'.+Ay'JJrDy'^-v'—Ex''-y'-\-Bzx^Dz'^x'-F£'z', 

_ iL.  (£(xH2" )-Dxy-Fyz—'iGy),/-Ay'x'-Dy'^x+Ei^^y'-\- Cz'y'^Ez'iy'-Fy^'z' , 

—  ̂ .  {F{x^-^y^)-Bxz  -Eyz->f2Gzy-Bx'z'-Dz''x>J[.  Fx'^z'—Cy'z'—Ez''y'+Fy"z: 

=  by  obliterating  the  quantities  which  destroy  each  other 

_fL.(Dh/''+z')-Exy-Fxz-2Gx)x'J^E{(x^^z')-Dxy-Fyz-2Gy)y'^F{x^^y')-Dxz-Eyz 

-2Gz)z';  '^=—E{xy'—yz')—y{A  +  Dy'  -Ex' ]—F{xz'-zx')-z{B+Dz'-Fx-)+2Gx, 
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ferential  equations    (O),    whatever    may  be  the  arbitrary   quantities 

J,    B,   C,   Z),.  ̂ .  F,   G.     Supposing  them  all   to   vanish  first ,  with 

the  exception  of  A ;   2dly,   with  the  exception  of  B  ;  Sdly,   with  the 
„  „  .  ,       .     .       dx      dt/      dz  .      ,  c   >     '     , 

exception  of  C,  &c.,  and  restoruig  — —  ,  -^ ,    -r:,  m  place  oix,y,  z', dt       dt       dt 

we  shall  obtain  the  integrals 

c  = 

xdy—1/dx       ̂ _  xdz — zdx  _     „  _ydz--zdy__ 
\ 

dt 

c'zz 

dt 

;    C"  -
 

dt 

n-f.^S'^       (dl±dz-)l      ydxj.dx      zdzxlx  .. 
"-•/+'^-\7         -Of     )■+     de    ̂   df     ' 

f*       {da^^dz^)  \       xdx.dy      zdz.dy 
\ 

S^       dl^  "^      df    '    I 

a~f"j..  S  ̂       {dx^^df)  )        xdx.dz      ydy.dz^  _ 
"-■/ +^-|7         2f      >        dt^    ̂     de   ' 

a         r  dt- 

(P) 

/ 

c,  c\  c'',  f,f',f",  and  a  being  constant  arbitrary  quantities. 

'^-L  =  B{xj/-t,jf)-^x{A+D^--E=if)-F{y^-Z!/)-z{C+E^-Fy')+'2Gy', 

^  =  D{xJ-zxf)-\rx(B^D^—Fx-)J^E{y:^-Z!/)+y{C^Ez'~Fy')-^^Gz', ' 

Multiplying  these  three  equations  by  x,  y,  z,  respectively,  and  observing  that  those  terms, 

of  which  one  factor  is  the  product  of  two  of  the  coordinates,  x,  y,  z,  destroy  each  other, 

we  obtain,  by  concinnating  —r-;X-{ — tt-  V  +  -r-r-  z^  —  £(x'+z^)v' — i)(y^+3*U'' — 
■'  ^   dx         dy'    -^        dz  ^  ;,y  w         , 

Fiy''  +x''y+E{yx)-\-Fxz+2Gi)x-^(Dxy+Fzy+2Gy)iJ+{pxz+Eyz-^2Gz)z',  and 
It 

dV this  expression,  when    multiplied  by  -^  is  identical  with  the  preceding  valueofj:'-^   \- 

,    dV        ,    dV 
.V--T-  +  ̂ 
dy  dz 

*  Supposing  all  the  constant  quantities  but  A  to  vanish,  the  preceding  equation  be- 

comes const.  =^A{xy' — ^x') ;  supposing  them  all  except  D  to  vanish,  we  shall  have  const.= 
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The  differential  equations  (O)  can  only  have  six*  distinct  integrals  of 
the  first  order,  by  means  of  which,  if  the  differences  dx,  dy,  dz,  be  eli- 

minated, we  shall  obtain  the  three  variables  %,  y,  z,  in  functions  of  the 

time  t;  therefore  one  at  least  of  the  seven  preceding  integrals  should 

occur  in  the  six  others.  We  may  perceive  even,  a  priori,  that  two  of 

these  integrals  must  occur  in  the  five  remaining.  In  fact,  as  the  sole 

element  of  the  time,  occurs  in  these  integrals ;  they  are  not  sufficient 

to  determine  the  variables  x,  y,  z,  in  functions  of  the  time,  and  conse- 

quently tiiey  are  inadequate  to  the  complete  determination  of  the  mo- 
tion of  m  about  M.  We  proceed  to  examine  how  it  happens  that  these 

integrals  are  only  equivalent  to  five  distinct  integrals. 

zdii^^v  d  '*' 
If  we  multiply  the  fourth  of  the  equations  (P)  by  —     ,         »    ̂ ^^ 

then  add  it  to  the  fifth,  multiplied  by    —   ;   we  shall  obtain 

A-  r  i^dy—ydz)  {xdz-zdx)  {xdy—ydx) ^-J'   It   ^^  '  dt  +  ̂ '  dt 

C|iA       (dx^  +  dy'^)  }       (xdy — ydx)     f xdx.dz      ydy.dz\   t 

(T  If       i"**  di  \~~dF"^~~df~S' 

yy.J—  zzV  which  will  be  equal  to  the  fourth  of  the  equations  (P),   by  substituting  for 

x',  y,  ̂,  their  values.     Supposing  G  to  be  the  only  constant  arbitrary  quantity,  we  ob- 
lu.  ,  , .       const.        u,  ,       ,    .     . 

tain,  const.=  G  {   —  +  (^"+i/^-\-'^-))\  ■•'  makmg  — - — =  -i-  ,    and   substituting r 

for  x'.  y,  j/,  we  obtain  the  expression  given  in  the  text. 
*  As  the  differential  equations  (O)  are  of  the  second  order,  and  since  the  complete 

integration  of  each  equation  furnishestwo  constant  arbitrary  quantities,  the  entire  number 

cannot  exceed  six. 

f  Performing  this  multiplication  and  addition,  we  obtain 

ft.   (xzdy—xydz)—xzdy^—xzdy.dz''+xydy-.dz-\-xydz-    ,   zydy^ .dx-\-zldxdydz 
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T,       1  ̂ v  x-      •       1         r  z'hi~—udx   xdz — zdx   ydz — zdy       ,    . By  substituting  m  place  of  — - — -^ — »   ;   1-   —     their 
'  6       f  ^;  dt  dt 

values,  which  have  been  determined  by  the  three  first  of  the  equations 
(P),  we  shall  have 

0  —f^'—f^" -L  o.    Sit  _  C^ljh^l  X   .    ̂ ^f^^dz       ydy.dz 

c       '^      Ir        I      dt'     S)'^   ~dF~'^~^t''~' 

This  equation  coincides  with  the  sixth  of  the  integrals  (P),  by  making 

./'  =  LE^ZiJL,  or  0=fc"—f(f+f'c.     Thus  the  sixth  of  tlie  integrals 

(P),  results  from  the  five  preceding,  and  the  six  arbitrary  quantities 

c,  d,  c'',  f,  J",  f",  are  connected  together  by  the  preceding  equation. 
If  we  take  the  squares  of  the  values  o?  f,  f,  f",  which  are  deter- 

mined by  the  equations  (P),  and  then  add  them  together,  we  shall 
obtain 

— y}.dx.dy.dz — yz.d*z.dx         fi  j  t     f^  (xy.dz — t/zdx)   — yxAx^dz — yxdz^ 

yz.dx^  +  yz.dz'.dx        x^.dx.dy.dz-\-x.zJz'.dy       xz.dx'.dy          z'.dx.dif.dz 
+   ^3   +   -dT^   df^   d^   =by  mak- 

ing factors  to  coalesce-/c'^i/'c'+..^  iffc^  _  z.  ±^  (J^l+^  ̂   ,.  fd_y 
^                                 -^      ̂      ̂      r           dt                       dt            dt"        ~       dt 

{dz^—dx'^)xy.dz(dy^  +  dz-)         xy.dz    (dx^+dz^)        _  y.dx    {dy^~dz^)         y.dx 

^^    '^'Yt      d?         dT    dt'     +  ̂"  dt      df"    "^""ir * 

{dz^+dx')       ,  ,       ,^dx.dydz       ,  ,         .   dxdy.dz  „      .      .  ,    ., 
-^:   ^^   i-  +  («'— ̂')  — ^ij— +  (x'— «').   j^ —  =  after  all  reductions,  and  obli- 

, .  ,     ,                  ,       ,         ,  (zdy — ydz)              (xdz — zdx)        su 
terating  quantities  which  destroy  each  other,  j   —   r/  •   j,   1-  — ^. 

(xdy — ydx)  (xdy—ydx)    {dx^  +  dy"^ )         xdy     ̂ ydy.dz        xdxJzl       ydx 
~^t       ̂ "^^         1?     ̂ ~dr'i  de  +  dt''  s~~dr' 
€  xdx.dz     ,   ydy.dz)  ),.,.,  ... 
<  — — — V      ,  1     i  which  IS  the  expression  in  the  text. 
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/~K=(^- 1   a?   S~lTtS  \'  I   d?   T> 

in  \vhiclW=  is,  for  the  sake  of  abridging,  put  equal  to /''  +  /*  4-/"% 

but  if  we  take  the  square  of(,  tlie  values  of  c,  c,  c",  which  are  given  by 
the  same  equations,  and  then  add  them  together,  we  shall  have,  by 

making  c  +  c'  +c     =  n  ; 

*•>'"—  ~7r-  +  ̂   '  dt^  r      '         dt' 

rfdy'^.dx^+z''dz-.dx^        2yz.di/.dz.dx^        l^x  (ydy.dx-\-zdz.dx)      ̂        (dy*+dz^) 

+         ''  di^  *■  dt*  +     r  dt'  ■^'  ̂ i" 

(ydy.dx^zdz.dx)     .„_  j^V,         ,    (</a-*+2(fo'.&»+tfe*)     _   2^,y'-  (rfx'+</z') 
dt'             '-^    ""      r"     4-^'                   rfi*                             r  c^^* 

x'-dx'^.dy- -\-z''dz-.dy''         '2,xz.dx.dz.dy'^        If/.y    (xdx.dy-^-zdz.dy)  dx' -\-dz^ 

+                '~~dF             ''        '             dF            ̂ ~                 di^  ^'       W^ 

(xdx.dy+zdz.dy)  _  f^      _,  (dx*+2dx\dy\+dy*)  _  '^  ̂,  (dx*+di/^) 
d?  '-^      -      r^'^~-  dt*  r    "  '        dt^ 

x^dx\dz''+y''dy\dz''    ,     Qxy.dx.dy.dz"  2ft         (xdx.dz+ydy.dz) 

^  (/<+  ~  (/«■♦  ̂     r  di- 

(dx^+dy^  ̂   (^dx.dz+ydy.dz)  ̂   . ,  ̂ ^  obtam/'+/'^+/*^-^^= c/i'  eft' 

*  '-^       3F^^         ̂   y''         d0         '^^'        di* 

"    r  '^  ■         ̂ <-^  r  dt'-  r     '  dt^ 

"^      dt'  dt*  "^     dt''  dt'        "^    rf/^  dt^ 

dy.dz      dx-         2xz.dx.dz      dy-  2yz.dy.dt      dx'^ 

2k  (         rfw.c?^  rfx.c/z    ,  dx.dy  ,  du.dz   ,  £/:r.tfe    ,  dy.dx  ■) 
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X  dl'  J      X  dt  S     "      ' 
consequently,   the  preceding  equation  will  become, 

PART  I.   BOOK  II.  R 

C  dx.du  dx.dz  7       dt/'^ -\-dz^         C  dy.dx  du.dz  1 

,2,      2  ,     ,^     {dx*+d,/*  4-dz*  +  2dx-.di/'  i-2dx'-dz'-\-2
dy'>.dz') 

{x  +y  +z%      ■■   ~  X  . 

(dx^+^dx^dy^-^-^dx^'.dz^)        ,  (rfi/*4-2^■^'■rfy'+2%^f/^°)      _^  (dz*i-2dz^.dx'-^2dz--d,,') 
dt*  ^  '  dt^  "  '  df- 

dx-dy    ,^       dxdz    ,  ̂       dii.dz        idx'^A-dy^-X-dz')        2/*    ,   ,  , 

((/j'+rfy''4-&')        2^  (■T^f/c''.4-,yVv'+zV/;:-42-r.y-c?-r-"'.y)         (2xz.dx.dz-\-'2yz.dy.dz ) 

dp  •"    r  M*  "^  dt'' 

,      ,    (du\dx''+d!/\dz')  '(dx\dy'+dx\dz')    ,    ,    {dz'du^+dz\dx')      „       ̂  

literating  tlie  quantities  which  destroy  each  other,  and  observing  that  r''dr^  =x'</x*+ 
y*di/^+z'dz'+2xi/.dx.di/  +  2xz.dx.dz+2yz  .dy.dz 

,    dx''Xdij*Jf.dz^4-2dx'^.df-\2dx''.dz^A-'idui.dz'')    ,       ,   , 
r'.   ^i-^l-l.   X   ^|_I   -1   '~(—x\dx*—y-dy*—z-dz'' 

f        2xif.dx.dy  2xz.dz.dy  2yz.dy.dz''    \       rdx^  +  dy-^dz'    l        2fc  2^ 

t  (it-'  dt^  dt^         l*\  rf<^  J— —•»■+— • 

-!  -— •  V    ,  which  may  be  evidently  reduced  to  the  expression  in  the  text. 

*  Squaring  these  equations  and  then  adding  tliem  together,  gives 

^  {dy^+dz^  ^    {dx^-\-dz')       __  {dx^+dy^  _  2xy.dy(dx        2xz.dx.dt 
*■        dt'         '^^''  dt"-         "^"''        dt^  dt'  dt" 

2yz.dy.dz   _  (dx^- +dy'-i-dz^)       x^.dx'  y'dy-  z'^.dz^ 

ly.dz  _    J  {dx-+di/^+dz-)         (  rdr  \' ~'  *■   at~   i"^J   • 

dt-  \    -ry  -r     I-  ^^,  ^^,  ^^j  j^ 

^xyAx.dy  2xz,dxdz  2yzdy.d: 

dt*  dt"  dt' 
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°  =   d?   7+""F"* 

The  comparison   of  this  equation,   with  the  last  of  the  equations  (P), 

will  give  the  following  equation  of  condition 

h'  a' 

Therefore  it  follows,  that  the  last  of  the  equations  (P),  occurs  in  the 

six  first,  which  are  themselves  only  equivalent  to  five  distinct  integrals, 

the  seven  arbitrary  quantities  c,  c',  c",  f,  f,  f",  and  a  being  connected 
by  the  two  preceding  equations  of  condition.  From  hence  it  results, 

that  we  shall  obtain  the  most  general  expression  for  V,  which  satisfies 

the  equation  (I),  by  assuming  for  this  expression,  an  arbitrary  function 

of  the  values  of  c,  c',  d',  J\  andy,  which  are  determined  by  the  five 
first  of  the  equations  (P). 

19.  Although  these  integrals  are  inadequate  to  the  determination  of 

ic,  y,  z,  in  functions  of  the  time,  they  .nevertheless  determine  the 

species  of  the  curve  described  by  m,  about  M.  In  fact,  if  we  mul- 

tiply the  first  of  the  equations  (P),  by  z,  the  second  by  — y,  and  the 
third  by  x,  we  shall  obtain,  by  their  addition, 

0  —  cz —  c'y  ■[■c"j:,* 

which  is  the  equation  of  a  plane,  of  which  the  position  depends  on  the 

constant  quantities  c,  c',  c". 
If  we  multiply  the  fourth  of  the  equations  (P)  by  a;;  the  fifth  by 

y,  and  the  sixth  by  z,  we  shall  obtain 

*  Performing  this  multiplication  the  members  at  the  right  hand  side  of  the  equation 

will  disappear,  for  they  become 

_  xzdy — yz.dx    — xy.dz  +  gi/.dx     -\-yx.di. — zx.dy   _ 
cz-<iy\-<;x   —^   —j^  —2^  0. 
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but  by  the  preceding  number  we  have, 

'■•  W-  IF-    ' 

consequently, 

0=!.r  —  fr+fv+fi/+f"z. 

This  equation,  combined  with  the  following,  namely, 

0  =  d'a: — c'j/  +  cz  ;  r"  zz  x^  +  t/"  +  z*  ; 

gives  the  equation  of  conic  sections,  the  origin  of  r  being  at  the  focus. 

From  this  it  follows,*  that  the  planets  and  the  comets  describe  very 
nearly  conic  sections  about  the  sun,  this  star  existing  in  one  of  the  foci, 

aud  these  stars  move  in  such  a  manner,  that  the  areas  described  by  the 

radii  vectores,  increase  proportionally  to  the  time.     In  fact,  if  dv  re- 

r2 

*  Performing  this  multiplication,  and  then  adding  the  products  together,  we  obtain 

rfu'     ,  dz'  dx.dy      ,    „         di      dz  du       dz 

(d£jd£A^       ,    dr^ 
dt"  +  '■  •    dt^  ' 

From  the  first  of  these  equations  we  obtain 

^/'•/"•yt  and  by  means  of  the  equation  0  =  c"j:  —  c'y-\.cz,  and  r*  =  x- +y^-Uz^ , 
we  can  eliminate,  2^  and  z,  and  then  substituting  for  r*  its  value,  we  arrive  at  an  equation 
of  the  second  degree  between  y  and  x,  by  similar  process  we  obtain  equations  of  the  se- 

cond degree  between  x  and  z,  y  and  z,  from  which  it  follows  that  the  curve  described 

is  a  conic  section  ;  and  as  the  value  of  r  is  given  in  a  linear  function  of  the  coordinates 

X,  y,  s,  the  origin  must  be  at  the  focus. 
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represents  the  indefinitely  small  angle,  intercepted  between  the  radii 
r  and  r  +  dr,  we  shall  have 

dx*  +  cIt/-  -\-dz^  =  r  Vt)«  +  dr^;* 
the  equation 

^    (dx'^  +  dij^  +  dz^)         r*dv*  _  , , 
'  ■        jr*  di^  -  ' 

will  consequently  become,  r*dv'^  =  h^dt^ ;  therefore hdt 

dv  = 

r«  • 

From  this  it  appears  that  the  elementary  area  ̂ rdv,  described  by  the 

radius  vector  r,  is  proportional  to  the  element  of  time  d/,  consequently 

the  area  described  in  a  finite  time,  is  proportional  to  this  time.  It 

also  appears,  that  the  angular  motion  of  m  about  3J,  is  at  each  point 

of  the  orbit,  inversely  proportional  to  the  square  of  the  radius  vector; 

and  as  we  can,  without  sensible  error,  assume  very  short  intervals  of 

time,  for  the  indefinitely  small  moments ;  by  means  of  the  preceding 

•  The  differential  of  the  curve  z=  ds  =  \/  dx+dj/'+dz^  =  the  hypothenuse  of  a 
right  angle  triangle,  of  which  one  side  =  dr,  and  the  other  side  about  the  right  angle 

~rdv,  :•  dx'  +di/''+dz'  =  ofs^  =  dr'+r^.dv^- 
As  h  varies  as  the  square  root  of  the  parameter,  it  follows  that  tlie  angular  velocity 

  varies  as  the  square  root  of  the  synchronous  areas  divided  by  the   square  of  the  dis- dt 

tance,  see  page  10  ;  hence  the  angular  velocity  in  a  conic  section  is  to  that  in  a  circle  at 

the  same  distance  r,  as  A  : :  v  r ;  •••  they  are  equal  at  the  extremity  of  the  focal  or- 

dinate ;  substituting  for  h  its  value  g'raVl— e'  dv_  ̂ .^^  Q^a.'x/l—e-  .   .^^ T  '     dt  T.r^ 

body  describes  a  circle  at  the  unity  of  distance  in  a  time  equal  to  T,  then  the  angular 

velocity  in  the  circle  —  -:^=  the  mean  angular  velocity  in  the  ellipse,  consequently, 

when  the  angular  velocity  in  the  ellipse  is  equal  to  the  mean  angular  velocity,  we  havt 

gy  _  27ra  .       —e     ̂   ̂̂ ^       ̂   _  ̂ ^^j  _  ̂ ^^i^  _  ̂   ̂g^jj  proportional  between  the 

semiaxes ;  in  this  position  the  equation  of  the  centre  is  a  maximum. 
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equation,  we  can  obtain  the  horary  motions  of  the  planets  and  comets  in 

different  parts  of  their  orbits. 

The  elements  of  the  conic  section  described  by  m,  are  the  constant 

arbitrary  quantities  of  its  motion  ;   they   are  consequently  functions  of 

the  preceding  arbitrary  quantities  c,  c\  c,  J,  f,  f',  and  —  ;  we  now 

proceed  to  determine  these  functions.  Let  fl  represent  the  angle  which 

the  intersection  of  the  plane  of  the  orbit  with  the  plane  of  a;  and  of  y, 
constitutes  with  the  axis  of  x,  which  intersection  is  termed  the  line  of 

the  nodes ;  let  ip  be  the  mutual  inclination  of  these  two  planes.  If  x 

and  y  represent  the  coordinates  of  ni,  referred  to  the  iine  of  the 
nodes,  as  axis  of  the  abscissce  ;   we  shall  have 

x'  =  X.  COS.  9  4-?/.  sin.  9 ; 

y'  =  y.  COS.  fi  —  X,  sin.  6. 

We  have  also 

z  =  y'.  tan.  (p  ; 

consequeutly  we  shall  have 

z  =  y,  COS.  9.  tan.  (p — x.  sin.  6.  tan.  p. 

The  comparison  of  this  equation  with  the  following, 

0  =.  c"x  • —  dy-^cz'y 
will  give 

d  —  c.  COS.  9.  tan.  <p  ; 

c"  =  c.  sin.  9.  tan.  ip  ;* 

from  which  may  be  obtained 

r   ,  .  .  c' 
•  A  companson  of  these  equations,  gives  y.  cos.  t,  tan.  ̂   —  x.  sin.  i.  tan.  ̂ =  —  , 
c"  d 

I  —   .  X  •.•  —  =  COS.  4.  tan.  ip ; c  c 

See  page  3,  and  page  34  of  1st  Book. 
-'/« 

c"      c*              c"                c'  ̂  +c" 
y  —   .  x  •.•  —  =  COS.  «.  tan.  ip;  —  =  sin.  i.  tang.  <p,  •.•   ^j    =  tang.  *f. — C         C  C  G 
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tan.  6  =  — y  ; 
c 

tan.  ,  zz  ̂ /f+Zl. 
c 

By  means  of  the  preceding  equations,  the  positions  of  the  nodes,  and 
the  inclination  of  the  orbit  are  determined  in  functions  of  the  constant 

arbitrary  quantities,  c,  c',  c".      At  the  perihelium,  we  have 

rdr  =  0 ;  or  xdx  +  ydy  +  zdz  -=.0  ; 

let  therefore  X,  Y,  Z,  represent  the  coordinates  of  the  planet  at  this 

point ;  and  from  the  fourth  and  fifth  of  the  equations  (P),  of  the 

preceding  No.    may  be  obtained. 

But  if  we  name  /  the  longitude  of  the  projection  of  the  perihelium,  on 

the  plane  of  x  and  of  j/,  this  longitude  being  reckoned  from  the 

axis  of  X,  we  have 
Y 

consequently, 
X  ~  *'^"*  ̂ 

' 
f 

tang.  I  =-f> 

this  equation  determines  the  position  of  the  axis  major  of  the  conic 

section. 

*  Substituting  — xdx  ior  ydy  +  adz,  and  —ydy  for  xdx -{-zdz  in  the  two  last  terms  of 
the  second  member  of  this  equation,  and  they  will  become 

.-.  multiplying  the  first  by  Y,  and  the  second  by  X,  and  then  subtracting,  we  obtain  the 

expression  given  in  the  text.  / 



PART  I.— BOOK  II.  127 

If  by  means  of  the  last  of  the  equations  (r),    -tjz    be  eli- 
df 

minated  from  the  equation  r  .  —   ,:^   ro-=  «  >  we  shall '■  at'  dr 
obtain 

~di 

^.r-J^-l^^^h- 

but  dr  vanishes  at  the  extremities  of  the  greater  axis ;  therefore  at 

these  points  we  have, 

The  sum  of  the  two  values  of  r  in  this  equation,  is  the  axis  major 
of  the  conic  section,  and  their  difference  is  equal  to  twice  the  excen- 

tricity ;  thus,  a  is  the  semiaxis*  major  of  the  orbit,  or  the  mean  dis- 

tance of  m  from   M ;  and  v  1—   is  the  ratio  of  the  excentricity 

to  the  semi-axis  major.     Let  e  represent  this   ratio  j  and   by  the  pre- 

*  The  coefficient  of  r  with  its  sign  changed  is  the  sum  of  the  two  values  of  r,  and 

their  difference  is  equal  to  twice  the  radical,  and  •.*  =  to  2  a.    y  1   ,  and 

V-'^
 

\/  1   is  the  ratio  of  the  excentricity  to  a ;  \/  »«  —  -^-—    =s  fte 

fi.  \  ft   •  r  =  ;«'e*  =  i'  ;   c?r  =  ae.  sin.  udu,  •.•  rdr  =  a\e.  sm.  udu.{l  — e  cos.  u\ 

2r   =  a.((2  — 2e.  cos.  a)— ( 1  -}-  e* .  cos.  * «  —  2e.  cos.  «))  :=  a.(  1  —  e » ,  cos.  *u),  and 

V  2r   a.(l — e')  =  ac^.(l — cos.  *u)  =  ae*.  sin.  *«,  and  therefore 

rdr                            ,     ,         a'-.e.  sin.  u.[\ — e  cos.  m)  du       a^ 
  ;  _   __  -  {~dt\  =    =  — -. 

V^.\j2r-rl.-.a.{X-e^)
.  •^^/«^sin.^«  V'^ 

(1 — e  COS.  u)du. 
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ceding  number,  we  have 

a    ~      k'     ' 

therefore  f^e  ~  I.     Thus,  we  can  know  all  the  elements  which  deter- 
mine the  nature  of  the  conic  section,  and  its  position  in  space. 

20.  The  three  finite  equations  found  in  the  preceding  number,  be- 
tween ,r,  7/,  z,  and  r,  give  x,  y,  z,  in  functions  of  r  ;  thus,  in  order  to 

determine  these  coordinates  in  a  function  of  the  time,  it  is  sufficient  to 

have  the  radius  vector  r,  in  a  similar  function,  which  requires  a  new 

integration.     For  this  purpose,  let  us  resume  the  equation 

a  ar 

by  the  preceding  number,   we  have, 

therefore  we  shall  obtain 

rdr 

dt  = 
\/ju.  \jlr~-   a.(l— e°) 

In  order  to  integrate  this  equation,  let  r  ■=.  a.{\ — e.  cos.  w),   we  shall have 

at  =  — -pz^.  (I — e  cos.  U), 

from  which  may  be  obtained  by  integrating, 

t  -^  T  =■  —p.'  (w — e  sin.  u) ;      (S) 

T  being  a  constant  arbitrary  quantity.     This  equation  determiuM  u. 
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and  consequently  /•  in  a  function  of  ;;  and  as  x,  y,  z  are  determined  in 
functions  of  r  ;  we  shall  obtain  the  values  of  these  coordinates,  for  any 
instant  whatever. 

We  have  thus  completely  integrated  the  differential  equations  (O) 

of  No.  17  ;  this  integration  introduces  the  six  arbitrary  quantities 

a,  e,  I,  6,  <p,  and  T:  the  two  first  depend  on  the  nature  of  the 

orbit ;  the  three  following  depend  on  its  position  in  space  ;  and  the 

last  is  relative  to  the  position  of  the  body  m,  at  a  determined  pe- 

riod, or,  what  comes  to  the  same  thing,  it  depends  on  the  instant  of 

its  transit  through  the  perihelium. 

Let  us  refer  the  coordinates  of  the  body  tn,  to  other  coordinates 

which  are  more  convenient  for  the  usages  of  astronomy,  and  for  this 

purpose,  let  v  represent  the  angle  which  the  radius  vector  r  makes 

with  the  greater  axis,  reckoning  from  the  perihelium ;  the  equation 
of  the  ellipse  will  be 

a.n—e') r  —   ^^   — • 
i+e.  cos.  V 

The  equation  r  —  a.{\ — ecos.  u),  of  the  preceding  number,  indicates 
that  u  vanishes  at  the  perihelium,  so  that  this  point  is  the  origin  of  the 
two  angles  u  and  v ;  it  is  easy  to  shew,  that  the  angle  u  is  formed  by 
the  greater  axis  of  the  orbit,  and  by  the  radius  drawn  from  its  centre, 
to  the  point  where  the  circumference  described  on  the  greater  axis  as 
diameter,  meets  the  ordinate  drawn  from  the  body  m,  perpendicular 
to  the  greater  axis.  This  angle  is  termed  the  excentric  anomaly,  and 
the  angle  v  is  the  true  anomaly.     A  comparison  of  the  two  values  of  r 

gives 

1  —  e.  cos.  u  = 
1+e.  cos.  V 

from    which    may   be  obtained 

PART  1.  BOOK   11.  S 
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tang.i .r  =  v/l±£.  tang,  i  ii.* 1—e 

If  the  origin  of  the  time  t  be  fixed  at  the  very  moment  of  the  passage, 

through  the  perihelium,    T  will  vanish  ;  and  by  making,   in  order  to 

abridge,  — f^    ~  )^  yfQ  g\^^\\  have,  ntzzii  —  e.  sin.  u. 

1^ 

a"- 

By  collecting  together  the  equations  of  the  motion  of  m,   about  M, 
we  shall  have 

nt  :=  u  —  e.  sin.  ti,  \ 
r  —  fi.fl — e.  COS.  u)  f 

tan.  4  u  =  V  -^-  tan.  i  u.     \ 
1—e  -  J 

the  angle  nt  being  what  is  termed  the  mea7i  a?iomali/.  The  first  of 
these  equations  determines  u  in  a  function  of  the  time  /,  and  the  two 
remaining  equations  will  give  r  and  v,  when  tc  shall  be  determined. 

The  equation  between  u  and  v  is  transcendental,  and  can  only  be  re- 
solved by  approximation.  Fortunately,  from  the  circumstances  of  the 

celestial  motions,  the  approximation  is  very  rapid.  In  fact,  the  or- 
bits  of  the  celestial  bodies  are  either  almost  circular,  or  extremely  ex- 

sin.  a  +    sin.  i  {"-\-i)     ,      ,  ,       sin.  a  a 
*   7—  —  tan.  — - —  ,  let  6  :r  0,  and   ,    =  tan.  -- ,  i.  e. 

COS.  a-}- COS.  6  2  l-}-cos.  a  2 

v^'-^»^-  "-"   ̂   ̂^Lh-A«i-«_    =  tan.  4- ;  now  ..  cos.  u  =e  i£+^hA,  and  cos.  v  = 
J  +  COS.  a  v/i+cos.a  ^  1  +  c.cos.^ 

1  — e.  cos.  M  '    "        '2 
IL_</l— cos.  v        V^'^T 

   _  cos.  u cos.  M — e 
tan. 

\/l-4-  cos.  u  A  / ,  .  — e+  COS.  m 
V  1—e  COS.  u 

y/l  -f  c— e.  COS.  tt—  coslt         ■/(l-f-e).  (1— COS  ;<)        V^l-f-e  « 

■\/l— e— e.  COS.  H+cos.  u    ~  V(i—e).{l-\-cos.  u)        s/]ZIe        '    2  • 
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centric,  and  in  these  two  cases,  we  can  determine  tt  in  terras  of  t, 

by  very  convergent  fonnulEe,  which  we  proceed  to  develope.  We 

shall  give  for  this  purpose,  some  general  theorems  on  the  reduction 

of  functions  into  series,  which  will  be  extremely  useful  in  the  sequel. 

21.  Let  u  be  any  function  of  a,  which  it  is  required  to  expand  into  a 

series  proceeding  according  to  the  powers  «. ;  this  series  being  supposed 
to  be  represented  by 

u,  q,  qo,  &c.,  being  quantities  independent  of  a ;  it  is  evident  that  ii 

is  what  u  becomes,  when  a,  is  supposed  to  be  equal  to  cypher,  and  that, 
whatever  be  the  value  of  n, 

{^}=  ̂'^-^   n.g„+2.3   («+)i.«y^_j^j-j-  &c. 

the  difference   j—z — f,  being  taken  on  the  hypothesis,  that  in  u  every 

thing  is  made  to  vary  which  ought  to  vary  with  «.     Consequently,  if  we 

suppose  that  after  the  differentiations,  a=:0,  in  the  expression  of  s  —  r- 

Ldx.  J' 

we  shall  have 

9n  = 

Xdl'^y 
1.2.3   n 

If  M  is  a  function  of  the  two  quantities  a  and  «',  and  it  is  proposed  to 
expand  it  into  a  series,  proceeding  according  to  the  powers  and  pro- 

ducts of  a.  and  a.'  J  this  series  being  represented  by 

U  ZZ.  U  +  a.yi,o-|-a".5'2,o4-  &C. 

4- a'-.yo,o+  &C. 

s  2 
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the  coefficient  q„,„,  of  the  product  «".«'",  will  be  in  like  manner  equal 
to 

j-  /+•»  I 

Uo^\dcc"''   j 
1.2.3   W.I. 2.3..,. 

...v!  ' 
a  and  a'  being  supposed  to  vanish  after  the  differentiations. 

In  general,  if  u  is  a  function  of  a,  a',  a!'.  Sec,  and  if  it  is  proposed  to 
expand  u  into  a  series,  ranged  according  to  the  powers  and  products  of «, 

a',  cc".  Sec,  the  term  of  this  series,  of  which  the  factor  is  the  product 

a.". a"" .ex.""''   will  be  aVa"'.a''.a"   q^^  ,^,  ,,^„   we  shall  have 

1n!ri."kz. 
i       ,»       ,n    ,  „n"  „        f I.  f/a    .rta     .fla        &C.  J 

1 .2.3   nA.'i.Z   n. 1.1.2,   ii  .  &c. ' 

provided    ot.,  a.',  a,".  Sec,  are   supposed   to   vanish   after   the   differen- 
tiations. 

Let  us  now  suppose  that  u  is  a  function  of  a,  a,',  a.'',  &c,  and  of  the 

variables  t,  f,  t",  &c. ;  if  by  the  nature  of  this  function,  or  by  an 
equation  of  partial  differences  which  represents  it,  we  have  obtained 

i^da".  dcx,^  .    &C.   J 

in  a  function  of  u  and  of  its  differences,  taken  with  respect  to  /,  t, 

&c.  ;  F  representing  this  function,  when  u  is  changed  into  u,  u 

being  what  u  becomes  when  «,  «',  &c.  vanish,  it  is  manifest  that  we  shall 

obtain  q„,n,,  &c.  by  dividing  F  by  the  product  1.2.S...M.  1.2.S...«',  &c. ; 
therefore  we  shall  obtain  the  law  of  the  series  according  to  which  u  is 

expanded. 

In  the  next  place,  let  u  be   equal  to  any    function   of  t-\-a,  f-\-x\ 

f  ■{■»',  &c.,  which  we  will  represent  by  <f(J-^a,  t'-\-a!,  t"-\-oi"),  in  this 
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case  the  ?n'*  difference  of  u,  taken  with  respect  to  a,  and  divided  by 

(/as"*,  is  evidently  equal  to  this  same  difference,  taken  with  respect  to  t, 
and  divided  by  dt  .  The  same  equality  obtains  between  the  differences 

taken  relatively  to  a.'  and  t',  or  relatively  to  a."  and  f,  &c.  j  hence  it 
follows,  that  in  general,  we  have 

I       a      u     I—  J  d   ^  ( 

\dx.da.'^  .c?»""  .  &c.  J         t     di'.dt  .dV''    J 

If  in  the  second  member  of  this   equation,  u  be   changed   into  u, 

that  is,  into>(^,  f,  f,  &c.) }  we  shall  have,  by  what  precedes, 

,.  _5    /+"'-^""^'^".Ku'.r.&c.)    I 
^"■'-•""'     •"  1 1.2.3... «.  1.2.3...n'.  1.2.3...n".&c.i 

If  M  is  a  function  of  t  and  a,  only,  we  shall  have 

^''  ~  1.2.3. .M.dr' 

therefore 

K^+.)_,(/)+— ^^+_-^^^+^— ^.^-^  +  &c.     0) 

Let  us  in  the  next  place  suppose  that  u,  instead  of  being  given  im- 

mediately in  a  and  t,   as  in  the  i^receding   case,  is  a  function  of  x,  x 

being  given  by  the  equation  of  partial  differences,    i-j— c  — •^*  )1~[  » Cdx  J  Cdt  J 

in  which  z  is  any  function  whatever  of  x. 

In  order   to  reduce   u  into  a  series  proceeding  according  to    the 

C  d^u") 

powers   of  a,  the    value  of   } — -^\^   must  be  determine
d  

in  the  case  in 

which  ji=:0  ;  but  in  consequence  of  the  proposed  equation  of  partial 
differences,  we  have 



\din  _  d.fz.du    ,^  (Jc) 

\-        dt      ' 
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fc5-terW~~'w*i  dt  r 
therefore,  we  shall  have (dtci  _ 

ldZ\~ 

This  equation  being  differenced  with  respect  to  «,  gives 

c  d'u  1  _  d-.fz.du 

\'dJ'\~    do^.dt  ' 

but  the  equation  [k)  gives,  by  changing  u  into  fz.du, 

(.d.fz.du}  _  ̂   df^.du  1 
id^VX      dt     y 

consequently 

[c?^M>       d-.fz^.du 

ldA~        df      ' 
This  equation  being  differenced  again  with  respect  to  a,  gives 

id^Wi  _  d^.Jz-.du 

w\~     dx.df     ' 

but  the  equation  (k)  gives,   by  changing  u  into  ̂ Vm 

.     .        du'         du      dx  du'     dx  dii  fz.du' 
*  Let /.rf«  =u',  then  -^  =  -^.  ̂ =--^-^  ^-rfT  =  '■  "1^-  '^'^'^  '^ 

.     d. fz.du  _  d.Jz-.du substituting  for  du'  its  value,  we  obtain  —   ^j — . 

f  As  the  characteristic/  indicates  an  operation,  the  reverse  of  that  denoted  byrf.we 

can  remove  the  sign  f,  by  depressing  the  index  of  d  by  unity. 
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therefore 

Ldx'\~  I   df~y 
By  continuing  this  process,  it  is  easy  to  infer  generally 

SdHi)       U':fz\dzn       (d''-\z\\-]\ 
id^^\=l—dF-r\  — r-^r 

Les  us  now  suppose  that  by  making  «=0,  we  have  x  zz.  T,  T  being 
a  function  t ;  we  shall  substitute  this  value  of  x,  in  z,  and  in  u. 

Let  Z  and  u  represent  what  these  quantities  then  become  ;  we  shall 
have  on  the  hypothesis  that  azzO, 

^d'tn   di 

teS  ~  dt^'~ ' 
and  consequently,  by  what  precedes,  we  shall  obtain,   - 

which  gives 

.  =  u  +  «.Z._  +  —  .^.J^^+^^.c/^)^(+&c;(P) 

It  only  now  remains  to  determine  what  function  of  t  and  «,  x  repre- 
sents ;  which  will  be  effected  by  the  integration  of  the  equation  of 

partial  differences    jT-f^^'jjTf-     For  this  purpose,  we  shall  ob- 

serve, that 

rf^  =  {§}.rf^4-{|}.^«: 



136  CELESTIAL  MECHANICS, 

and  by  substituting  in  place  of  <  -r^t  its  value  ̂ '  ■<  -7-  r    we  will  ob^ 

tain 

therefore,  we  shall  have 

dz\ 

— -.  <:f.(/+a3) 

1  + 

\dxy     Idt} 

which  gives  by  its  integration,  x  =^(t+a,z'),  (i>(t-\-a.z)  being  an  ar- 
bitrary function  of  t-\-o(,z;  so  that  the  quantity  which  we  have  termed 

T,  is  equal  to  qi^t).  Consequently,  as  often  as  there  exists  between 
a.  and  X,  an  equation  reducible  to  the  form  x  =  (p(^t+  az)  ;  the  value 
of  u  will  be  determined  by  the  formula  (P)  in  a  series  proceeding 

according  to  the  powers  of  «. 

dz *  zd»'=dicz  — a.  —7-.  dx,  therefore,  by  substituting  this  value  of  zd»,  we  obtain  the dx 

expression  for  dx  given  in  the  text;  now  as  dx  is  an  exact  differential,  the  member,  at  the 
dx 

right  hand  side  of  the  equation  must  be  also  an  exact  differential,  consequently,  —r-     •— 

I  !-)-«.    •—3—)  >  must  be   equal  to  (^(t-\-itz),  ip'   denoting   the   derivative   function \  dx       dt  ' 
of  (p. 

2  being  by  hypothesis  a  function  of  x,  let  it  equal  F(x)  and  we  shall  have  x  = 

^{t ■\-aF[x)),  and  it  is  easy  to  obtain  from  this  expression  the  proposed  differential  equa- 

tion of  partial  differences,  for 

dx_ 

da =  ?'(<+«FW)-  ̂   (F(x))^»F'{x\^^  ̂   -^  =  «''('+«-fW)  { ̂+''-^<^)-^^  = 

and  by  eliminating  <p'{'+«.F{x)),  and  reducing,  we  shall  obtain 

dx  ,    dx 
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Let  us  now  suppose,  that  m  is  a  function  of  the  two  variables  x  and  z', 
these  variables  being  given  by  the  equations  of  partial  differences 

{d^\  -.      fdx\       Cdx'\  _    ,  cdx'^ 

in  which  z  and  z'  are  any  functions  whatever  of  x  and  x'.     It  is  easy 
to  be  assured  that  the  integrals  of  these  equations  are  respectively 

X  =  (p(^t-ir  a.z)  ;  x'  =  v|/(/'  +  aV)  ;* 

(p(f-)-«2),  and  tJ/C^'+ajV)  being  arbitrary  functions,  the  one  of  t-^<xz, 
PART  I.   BOOK  II.  T 

and  as  u  is  supposed  to  be  equal  to  <p(;r), 

du  „  .    dx     du         ,,  ,    dx 

hence,  by  eliminating  <p(i)  we  obtain  —r-  «  -r-  =  —r-  .  -— -,  and  by  substituting  for  — - da      at        dt      dec  da. 

its  value  F{x).-^—t  and  making  Fix)  =z,  we  obtain  after  ail  reductions  — ;— =z. — r— dt  d»  at    ; 

dx  d\x 
when  1  =  ̂   +  »F{x) ;  x=.t  when  «  =  0;  —--  =.1;  a,  Z,   and  —r-  become  respectively at.  dt 

i|/(«),  F(t),  and  -^'(t),  consequently,  the  equation  (P)  will  become  4'{t)  +  4''{f)-  P(*) 
«.        d.{m).F{ty)   u^        d\{^'(t).  F(t)^)      *3  „        .^  .      ,. 

tion,  azrl,  then  we  shall  have  x  =  f-i-F(x),  and  the  preceding  series  becomes  ■^'(a:)  == 

i|/<  +  r)-'(i).  /■(<)  +  -— .    '      '  •! — -^+  &c.,  which  Lagrange  first  announced  in  1772, 

an  epoch  deservedly  celebrated  in  the  history  of  science  for  the  many  beautiful  applica- 

tions of  this  series,  if  F(x)  =  1,  then  x=  F{t-\-a),  and  •••  u  =4'(''^)' 

*  Let  z=F(xx') ;  2'  =  F,{x  x);  :•  x  =  <p(i  +  «.  F(xy)),  X  =  Mi"  +  «'•  -f,(^  ̂ )),  ■<" 
the  functions  indicated  by  F,  F,,  be  defined,  and  if  the  form  of  the  preceding  equations 

permits  us  to  eliminate,  the  values  of  z  and  z,  may  be  respectively  obtained  in  terms  of 

X,  t,  a,  t',  we  may  v  regard  x,  x',  as  functions  of  those  four  quantities. 

^  =,'(*+*.  F(x  .')).(! +«.^).    '£=,'(t+..Fix^HF+..   ̂ ); 
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and  the  other  of  f+xz.     Moreover,  we  have 

%  =^(^+'-'-i^XV)Mi  +<«'•  ̂ );-|;=  ̂■(*'  +  «'.FXx/).«'.  %  ; 

§  =  4^(.'+.'.F{x'x')).(l+.'.  f );  %  =  ̂'(^'  +  .'.F(xx')..'.  ̂ '  ; 
dx  QX 

when  a,  a'  vanish,  we  have  — r-  =  <p'{t),  -y-  =  <p'(t').  F, ; at  a» 

dx       ̂       rfx       „     dx'      „      dx         ,„  ,,      daf  ,,, ,,    „ 

in  this  case  x-=<p{t) ;  x'  =  ■vf'(''),  •••  !f  is  a  function  of  t,  t',  only ;  as  u  \t  only  an  explicit 

function  of  x,  x',  we  shall  have 

du        du     dx        du    dz  ,     ,  ,    ,        .  ,    dx 
  =  — •   U  -r-,'-T- ;  aid  when  «  and  «  vanish  — j-  =  (?'(;)  F. aa        dx     da        dx    dot  da 

dx'  du       du       ,,  .     r,     du        du     dx         du   dx'        ,     ,  ,      „ 
— -  =0;  •.•  -^  =— .   (l>'(t).  F;  -—  =  -7-.  — ,  +  — .  -J-;,  and  when  a,  a  =0, rf«  c?«       rfar  d*  dx      da         dx    da, 

dx  daf         . ,    »    „        ,         du        du     , , ,  „     _       , ,  ,         dx       , ,,  .       dx 

.  .  ̂  =  ̂/^.  F=  *i.  F;  ̂ =  4^1,  ̂.  F=^,  F,  .-.  by  substituting  z  for da       dx      dt  dt         '    da'      d»'-  df        '      dt       '  ̂ 

F  we  obtain  —  —  2.  —r-  =  0  when   x  =  <p{t  +  az),  conversely,  when  this  differential da  at 

equation  obtains,  we  can  deternune  the  value  of  a;  =  cp(t-\-az). 

As  a  depends  explicitly  only  on  x,  t',  a',  and  as  «'  is  one  of  the  independent  variables 

in  differencing  u  with  respect  to  a,  it  is  only  necessary  to  have  respect  to  x,  •.•  the  rea- 
soning of  the  preceding  page  is  applicable  in  this  case. 

du  du  .      , .  ,     .         du 
When  a  is  equal  to  cipher  —  =  s.  -jj-,  •.•  m  this  case  we  may  substitute  -^ 
-  du 

for  z.  -^. 
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This  being  premised,  if  we  conceive  that  x  is  eliminated  from  u  and 

from  z,  by  means  of  the  equation  a/  =  \{i!  +  a's')  ;  u  and  2  will  be- 

come functions  of  x,  a!  and  t'  without  a  or  / ;  therefore  we  shall  ob- 
tain, by  what  goes  before, 

I  dx"  y\         dt"-'    y ' 

If  we  suppose  «nO  after  the  differentiations,  and  if  besides,  we  make 

X  =  <p{t-\- a,z"")  in  the  second  member  of  this  equation  a;  =  (?(/+  ««"),   and 

consequently   i  ;?-  f  =  ̂ "^  ->  ;7-  f »  ̂ ^  shall  have  on  these  suppositions, 

and  consequently, 

\d"'.u} 

\d«.\dx"''S       (  dx     S' 

dt" 

We 
 
shal

l  
have

  
in  like

  
man

ner
. 

m-{'-m\ df 

If  we  suppose  a'  to  vanish  after  the  differentiations,  and  if  besides  we 

suppose  that  in  the  second  member  of  this  equation,  x'  —  »J/(/'+a'y»'); we   shall  obtain 

dr-\di" 
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provided  that  we  make  a.  and  a'  to  vanish  after  the  differentiations, 
and  also  that  we  suppose  in  the  second  member  of  this  equation 

a;  =  ?.(^+«^")  ;    x'  =^(lf-\-ai.'z"^)', 

which  comes  to  supposing  in  the  second  member  as  well  as  in  the  first 

mem- 

and  to  change  in  the  partial  difference  ]   ;(  ,  of  this  second 
c  dx.da.  J 

ber  z  into  z",  and  z'  into  z''^.     Thus,  we  shall   have  on  those  suppo- 
sitions, and  also  by  changing  z  into  Z,  s/  into  Z',  and  u  into  u, 

C  d" -"'-"-.  [  -^^^  } 
-      __<    l.da..da.')    y 

(  1.2.3   n.  1.2.3   n'.dr-\dt"^'-^  J  ° 

By  following  on  this  reasoning,  it  is  easy  to  infer,  that   if  we  have  r 
equations, 

x"=n(r+o^"z")i 
&c. 

z,  z',  z",  &c.,  being  any  functions  whatever  of  x,  x',  sf',  &c.  j  u  being 
supposed  to  be  a  function  of  the  same  variables,  we  shall  have  generally 

t  n+n'+n"+&c.-r^  C  d'U  ?  ^ 

_-^         Xdx.da.' .d! a.' .  &C.5    r" 
^".  »' «  '  &c.  -  (  1.2.3.. .w.l.2.3...?z'.1.2.3,..n".&c.c?r-'.rfr'-'.c?r.""-''  ^ 

c^-^M 

provided  that  in  the  partial  difference  <  - — r?  -y-v.   o —  f  »  ̂ ^e  change Ldx.da.  .da.  .  &c.  J 

z  into  s",  e'  into  z'"',  &c.,  and  that  afterwards  we  change  z  into  Z, 
z'  into  Z',  2*  into  Z",  &c.,  and  m  into  u'. 
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If  there  is  but  one  variable  x,  we  shall  have 

CrfM?  rdul 

therefore 
■dt 

^■(- 1^\  \ 

9"  = 

1.2.3   n.dt"-'^ 

If  there  are  two  variables  a:  and  x' ;  we  shall  have 

this  equation  differenced  with  respect  to  «',  gives 

but  we    have  <  — ;  >■  =  s'.   j  -7-  f  5  ̂ ^^  ̂ ^  i"  this  equation  x    is  sub- 

stituted in  place  of  u,  we  have  <  —  ?  =2'.  ̂   ;7-  c ;  therefore 

S  (Pu    1  _      i'^'^'idFsK      ,  ̂dz)    idu) 
idZd:^^-  -•  I — irS  ̂ ^'\d'i;^'\di^' 

*  By  substituting  2"  for  z,  &c.  we  have  made  the  coefficient     ,      ,,     ,   gn,n  to  ae- 

pend  on  a  coefficient  of  the  second  order,  and  the  ilifFerentiations  relative  to  t  and  t'  will 
not  be  difficult  when  «,  «'  are  =  to  cipher. 

du        ,  du  du''  , ,  ,    4  du  >  <i   d^i^   1     ,        ̂ ^    '^" 
-5— ,  =  r.  -7-.,    -.•8.     ,   .    ,      =Z,d.{z'.    ■<  -TT   J-  =Z2/.    •<    -; — 77    f     +  2-  — jT"*  "X  ' 

■■•  by  substituting  s",  s'"',  for  s,  s',  respectively,  we  obtain  the  expression  which  is  given 
in  the  text. 
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If  we  suppose  «  and  «'  equal  to  nothing,  in  the  second  member  of  this 
equation,  and  if  we  change  2  into  Z",  z  into  Z'"',  and  u  into  u  ;  we  shall 

obtain  the  value  of  I -T — —J,    on   the   same   suppositions;  hence  we 
obtain 

1  .S.-i   n.dr-\  1 .2.3   ri.dt''^-'- 

by  proceeding  in  this  manner  the  value  of  (/„,  „.,„,„   &c.,   for  any  number 
of  variables  whatever,  may  be  obtained. 

Although  we  have  supposed  that  w,  z,  z,  z'',  &c.,  are  functions  of 

X,  x,  a/',  &c.,  without  t,  t',  f,  &c.  ;  we  can  however  suppose,  that  they 
contain  these  last  variables :  but  then  denoting  these  variables  by 

tA  t',  t'',  &c.,  it  is  necessary  to  suppose  /,  t',  t'',  constant  in  the 
differentiations,  and  after  these  operations  to  restore  /,  t',  &c.,  in  place 
of^,, //,  &c. 

22.  Let  us  apply  these  results  to  the  elliptic  motion  of  the  planets ; 

and  for  this  purpose,  let  the  equations  (/")  of  No.  20,  be  resumed. 
The  equation  7it  —  11  —  e.  sin,  u,  or  u  ■=.  nt  +  e.  sin.«,  being  com- 

pared with  X  :=.  9(/  +  az)  ;  x  will  be  changed  into  u,  t  into  nt,  and  a 

into  e,  z  into  sin  u.,  and  (p{t-\-az)  into  nt-\-e.  sin  m,  consequently,  the 

formula  (P)  of  the  preceding  number  will  become 

^{u)  =  4'(«0  +  e.  ̂ \nt).  sm.  "/+  — .  d.  ̂^^    ' ̂^^^   ^^T;^- 

(4^V).  sin.  ̂ ?zO  . 

nW  '  '■^^ 

*  If  in  the  equation  u  =  ni  +  e,  sin.  «  it  be  required  to  develope  -i^  (m)  into  a  series 
arranged  according  to  the  powers  of  e,  then  applying  the  preceding  formula,  besides  the 

changes  indicated  in  the  text,  u  will  be  changed  into  \J'(!<). 
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»)/'(«/)  being  equal  to— l^--'.     In  order  to  expand  this  formula,   it 
ndt  ^ 

is  to  be  observed  that  c  being  the  number  of  which  the  hyperbolical 
logarithm  is  unity,   we  have 

{nt.^—\        —nt.i/—\\i                           r   nt. -/—i        — nt.^'^i^i* 
  ?■  ;   COS.  *nt=\   Z!     >  ; 

2v/=T            j                         (2  j' 

sin 

i  being  any  number  whatever.  If  we  expand  the  second  members 

of  these  equations,  and  then  substitute,  in  place  of  c'^"*V— •  jjjjjj  ̂ f 

c—rnt.^—i^  their  values  cos.  rnt.  +  ̂ IITsin.  mt.^Hl,  and  cos.  rnt. 
—  ̂   ~y  Sin.  rnt. »/ —i,  r'being  any  number  whatever ;  we  will  obtain 
the  i  powers  of  sin.  nt  and  of  cos.  nt,  evolved  according  to  the  sines  and 

cosines  of  the  angles  nt  of  its  multiples ;  this  being  premised,  we 
shall  find 

sin.  nt  +  ■—.  sin.  ̂ «?+  ___,  sin.'«/+  7-r^  •  sin.  *nt  +  &c. 

g 

=  sin.  nt — ;;   ("cos.  ̂ nt — 1 ) 

1.2.2^ 

e*
 

—   5  (sin.  3nt  — 3  sin.  nt) 
1.2.3.2^  ̂   ^ 

ef  4  3  \ 
H   ^  ̂   .  ̂ ,  (cos.  4«/ — tcos.  2n/  +  i.  —1—  ) 

1.2.3.4.2'  ̂   ^     1.2  y 

"^  1.2.3^4.5.2^  '^^'"'  ̂"^"^  ̂^"'  ̂"^■*'  Ti" •  ̂'"'  "^^ 

—  &c. 

*  SeeLacroix,  Traite  Complete,  Tome  1,  page  76,  95,  of  the  Introduction. 



144.  CELESTIAL  MECHANICS, 

Let  P*  represent  this  function  ;  if  it  be  multiplied  by  ̂{''("O  ̂ ^^ 
then  if  each  of  its  terms  be  differenced,  with  respect  to /,  as  often 

as  there  are  units  in  the  power  of  e,  by  which  it  is  multiplied,  dl 

being  supposed  constant ;  and  if  then  these  differentials  be  divided 

by  the  corresponding  power  of  ndt,   the  formula  (9)  will  become 

4/M  =  4/(nO  +  eF). 

P  representing  the  sum  of  these  differentials  thus  divided. 

*  The  series  P  is  always  the  same  where  the  equation  m  =  n/  -f.  e.  sin.  nt  obtains, 

whatever  be  the  form  of  the  function  indicated  by  4' ;  therefore  when  the  form  of  -.^  is 

given,  the  expression  for  ■^/(m)  will  be  obtained  by  performing  the  operations  indicated  in 
the  text. 

When  the  value  of  P,  is  multiplied  by  e.  cos.  nt,  the  form  of  the  terms  multiplied  into  the 

even  powers  of  e,  will  be  cos. ;'.  7it.  sin.  i.  nt,  and  the  expansion  of  this  product  is  effected  by 

the  formula  sin.  a.  cos.  b  =  sin.  ̂   ^'"'       •,    therefore  the  terms  multiplied  by 

the  even  powers  will  be  the  sines.  The  form  of  the  terms  multiplied  into  the  odd  powers 

of  e,  will   COS.  in.  cos.  snt    the    developement   of   which  is   effected  by  the   formula 

cos.  a.  cos.  b  =   ' '         "*" — ^'^  ~~  i  ̂  consequently  the  terms  multiplied  by  the  odd 

powers  of  e  will  be  the  cosines.  If  any  term  of  the  form  Ke^'.  sin.  snt.  be  differenced  as  often 

as  there  are  units  in  2r,  it  is  evident  that  when  this  terra  is  divided  by  ndt)-';  the  result- 

ing terms  will  be  Ke^'.  s'"'.  sin.  snt,  for  as  the  terms  are  alternately  cos.  snt,  sin.  snt, 
when  the  number  of  differentiations  is  even  the  last  term  must  be  sin.  snt,  and  as  «  is  in- 

troduced as  a  factor  at  each  successive  differentiation  when  the  number  of  differentiations 

is  2^,  i^""  will  be  a  factor  of  this  last  term,  the  first  term  is  -f  cos.  int,  and  the  signs  of 

the  subsequent  terms  are  minus  and  plus  in  pairs,  .*.  the  signs  of  the  successive  differential 

coefficients  including  the  first,  are  plus  minus,  minus  plus,  plus  minus ;  i.  e.  +  — , 

—  -J-,  -f  — ,  &c. ;  hence  it  appears,  that  when  r  is  an  odd  number,  the  sign  of  the 
last  term  will  be  — ,  and  when  r  is  an  even  number,  the  last  terra  will  be  -f- .  In  a 

term  of  the  form  of  the  Ke'"-*-'.  cos.  snt  the  number  of  differentiations  being  odd,  the 

last  term  must  be  of  the  form  Ki''+^.  s^''+^.  sin.  snt,  the  signs  of  the  terms  in  this  case  are 

alternately  minus  and  plus  in  pairs,  i.  e.   ,   -f  +,   ,  -f-  -f-,  and  as  the  sign  of 

sin.  snt,  is  the  opposite  of  the  sign  of  the  penultimate  terra,  when  r  is  even  this  agn  is 

fvidently  — ,  and  when  r  is  odd  this  sign  is  -{-• 
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It  would  be  easy  by  this  method  to  obtain  the  values  of  the  angle  u, 

and  of  the  sines  and  cosines  of  this  angle,  and  of  its  multiples.  If  for 

example,  we  suppose  »J/(w)  =  sin.  iu ;  we  shall  obtain  vj/'(wf)  =:i  cos.  int. 
The  preceding  value  of  P,  must  be  multiplied  by  i.  cos.  int,  and  the 

pi'oduct  should  be  expanded  into  sines  and  cosines  of  the  angle  nt,  and 
of  its  multiples.  The  sines  will  be  multiplied  by  the  even  powers  of  e, 

and  the  cosines  will  be  multiplied  by  the  odd  powers  of  e.     Then  any 

term  of  the  form  Ke  .  sin.  snt  will  be  changed  into  ±  Ke^''.  s^^, 
sin.  snt,  the  sign  +  having  place,  if  r  is  even,  and  the  sign  —  obtain- 

ing, if  r  is  odd.     In  like  manner  any  term  of  the  form  Ke    "^  .  cos.  snt. 

will  be  changed  into  T  Ke  "^^ .  s^^'^^ .  sin.  snt,  the  sign — having 
place  if  r  is  even,  and  the  sign  -f-  obtaining,  if  r  be  odd.  The  sum  of 
all  these  terms  will  be  the  value  of  F,  and  we  shall  obtain 

sin.  iu  =  sin.  int  +  eF. 

If  iJ/(m)  be  supposed  equal  to  u*,  ̂ '(nt)  will  be  equal  to  unity,  and 
we  will  find 

uzznt-\-e.  sin.  nt  +   .  2  sin.  2nt  A   -,.("3*.  sin.  Snt — 3  sin.  nt) 1.2.2  ^  1.2.3.2  V 

+  - — -;   -,.(4^.sin.4n/— 4.2'.sin.2«/) 

1.2.3.4.S'  ̂  

+  ■  — -J  (5*.  sin.  Snt — 5.3  . 
5.4 

sin.  37it+  —V.  sin.  nt). 1.2 

PART  I.  BOOK  II.  V 

*  If  ̂^'{a)  =  u,  then  -^(nt)  =  nt,  and  ̂ '(nt)  =:  — r-  =1,  the  series  P'  becomes  sin.  nt ndt 

e         ,    COS.  (2«f— 1)  e'  (sin.  3nt — 3  sin,  nt) 

1.2.2  ndt  1.2.3.2''      '  (ridt)'-  1.2.3.4.2' 
4  3 

(cos.  lent — 4  COS.  2nt+i.  — ^ 

<^'.       ,.^   '—  +  &c.  which  will  be  reduced  to  the  expression  in  the 

text,  by  performing  the  prescribed  difFerentiations. 
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This  series  is  very  converging  for  the  planets,  u  being  thus  deter- 

mined for  any  instant ;  the  corresponding  values  of  r  and  v,  will  be 

given  by  means  of  the  equations  (y)  of  N°.  20  ;  but  we  can  obtain  these 

last  quantities  directly  in  converging  sei'ies,  in  the  following  manner  : 
Eor  this  purpose,  it  may  be  remarked,  that  by  No.  20,  we  have  r  = 

a(l — e  cos.  ii)  ;  and  if  in  the  formula  ((/),  we  suppose  ̂ (u)  zz  1  — e. 
COS.  u,  we  shall  have  ̂ \ni)  =  e.  sin.  nt,  and  consequently 

.  ,    "    •     2.1      e^      d'  sin.  ̂ nt    ,      "* I — e.  cos.  u-=zi — e.  cos.  nt-\-e-.  sin.  ̂ nt-r    .   }- 
1.2  ndt  1.2.3* d"-.  sin.  ̂ /2; 

+  &c. n\de 

Therefore  by  the  preceding  analysis,  we  shall  obtain 

r  c  6" 
—  =  1  +   e.  cos.  nt   cQ!i.2nt* a  2  2 

•———7,(3.  COS.  3nt — S.  COS.  nt) 

  ,.(4'.  COS.  47it —  4.2".  COS.  2nt) 
l.'i.i).'2 5.4 

—   : — 4.(5^  COS.  Snt — 5.3  .  COS.  37li-{   . 
1.2.3.4.2  ̂   ,1-2 COS.  nt) 

*  Since  ■4'(a)  =  1 — e.  cos.  u,  -^{iii)  =  1  — e.  cos.  ;?;;  by  substituting  for  sin.  ̂ w<,  sin. 

^nt  &c.  their  values,  the   expression  for  1 — f.  cos.  ic  becomes  1 — e.  cos.  nt-\   •   (1  — 

it 

,    .      e^       ,     { — sin.  3Kf  +  3  siu.  ?;i)            e*             (cos.  4«f — 4cos.  2«*  +  3) 

eos.  Int)^  —  .  d.   -^^   +  -^^.d  .-   ^^-^^   ±J 

+  &C.,  now  wlicn  the  differentiations  indicated  by  the  characteristics  <f,  rf*,  &c.  are  per- 
formed, the  resulting  terms  only  contain  cos.  nt,  and  its  multiples,  for  those  terms,  in 

which  the  differentiation  is  performed  an  odd  number  of  times,'  involve  the  sines  of  nt 
and  of  its  multiples,  therefore  the  resulting  terms  are  cosines,  and  where  the  cosines  of 

nl,  and  of  its  multiples  are  to  be  operated  up6;i,  the  differentiation  must  be  performed  an 

even  number  of  times,  •••  the  resulting  terms  arc  in  this  case  also  cosines.  The  reason  why 

in  terms  of  the  form  Ke'^\  sin.  snt  the  resulting  quantity  becomes  A'c'"".  s"'.  sin.  sr\t,  is 
the  same  as  that  assigned  for  a  similar  expression  in  the  preceding  page. 
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g6
 

J. (6*.  COS.  6nt—6.4,*.  cos.  4^t  + 
1.2.S.4.5.a- — .  2*.  COS.  2n0* 

1.2  
"^ 

Let  us  now  consider  the  third  of  the  equations  (/" )  of  No.  20  ;   by 
means  of  it  we  obtain 

sin.  ̂ v  _     /i  +  e    sin.  ̂   u 

COS.  ̂   V  1  — e'  cos.  ̂   M  * 
By  substituting  in  this  equation,  in  place  of  the  sines  and  of  the  cosines, 
their  values  expressed  in  imaginary  exponentials,  we  shall  have 

c 

c 

and  by  supposing 

«.•— 1  .  ,       ̂  1  —e)   uV~i     ,  I  '' 

1+4/1— e*' 
we  shall  hare 

u2 

  r=      ,    COS.  i«)=    ~   ZL 2  V— 1  2 
c^' -*_c      2                               2         '         2' 

•  Sin.  4"=   ~ —    ,  COS.  iv  =  2.   ii    ,    '.'   substituting 

these  expressions  for  sin.  —cos.—  ,  in  the  expression  sin.  — ,  multiplying  both  numerator 2         2 

V 

COS.—r 

V     /   

and  denominator  by  c^  .and  performing  similar  operations  on  ®'°-  "2" ,  we  shall 

have  the  expression  in  the  text. 

u 

COS.- 
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c ~i_^«V— i.J  l—>^-c  I  ,, 

1  i-x.c«-^-  r 
and  consequently, 

log.  CI — A.  c  ) —  log.  (1  — X.  c"        J 
V — 1 

from  which  may  be  obtained,  by   reducing   the    logarithms  into   se- 
ries,! 

c'-'^-'+l 
1— AC    ̂   1— '^c    ̂   c  +  1 

_  i_e+/i-e^   _  ̂ YUe.  ̂ ^^-g+J^+f),  ...  by  substituting  these  values  of  l+> 1+^1— e^      ~  1  +  yi-e^ 
and  1 — A,  we  obtain 

t    Log.  c"'^^   -  vV^  =  log.  c""^~'+  log.  (1  -  A.c~"'^^)-  log.  (1-A. 

.«V-X)^„.^Z:]  ̂   log.(l-A.c-"-v^-'  )_log.  (1-A.  c"-^^) ;  log.(l-A.c-"^^) 

=  _A  -^■'_£.    -2«V-_  xi_  r^«-^-_&e.-.log.(l_.).c«-^"* 12  3  &   V  / 

=  —  .  c  ̂      +  ■^-  <=  +  -^  •  c  +  &c.;  .-.  log.(l— A).c  — 

log.  (1— A).c         =Y.  (c         -c  )+-2-'^*  "  '"^T- 
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V  =  u  +  2x.  sin.  u+    .  sin.  2u-\   .  sin.  3m  +   .  sin.  4m  +  &c. 2  t  4t 

by  what  goes  before,  we  have  u,  sin.  u,  sin.  2m,  &c.  in  a  series  arranged 

according  to  the  powers  of  e,  and  expanded  into  sines  and  cosines  of  the 

angle  nt  and  its  multiples,  therefore  in  order  to  obtain  v  expressed  in 

a  similar  series,  it  is  only  necessary  to  expand  the  successive  powers 

of  /  into  a  series  ranged  according  to  the  powers  of  e. 

The  equation  u  —  2—  —  ,  will  give  by  the   formula  (p)   of  the 

preceding  number, 

JL__L  +  i:^  4.  ML+Jl    _£L  +  i'(i  +  3Xi  +  5)    _£l    .    &,  . 
M'  ~  2'         2'4-2  "^        1.2      *    2'  +  *  1.2.3  •2^4-6  ̂   «  ., 

and  as  we  have, 

u  •=.  1+v  1 — e*  i  we  shall  have 

This  being  premised,  we  shall  find  by  continuing  the  approximation  to 

(c  "'    "' — c      "'    "') +"&c.,  V  dividing  by  v' — 1,  and  substituting  2v^-l   sin.  <u.  for 

c  —  c       '     ~  ,  we  obtain  the  expression  which  is  given  in  the  text. 

•  The  equation  u  =  2  —  — ,  being  compared  with  the  expression  x  =  ̂ {t-\-az)  gives u 

z  =  F(x)  =—,  »  =  —e\t  =2,  and ,^(x)  =  i- ,  ••■  when  ̂ x)  =  -j ,  M^)  =  -ht* 

^'(0  =  .2J+i'  ■^(')  =  "2  '  <=o°s«q"ently  _.  =  _  +  ̂j^^  +  _j^^.  -^^  + 

1.2.3  *  2'+6   "^ e*  1  ;^ 
From  the  equation  «  =  2   we  obtain  «* — 2tt  =  —  e*,  .••  — =  1  +v' 1 — e*  ̂   - 

hence  x'  =  — r-  =  the  expression  given  in  the  text.    And  ift=l,  a=  s-V^  +  \-a) 
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quantities  of  the  order  i^  inclusively, 

e^).  sm.  3nt+   <-r-T-.  e*   .  e^J-.  sin.  4nt,* '  ( 9b         480     y 

(13   3   43   ,,   .   „  ,   UOS 
"^  ll^'^   "64 

lOQT  1223 
H   — i  .  e\  sin.  5nt  -\   '■ —  e^.  sin.  6nt. ^    960  960 

_|,  3  _Z_  C  ,   =   h  ~3~H — ^'    (^s  t''^  approximation  is  not  carried  beyond  the 

fifthpowers),  A-=-   ̂ 1  +  2^-^    + -^  .    ̂   g  5     =-4"+— +T- 

i_;  .3  =-.(143.^  2  5    )=— +¥•— =^*=^-^^+*-i2i   )=r6 

*  When  u  is  expressed  in  the  manner  prescribed  in  the  text,  the  five  first  terms  are 

those  given  in  the  preceding  page;  and  as  the  approximation  is  carried  to  the  sixth 

powers  of  e,  we  must  add  the  additional  term  which  is 

  .  (6K  sin.  Gnt  —  GAK  sin.  int  4.-^.  2^sin.  2ni); 
1.2.3.4.5.6.2^    ̂   ^  1.2  ' 

If  to  these  terms  expressing  the  value  oft*,  be  added  the  values  of  2a.  sin.  w,  2a'.  sin.  2k, 
&c.,  reduced  into  a  series  ranged  according  to  the  powers  of  e,  and  developed  into  sines 

and  cosines  of  the  angle  nt  and  its  multiples,  we  shall  have 

2A.sm.«=  |e+  — +_^.sm.ni.+  |--+  — +— J.sm.2««+  |  — 

+  "l^  }  •  (3.  sin.  Snt  -  sin.  ni)  +  |  -^-f-  -^  }  .(4^  sin.  4»/-2«.  sin.  2nt)+  ̂ ^  . 

(5'.sin.5n«  — 3.33.sin3re<  +  2.  sin.  «<)  + -r—rrr  •  (6*.  sin.6ni+ -t.**.  Sin.  4nt  -f 

5.2*.  sin.2n0:  -^.8in.2«=  |_  +_+  —  j.  sin.2««  +  {-^+-8-  } 

(sin.  Snt  —  siu.  »!<)+-[   i^  +  "lo  J  "  ̂*'  *""'  *"'""*  "°*  ̂"'^  "*"  96  *  ̂̂ '^  *'°"  '^'''  "" 
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The  angles  v  and  nt  are  here  reckoned  from  the  perihelium,  but  if 

we  wish  to  count  them  from  apheliuni,  it  is  evident  that  to  effect  this, 

it  is  only  necessary  to  make  e  negative  in  the  preceding  expressions  of 

r  and  v.  It  will  also  be  sufficient  to  augment  in  those  expressions,  the 

angle  nt,  by  the  semiclrcumference,  which  renders  the  sines  and  co- 

sines of  the  odd  multiples  of  nt  negative,  consequently,  as  the  results 

of  these  two  methods  ought  to  be  identical,  it  is  necessary  that  in  the 

expressions  of  r  and  ofv,  the  sines  and  cosines  of  the  odd  multiples  of 

nt,  should  be  multiplied  by  the  odd  powers  of  e,  and  that  the  sines  and 

cosines  of  the  even  multiples  of  the  same  angle,  should  be  multiplied 

by  the  even  powers  of  this  quantity.  This  is,  in  fact,  confirmed  d  pos- 

teriori by  the  calculus. 

Let  us  snppose  that  in  place  of  reckoning  the  angle  v,  from  the 

perihelium,  we  fix  its  origin  at  any  point  whatever ;  it  is  evident 

that  this  angle  will  be  increased  by  a  constant  quantity,  which  we  will 

denote  by  73-,  and  which  will  express  the  longitude  of  the  perihelium. 
• 

3.3*.  sin.  3nt  4.  4  sin.  nt)  +  •—  .  (6'.  sin.  Qnt  —  iAK  sin.  4«f  -f  1.2K  sin.  2n/) ; 

2a*  C    e*        e^   1  f   e*         3e'  c 

-^  .  sin.  3m  =  I  -jj+  ̂   \  ■  sin.  3"«  +  |  — +  -32"  |  •  (s'^-  *«'—  S'"-  2»0  + 

-— -.  (5.  sin.  5nt  —  2.3.  sin.  3nt  -}-  sin.  nt)  +  ̂ rr .  (6*.  sin.  6nt  —  3.4'.  sin.  4nt  +  3.2'. 

«n.  2nt) ;  — —  .  sin.  4m  =  •}  -— -+  -— -  \ .  sin.  ̂ nt  +  -— .  (sin.  5nt  —  sin.  3nt\\-   . 
■*  [^  o^       iZ  i  lo  64 

2a'  e'  e* 
(6.  sin.  6nt — 2.4.  sin.  4n<-f  2.  sin.  2n<) ;   .  sin.  5u  —  — —  .  sin.  5nt  -j   .  (sin.  6nt  — 5  80  16 

sin.  4nf).    If  the  several  factors  of  sin.  nt,  sin.  ̂ nt,  &c.,  be  collected  and  arranged,  they 

will  give  the  respective  terms  of  the   value  of  v,  for  instance,  the  factors  vphich  multiply 

sin.  nt,  are,  taking  into  account  the  value  of  h  which  is  given  in  page  145). 

e^        e^        e*       e*        e^       e^'       e^          e'         e'         e^  e'    1 
(2<r   -+___+___.___ -^   _^.__  +  __4.__|.s,n.„(. 

gi        5e^    1                                                             e'         e^        e^         e* 
=  (2e   —  H — -—  > .  sin.  nt;  the  factors  of  sin.  2nt  are  -—-  4   f-  — -  -|-  — ^  -f- 

-«-+  T-  +  IF  +  -5   r  -  -5- '   &'=•     See  page  145. 



1S2  CELESTIAL  MECHANICS, 

If  instead  of  fixing  the  origin  of  /,  at  the  moment  of  the  passage 

through  the  perihelium,  we  fix  it  at  any  instant  whatever ;  the  angle 

nt  will  be  increased  by  a  constant  quantity,   which  we  will  denote  by 

t  —  Ts;  and  consequently  the  preceding  expressions  of  —  ,  and  of  v 

will  become 

1  +ie*— (e—  |-  e  ).  cos.  (ntA-i—^)—{^  ̂ —  1  e* ). 

r 

~a      '  '  '''      ̂         8 
cos.  '2..(nt  +  £— xir)  —  &c. 

V  =  nt-t  i  +(2e—  -e').  sin.  (nt-\-i-^)+  (—  e'—  —  c*), 

sin.  2(nt  +  t  —  -sr)  +  &c.  j 

V  is  the  true  longitude  of  the  planet,  and  nt  +  t  is  its  mean  longitude, 

these  two  longitudes  being  referred  to  the  plane  of  the  orbit. 

Let  us  now  refer  the  motion  of  the  planet,  to  a  fixed  plane,  a  little 

inclined  to  that  of  the  orbit.  Let  (p  represent  the  mutual  inclination 

of  these  two  planes,  and  9  the  longitude  of  the  ascending  node  of  the 

orbit,  reckoned  on  the  fixed  plane  j  let  6  be  this  longitude  reckoned  on 

the  fixed  plane  of  the  orbit,  so  that  6  is  the  projection  of  6 ;  also  let  v, 

be  the  projection  of  v  on  the  fixed  plane.     We  shall  have 

tan.  (f, — 0)  =cos.  (p.  tan.  (u— §). 

This  equation  gives  v,  in  terms  of  u,  and  vice  versa ;  but  we  can 

have  these  two  angles,  each  in  terms  of  the  other,  in  very  converging 

series,   by  the  following  method.     The  series 

X*  x' 

^v  =  ̂ M+A.  sin.  u  -f  -— -.  sin.  2m  +  — .  sin.  3«+  &c. 

has  been  already  deduced  from  the  equation 
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by  making 

tang.  i»  =  V  -—-  •   tang.  \u. 

^  1  —e 

^yTTe 

l—e 

+  1 

yl 
 +  e 

  into  cos  ip  ; 

we   shall   have 

COS.  a> — 1  *1 ^  —    TT-  —  —  tan.  -r-  9;T 
COS.  (p+l  a    ̂   ' 

the  equation  between  i^v  and  i^ti,  will  be  changed  into  an  equation  be- 
PART.  I. — BOOK  II.  X 

(7.(1   gi) 
•  By  making  e  negative  in  the  equation  r  =  ■— i    ,    v  will  be  equal   to  cipher, 

1  -re.  COS.  V  ^  ' 

when  r  =  a.{l+e),  i.  e.  at  the  aphelium,  •/  it  is  from  this  point  that  the  angle  v  is 
reckoned. 

Since  the  results  must  be  identically  the  same,  when  v  is  reckoned  from  perihelium  and 

aphelium,  and  since  the  signs  of  the  odd  multiples  are  necessarily  changed,  in  order  that 

these  expressions  may  remain  the  same  as  before,  the  sign  of  the  factors  which  multiply 
these  odd  multiples,  must  be  changed  at  the  same  time,  i.  e.  these  factors  must  be  odd 

powers  of  e. 

t  1—2  sin.  -— ip=  cos.  ip;    2  cos.   -— <p— 1  =  cos.  <P,  .'.   ^   —  =  _tang. ■i  2  COS.  ̂   -1-  1 

«1       s/l—e~        -/l+c  —i/i— e — TT-  ̂ ,     ,   ,:;   r^=- ,  multiplying  both  numerator  and  denominator  by 
2        \/l  +  e  v^l+e -f  v^l— e  ^  •'    ̂ 

.    .    2e  e 
vl+e+  vl — e,  we  obtain  after  all  reductions  ̂   ,  ̂   ,-   -  =  ,  ,  ,/-   ;    =a; 

2-r-'2i/\ — e*      l  +  vl — e^ 
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tween  v,— 9  and  v — S,  and  the  preceding  series  will  give 

v^ —  8  =  u  —  e  — tan  ̂ 4'  <P'  sin.  2(f  —  S)  -hi-  tan.  *^(p.  sin.  4(w  —  g) 

— ^.  tan.  '4<?.  sin.  6.(w  — e)+  &c. 

If  in  the  equation  between  hv  and  ̂ u,  we  change  hv  into  r  —  S,  ̂ m 

into  t'  —  9,  and  V  — —  into    ;  we  will  obtain 
'  1— e  COS.  (p 

X  =  tan,  Hi?}* 
and 

V  —  e  —  V, — 9  +  tan.  %ip.  sin.  2(y, — 9)  4-^.  tan.  *4  ip.  sin.  4(z', — 9) 

+  J-.  tan.  "i  0.  sin.  6(t;,— 9)  +  &c. 

It  is  evident  from  an  inspection  of  the  two  preceding  series,  that 

they  may  be  converted  one  into  the  other,  by  changing  the  sign  of 

the  tan.  '^(p,  and  by  changing  the  angles,  i\—9,  and  r — £,  the  one  into 
the  other.  We  will  obtain  z\ — 9,  in  a  function  of  the  sines  and  cosines 

of  the  angle /I?  and  its  multiples,  by  observing  that  by  what  goes  be- 
fore, we  have, 

V  =  7it  +  I  +  eQ, 

(Q  being  a  function  of  the  sine  of  the  angle  nt  +  e  — -sr,  and  of  its  mul- 

tiples) ;  and  that  the  formula  (i)  of  No.  21,  gives,  whatever  may  be  the 
value  of  i, 

'1 

2(v 
  €)  

being  

substituted  

for  
u,  

and  
observing  

that  
when  

— tang.  

— .  u  is  
substituted  

for  
a, 

the  even  multiples  of  two  are  positive,  and  the  odd  multiples  negative,  we  obtain  the  expres- 

sion which  is  given  in  the  text. 

'1 

sm.  —  0  1 1 
1  —  cos.  Ip   2         _  tan.  —  <p. 

In 
this case 

1 

—  1 

If- 

cos. 

<p 

1 + 1 1  +  cos.  (p  *  1    ̂ 
     ,    .                          "^        cos.  — -  (f> 
COS.  <p  ^ 
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sln,^(t;— .e)=sin.  t.(7itf-i—^eQ)zz]l   r-^r-+  TITTT"  "^'  \ 

.  sin.  i.[nt+  t — £) 

,5.^    iV-Q\    i'.e^.Q"       ,    7 
C  1.2.3        1.2.3.4.5  5 

.  COS.  i.(nt+e  —  g). 

Finally,  5  being  the  tangent  of  the  latitude  of  the  planet,  above  the 

fixed  plane,  we  have 

5  —  tan.  (p.  sin.  (v — 6)  ; 

and  if  r,  represents  the  radius  vector  r  projected  on  the  iixed  plane,  we 
shall  have 

r,  =  r.(l+s=)-^=  r(l— l5*-f-|.  5*  — &c.);t 

by  this  means  we  are  enabled  to  determine  Vt  r,  and  s  in  converging 
series  of  sines,  and  cosines  of  the  angle  nt,  and  of  its  multiples. 

23.  Let  us  now  consider  the  orbits  which  are  very  eccentric,  such 

as  are  those  of  the  comets ;  and  for  this  purpose  let  the  equations  of 
No.  20,  be  resumed,  namely 

fl.ri— e^) 

1+e.  COS.  V  ' 

nt  =  u  —  e.  sin.  u ; 

1.  hv  =  V; 
tan.  Ay  =:  V    •  tan.  Aw. 1 — e 

X  2 

*  By  the  formulae  of  No.  21,  if  the  function  sin.  i.{nt-\-i — 6)  receive  the  increment  ieQ,, 
the  value  of  this  function  so  increased,  will  be  the  successive  differential  coefficients  of  sin. 

j.(nt+£ — €),  (which  are  ultimately  its  sines  and  cosines)  multiplied  into  the  successive 

powers]  of  ieQ,  and  divided  by  the  products  1.2.3.  ..j- ;  and  these  terms  being  concinnated, 
give  the  expression  in  the  text. 

t  *.  cot.  $  =  sin.  (v — i),  V  «  =  tang.  (p.  sin.  (u — i);  y'=r  cos.  Iat.=  —        

^l+s'*  ~
 

r.(l--i-«H  |-«*-&c.). 
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In  the  case  of  very  excentric  orbits,  e  differs  very  little  from  unity  • 

therefore  let  us  suppose,  1 —  er:a,  a.  being  very  small.  If  we  name  D, 

the  perihelium  distance  of  the  comet ;  we  shall  have  Z)  =  a.(l — e)-=a.a  ; 
therefore  the  expression  of  r  will  become 

(2—x).D  D  » r —   i   ■   ;::;   
2.  C0S.''it;   «.  COS.  t  o,        ̂,     ,         «       ,         oi     >  > 
^  COS.  ̂ ^v.  <  1  -i   tan.-^i;^ 

which  gives,  by  reducing  into  a  series, 

r=   — rr-  i  1   ~-  tan.  %v+  <  -^  >  .  tan.  *^f—  &c.  \ 
COS.^^W(.  2~x  ^  (2— a)  ^  J 

In  order  to  have  the  ratio  of  v  to  the  time  t,  we  will  observe  that 

the  expression  of  the  arc  in  terms  of  the  tangent,  gives 

tt  =  2.  tan.  ̂ u.  (1 — J.  tan.  %u+^.  tan.  %  u — &c.)  ;t 

but  we  have 

tan.  1m  =  V  J——  •  tail'  k""  5 

therefore  we  shall  have 

uzzl.sl^^  tan.  It;.  1 14(^)-  tan.^i-  t;  +  i  (^)'.tan.«4i'-&c.) 

*  «'=«*  — 2<»+  1  :  vr_  i_j_2.  COS.  -iu— 1— 2«.  COS.  »iti+* 

  «.a.(2— «)   J-(2— «)   

2.  COS.  HH^l— 2  COS.  "if)       2.  cos,  4u— «.  cos.,*ir+«. sin.^^w 

_  ■^•'"    "^       •  dividing  the  numerator  and  denominator  by  2— «,  we  ob- 
■~  COS.  ̂ ^1.(2— «)  +  «.  sm.  ̂ \u  '  ^ 

tain  the  expression  in  the  text. 
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we  have  likewise 

2  tan.  Am 

"*"■  "*-  l+tan.^i^"  "  ̂'  ̂̂ "*  2"-Ci—  tan.  '^w+tan.  ♦iw— &c.) ; 

from  which  may  be  obtained 

e.  sin.  M  =  2(l — «)•  v  5 —  •  **"•  i'^O  ̂   t^"*  'i*^  + 

{^-^}ltan.>-&c.( 

<z 

These  values  of  u  and  of  e.  sin.  w,  being  substituted  in  the  equation 

nt  =.u  —  e.  sin.  u,  will  determine,  in  a  very  converging  series,  the 
time  t,  in  a  function  of  the  anomaly  v ;  but  previous  to  making  this 

substitution,  it  may  be  observed  that  by  No.  20,  n-=za.  '^n*  ,  and  as 
D~aa,  we  shall  have 

1  D 3 

This  being  premised,  we  shall  find 

2— ̂  

.t i— — a.  >.  a  tan.  *^w+  &c.^. 

   2.  sin.  iu 
2  tan.  J u  COS.  iM  2  sin.  iu.  cos.  |u 

l-f-  tang.  ̂ |u  sin.  ̂ \u         sin.  'iu-j-cos.  *|m 
'  COS.  '^\u 

_'J~     D         ..    _    «T\/|M  u  —  e.  sin. u  _       dI       ̂   2</<» 

(t*n.Wl-4{2£;}  •  tan.-.+  l{£-}^ang.*|v-&c.)-2.(l-«.)^_Z. 
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If  the  orbit  be  parabolical,  «  =  0,  and  consequently 

D 

r  —■ 
COS.  ̂ Au  ' 

t=  ■^jz=^\/<2  .  (tan.  Iv+l.  tan.  %v).* 

The  time  t,  the  distance  D,  and  the  sum  |U,  of  the  masses  of  the  suu 

and  of  the  comet,  are  heterogeneous  quantities,  and  in  order  to  render 

them  comparable,  they  should  be  divided  by  the  respective  units  of 

their  species.  Let  therefore  the  mean  distance  of  the  sun  from  the 

earth  represent  the  unity  of  the  distance,  so  that  D  may  be  expressed 

in  parts  of  this  distance.  It  may  then  be  remarked,  that  if  T  be 

called  the  time  of  a  sidereal  revolution  of  the  earth,  which  we  will  sup- 

pose to  depart  from  the  perihelium,  we  shall  have  in  the  equation 
nt=:u — e.  sin.  u,  uzzO,  at  the  commencement  of  the  revolution,  and 

u  —  27r,  at  its  completion,  tt  being  the  semicircumference  of  which  the 

the  radius  is  unity  ;  therefore  we  shall  have  nT  =  ̂ Tr-,  but  we  have 

n=a~'^.  v^f*  =  V  ju, ,  because  a  =■  I  ;   therefore 

/-         Stt 

The  value  of  (/.  is  not  exactly  the  same,  in  the  case  of  the  earth  and  of  the 

comet  J  since,  in  the  first  case,  it  expresses  the  sum  of  the  masses  of  the 

tan.  iv(l  —   .  tan.  ̂ \v-\-  J   V  .  tang,  ♦^w — &c.)  >  ,  if  the  parts  which  destroy 
i 

each  other  in  this  expression  be  obliterated,  and  if  a^  which  occurs  both  in  the  numerator 

and  denominator,  of  the  part  which  remains,  be  likewise  obliterated,  the  resulting  quantity 

will  be  value  of  t  given  in  the  text. 

•  It  appears  from  this  value  of  t,  that  the  times  in  which  different  comets  moving  in  pa- 

rabolick  orbits,  describe  equal  angels  about  the  sun  placed  in  the  focus,  are  in  the  sesqui- 

plicate  ratio  of  the  perihelium  distance.     See  Newton,  Prop.  37,  Book  3,  and  also  No,  27. 
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sun  and  earth  ;  in  place  of  which,  in  the  second  case,  it  expresses  the  sum 
of  the  masses  of  the  sun  and  comet ;  but  the  masses  of  the  earth,  and  of 
the  comet,  being  much  less  than  that  of  the  sun,  they  may  be  neglected, 
and  we  may  suppose  that  ̂   is  the  same  for  all  these  bodies,  and  that  it  ex- 

presses the  mass  of  the  sun.  Therefore  by  substituting  in  place  of  \/^  its 

value  -—   in  the  preceding  expression  of  ̂  ;   we  shall  have 

=   -7=.  (tan.  \v^\.  tan.  %v), 
TT.V     2 

t  = 

This  equation  contains  no  quantities  which  are  not  comparable  with 

each  other,  it  will  easily  determine  t,  whenever  ̂   will  be  known  ;  but  in 

order  to  determine  y,  by  means  of  t,  we  must  solve  an  equation  of  the 
third  degree  which  admits  of  but  one  real  root.  We  may  dispense  with  the 

resolution,  by  making  a  table  of  the  values  of  v,  correspondino-  to  those 
of  t,  in  a  parabola  of  which  the  perihelium  distance  is  equal  to  unity,  or 
equal  to  the  mean  distance  of  the  earth  from  the  sun.  This  tabic  will 

give  the  time  which  corresponds  to  the  anomaly  v,  in  any  parabola  of 

which  Z)  represents  the  perehelium  distance,  by  multiplying  by  JD^, 
the  time  which  answers  to  the  same  anomaly,  in  the  table.  We  shall 

obtain  the  anomaly  v,  which  answers  to  the  time,  by  dividing  t  by  Z)^> 
and  then  seeking  in  the  table,  the  anomaly  which  answers  to  the  quo- 

tient of  this  division. 

Let  us  now  suppose  that  the  anomaly  v,  which  corresponds  to  the  time 
t,  in  a  very  eccentric  ellipse,  is  required.  If  quantities  of  the  order  a-  be 

neglected,  and  of  1 — e  be  substituted,  instead  of  a;  the  preceding  ex- 

When  this  equation  is  reduced  to  an  original  form  there  will  be  only  one  mutation  of 

sign  ;  •.-  there  will  be  only  one  real  and  affirmative  root ;  when  u  and  D  are  givefl,  r  and 
t  may  be  obtained  immediately  by  the  solution  of  a  simple  equation. 
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pression  of  /  in  v,  in  the  ellipse,  will  give 

_    Z)i\/2  ("tan.  4^+^.  tan.  %v 
t=: 

^-   |+(1— e).  tan.  \v.(^\-\.  tan.  *i)w— f  tan.  *!■ \v)\ 

We  should  seek,  in  the  table  of  the  motion  of  comets,  the  anomaly 

which  answers  to  the  time  t,  in  a  parabola  of  which  Z)  represents  the 

perehelium  distance  ;  let  U  represent  this  anomaly,  TJ-\-x  being  the  true 
anomaly  in  the  ellipse,  corresponding  to  the  same  time,  x  being  a  very 

small  angle.  If  we  substitute  in  the  preceding  equation  TJ-^-x  in  place 
of  V,  and  then  reduce  the  second  member  of  this  equation  into  a  series 

arranged  according  to  the  powers  of  a; ;  we  shall  obtain  by  neglecting 

the  square  of  x,  and  the  product  of  x  into  I — e. 

^^   D'-
s/i 

•/> 

r(tan.ii7+i.tan.^xt.)+^^^£^  ]• 
C+  — .  tan.  iZ7.(l--tan.  %U—t.  tan.  ̂ IT)} 

2Di  2Dt 

^|.-*+4-"} 

(neglecting  the  square  and  higher  powers 

^/2 

of  «)  =  '^^ — '■ — •  ̂  1-j   >  ,  V  the  value  oft  becomes  = 

-:?^".(l+-|-)-*«"g-*''[l  +  (^-  j)-tan. '^-(^-»).«.2.-«tang.»|v    | 

=   7^=—  \  -tang.^B  +  -.  tang.  |^u+|.  tang.  ̂ v\-  -— -.  tau.  '^«—  -— .  tang.  '\v— 
V  ft.  (  *  *•''  3 

4«    -2  )  _  ■\/2.i)l 

—2     .  tang.  >  I   -^.  {tang.i«+f  tang.  >  +  (!—«).  tang.  >t.(4  +  (^ijj-_^). 

tang.  °\v)  — \.  tang.  *|.  i>) ;  1 — e  being  substituted  for  «. 
•  Substituting  [/  +  «  for  r ;  this  equation  becomes 

dI    - ^  =  -— :  v/2  .  (tang.  i(  i;+;r)+^.  tan.  ̂ i(  U-\.x)+[\-e)  tan.  |(  17+  *).(i  _i.  tang.  '^ 



PART  I.— BOOK  II.  161 

but  by  hypothesis,  we  have 

/=   -^.  {tan.  ̂ U+^.  tan.  %Zr};* 

PART  I. — BOOK  11.  Y 

,TJ^^     1.       4,rr-i-  ̂ ^      ̂ ^   ̂ ?  C  tang.  1 1/+ tan.  ̂ ^       ,    f  tan.  ■?;+ tang,  -x^  ̂     ' 
{ U+x)—^.  tan. '( U+v))=-—         ]  u  x+^  }'  U   7  t 

■^f  ^  I— tan.  —  .  tang.-         ̂ 1— tang.  — .  tan.-  j 

(1— e).  tan.  — +tan.-    j  J    ?•  tang. —4- tan.- "^ 

l_tan.  — .  tan.  —       (  (^  i  _  tan.  — .  tan.  —  J 

ftan.-— +tan.-|- ")   ")       2)1^2.      /  17,,        x    ,  ̂      .t  'U   ,,,        =U 
l_tan.— .tan.|])  ) 

+S  tan.  1^.  tan.  ̂   +  Stan.  -^ .  tan.  ̂ )  +(1  _c).tan.  —  (^  _ x  tan.  —  —  f 

1   e  U  ![7  3jj»  xx 
H   — .  tan.  — -.  (1  —  tan.  —   f  tan.  -—  ),  and  since  tan.  —  =:  —  ,  when  x^,  x^, 

'U            *U      I                ̂ f7\^           1 
&c.  are  rejected,  and  1+2  tan.  -™|-tan. -j^=  (14-  tan.  '-^]  =   ttt,  by  sub- 

COS.— X                     x                      '[7  *t7\ 
stituting    —  for  tan.  — .  (1  +2  tan,  —   \-  tan.  —  j,  we  shall  have  the  exprcs- 

cos.— 
sion  given  in  the  text. 

*  Therefore  the  two  last  terms  of  the  second  member  of  this  equation  are  equal  to  cipher,  con- 

sequently   —  =  ——.  tan.  —  f^_  1  -f  tan.   - — |-f-  tan.-^J;  v^  or  sm.  x  = 
2  COS.  — - 

1— c  17    /    „  *17  .      =t7        ̂ [7  *V\ 
—^ —  tan-  -g-  {—2-  COS.  -^  +  2  sm.  — .  cos.  -^  +  |  sin.  —^\ ,    (by  substituting 

17  1   e  /  U  /  *U  ^U  *U 
for  tan.  -^its  value);  =  ——(tan.  —  1—2.  cos.— -+2  cos.  —   2  cos.  — -  +f 



162  CELESTIAL  MECHANICS, 

therefore  by  substituting  in  place  of  the  small  arc  s,  its  sine,  we  shall 
obtain 

sm. x  =  — .  (1— e).  tan.  1Z7.(4— 3.  cos.  %U~6.  cos.  %  U). 

Thus,  by  constructing  a  table  of  the  logarithms  of  the  expression, 

— .  tan.  4Z7.(4— 3.  cos.  %U—S.  cos.  '*l£7')  ; 

it  will  be  sufficient  to  add  to  them  the  logarithm  of  1 — e,  in  order 
to  obtain  that  of  sin.  x ;  consequently  if  this  correction  be  made  to 

the  anomaly  U,  computed  for  the  parabola,  we  will  have  the  cor- 
responding anomaly  in  a  very  eccentric  ellipse. 

21.  It  remains  for  us  to  consider  the  motion  in  an  hyperbolic  orbit. 

For  this  purpose,  it  may  be  observed  that  in  the  hyperbola,  the  serai- 
axismajor  a  becomes  negative,  and  the  excentricity  e  surpasses  unity. 

If  therefore  in  the  equation  (^)  of  No.  20,  we  make  «  =  — a,  and  k= 

/   ,  and  then  substitute  in  place  of  the  sines  and  cosines,  their 
V    1  ^ 

values  in  imaginary  exponentials ;  the  first  of  these  equations  will 

give 

a^ 

(1-2. cos—   +  COS.  -^))  =  -^-  tan.  —  (-4. cob.  — +2  cos.  —  +  f 

/,     ̂          ''U  *U\       l—e  U    /„       „  *U         ,  '-U 
(1-2  COS.  -^  -t-  COS.  —  j=  -^-.  tan.  — .  (f  _  SjO  cos.    g     -  f  •  cos.  — + 

f  COS.  —-1^  evidently  the  expression  given  in  the  text. 

Vfc,    \         Vfi  •  '  u!  u! 
*  nt=u — esin.M,  (n  in  this  ca8e=   /  — ~ — 7=-  ;'••  nt=— — t=  +e.  sin.  — ;=r^; 
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The  second  will  become 

r=a'.(i.e.(c«'+c-"')-l);' 
finally,  if  we  make  a  corresponding  change  in  the  sign  of  the  radical 

of  the  third  equation,  in  order  that  v  may  increase  with  t,  and  conse- 

quently with  u' ;  we  shall  have 

Let  us  suppose  that  in  these  formulae,  y!  zz  log.  tan.  (j^r+l^j)  "^  being 
the  semicircumference  of  which  the  radius  is  equal  to  unity,  and  the 

preceding  logarithm  being  hyperbolic  ;  we  shall  have 
WtJi.    _ 

a » 

=  e.  tang,  w — log.  tan.  {^v  +  |w)  -,% 

t2 

sin.  ̂ —r   >-^=- '   ♦  ̂ 2^'  *   "  +^'   o   • 

/  u'  ,   — tt'  \ *  r/=a(l— e  cos.  w),  becomes  /  =  — a'(l— c)  f  ̂    +''         j« 

tt'  «'        -m' '   /■"  sin    -^— ^  ■  __—  y  I 

""ivIT  c-^  +  o^ 
c     — 1 

c         +1 

*T«ng-(^  +  ̂ ;=c      and— -— _=cot.(-  +  -)=c      ;  .'. tan. 

-  - <=      =tan.(_+  _)  _  cot.  (^  +  y j=  'M^+jJjHj;^ 
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r=a'.\   1  J-; (.COS.  W  J 

tan.  ̂ v  zz   \  -— j- .  tan.  ̂ w. 

The  ai'c.  -^ — -  is  the  mean  angulai-  motion  of  the  body  m,  during  the 

a'^ 
time  t,  supposed  to  move  in  a  circle  about  M,  at  a  distance  equal  to  a. 

This  arc  may  easily  be  determined  by  reducing  it  into  parts  of  the 

radius  ;  the  first  of  the  preceding  equations  will  give  by  trials,  the 

value  of  the  angle  w,  corresponding  to  the  time  t ;  the  two  other  equa- 

tions will  then  give  the  corresponding  values  of  v  and  of  v. 

25.  T  expressing  the  sidereal  revolution  of  a  planet  of  which  a  is  the 

mean  distance  from  the  sun  ;  the  first  of  the  equations  (/)  of  No.  20, 

will  give  T  =  2'7r;  but  by  the  same  number  we  have  — j^=«  j  there- 

h'      — u 

tang,  ar ;  /.  by  substituting  this  expression  for  '^        ̂   ;  we    obtain   the    value  of 

'•  '^llL  given  in  the  text.     /+""'=  tan.  (JL+  ̂ )  +cot.f  — +  ~  )  =2  sec-.  ̂  '§  V4'2/\4'2/ a- 2 

tan. 

2C0S.— .  sin.—        ̂ —  „         ,        ,.       ,,    '^^+^    ,,„'   -^   =  -7^=  .    cot.  —  .  tang.  -=  ,  (ascot.  -=  1),  -7=f-  '^n-o- 
2  sin.  — .  cos.  -5-       ̂   ̂     ̂ 
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fore  we  shall  have 

V   /A If  the  masses  of  the  planets,  relatively  to  that  of  the  sun,  be  ne- 
glected ;  jM.  will  express  the  mass  of  this  star,  and  this  quantity  will  be 

the  same  for  all  the  planets  ;  thus,  for  a  second  planet,  of  which  a  and 

T"  express  the  mean  distances  from  the  sun,  and  the  time  of  the  side- 
real revolution  ;  we  shall  have  in  like  manner 

■ 
T > 

consequently we shall  have 

r*: 
T"-.\a>: 

a'3 

that  is  to  say,  the  squares  of  the  times  of  the  revolutions  of  different 
planets,  are  to  each  other,  as  the  cubes  of  the  greater  axes  of  their  or- 

bits ;  this  is  one  of  the  laws  discovered  by  Kepler.  It  appears  from 
the  preceding  analysis,  that  this  law  is  not  rigorously  true,  and  that  it 
only  obtains  when  we  neglect  the  action  of  the  planets,  on  each  other, 
and  on  the  sun. 

If  we  assume  for  the  measure  of  the  time,  the  mean  motion  of  the 

earth,  and  for  the  unit  of  distance,  its  mean  distance  from  the  sun ; 

T  will  in  this  case  be  equal  to  Sir,  and  we  will  havea  =  1 ;  therefore  the 

preceding  expression  for  T  will  give  n*=:l ;  from  which  it  follows  that 
the  mass  of  the  sun  ought  then  to  be  taken  for  the  unity  of  mass.  We 

can  thus,  in  the  theory  of  the  planets  and  of  the  comets,  suppose  /^  =:!, 
and  assume  for  the  unity  of  distance,  the  mean  distance  of  the  earth 

from  the  sun  ;  but  then,  the  time  t  is  measured  by  corresponding  arc 
of  the  mean  sidereal  motion  of  the  earth. 

The  equation 
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enables  us  to  determine,  in  a  very  simple  manner,  the  ratios  of  the  masses 

of  the  planets  which  are  accompanied  by  satellites,  to  the  mass  of  the  sun. 

In  fact,  M  representing  this  mass,  if  we  neglect  the  mass  m  of  the  planet 

relatively  to  that  oi  M  -^  we  shall  have 

~  s/m' 

If  we  afterwards  consider  a  satellite  of  any  planet  m' ;  and  if  p  re- 
present the  mass  of  this  satellite,  and  h  its  mean  distance  from  the 

centre  of  m,  and  T,  the  time  of  its  sidereal  revolution,  we  shall  have 

therefore, 
m'-\-p  __  h^     f ̂ Y 

M     -^  a^'\T:  )  ' 
This  equation  gives  the  ratio  of  the  sum  of  the  masses  of  the  planet 

m'  and  of  its  satellite,  to  the  mass  M  of  the  sun ;  if  therefore  the 
mass  of  the  satellite  be  neglected  in  comparison  with  that  of  its  primary, 

or  if  we  suppose  that  the  ratio  of  these  masses  is  known  ;  we  will  ob- 
tain the  value  of  the  mass  of  the  planet,  to  that  of  the  sun.  We  will 

give,  in  tlie  theory  of  the  planets,  the  values  of  the  masses  of  the 
planets  about  which  satellites  have  been  observed  to  revolve. 
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CHAPTER  IV. 

Determination  of  the  elements  of  Elliptic  Motion. 

26.  After  having  treated  of  the  general  theory  of  elliptic  motion,  and 

of  the  mode  of  computing  it  by  converging  series,  in  the  two  cases  of* 
nature,  namely,  in  that  of  orbits  very  nearly  circular,  and  in  the  case 

of  very  eccentric  orbits ;  it  now  remains  for  us  to  determine  the  ele- 
ments of  of  these  orbits.  If  the  circumstances  of  the  primitive  mo- 

tions of  the  heavenly  bodies  were  given,  we  could  easily  deduce  the 
elements  from  them.  In  fact,  if  we  name  V  the  velocity  of  m,  in  its 

relative  motion  about  M  j  we  shall  have 

dt'  ' and  the  last  of  the  equations  (p)  of  No.  18,  will  give 

In  order  to  make  ju.  to  disappear  from  this  expression  ;  let  U  denote 
the  velocity  which  m  would  have,  if  it  described  about  M,  a  circle  of 

which  the  radius  is  equal  to  the  unity  of  distance.  In  this  hypothesis, 

we  have  r  =  a  =  1,  and  consequently  £/"*=/*  ;  therefore 
V'=U\ 

.  r         ay 

This  equation  will  give  the  semiaxis  major  a,  of  the  orbit,  by  means 

of  the  primitive  velocity  of  m,  and  of  its  primitive  distance  from  M.  a 

is  positive  in  the  ellipse  ;  it  is  infinite  in  the  parabola,  and  negative  in 
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the  hyperbola  ;  therefore  the  orbit  described  by  m,  is  an  ellipse,  a  para- 
bola,    or  an  hyperbola,  according  as  V  is  less,  equal  to  or  greater  than 

U.  ̂   — .     It  is  remarkable  that  the  direction  of  the  primitive  mo- 

tion, does  not  at  all  influence  the  species  of  conic  section.* 
In  order  to  determine  the  excentricity  of  the  orbit,  it  may  be  ob- 

served, that  if  i  represent  the  angle  which  the  direction  of  the  relative 

dv'' 

moti
on  

of  m,  mak
es 

 
with

  
the 

 
radi

us  
vect

or  
r ;  we  have

  
— r-j- 

 
=  V^. 

 
cos. 

*£.     By  substituting  in  place  of   V",  its  value  u.  \   C,  we  shall L  r       a  S 

have 

dr"-  C  2         1  J  ^    ̂  — -— -  =u.  i.   \ .  COS.   £  ;T 
df-  t  r        a  S 

I          2         V- 
*    From  the  equation  —  =   — ,  it  appears  that  when   V  and  r  are  given, 

the   axis  major  and  therefore  the  periodic  time  are  constantly  the  same.   Hence  since 

U.  Y  —  =  the  velocity  in  a  circle  at  the  same  distance,  it  follows  that  in  the  ellipse 

the  velocity  at  any  point  is  to  that  in  a  circle  at  the  same  distance  in  a  less  ratio  than  that 

of  \/'2  :  I,  in  a  parabola,  it  is  in  the  ratio  of  'V^  2  :  1 ;  and  in  the  hyperbola  it  is  in  a 
greater  ratio  than  that  of  V^  :  1.  See  Princip.  Math.  Prop.  16.  In  the  ellipse  when  the 

velocity  of  projection  diminishes,  the  distance  increases,  and  when  F  vanishes,  r  becomes 

equal  to  2a,  in  this  case  the  excentricity  e  becomes  equal  to  unity.    In  the  hyperbola, 

the  limit  of  the  velocity,  when  r  is  infinite,  is  17^  —  =  the  velocity  in  a  circle,  at  the 

distance  of  a  transverse  semiaxis  from  focus. 

It  is  also  manifest  that  when  the  distance  is  equal  to  the  semiaxis  major,  the  velocity 

is  equal  to  that  in  a  circle  at  the  same  distance,  and  that  in  general  the  velocity  in  an  el- 

lipse, is  to  the  velocity  in  a  circle  at  the  same  distance  in  the  subduplicate  ratio  of  the 

distance  from  the  other  focus  to  the  semiaxis  ;  for  it  is  as  V  2a — r  :  Va. 

t    -/  =  the  velocity  resolved  in  the  direction  of  the  radius,  .*.  it  is  equal  to  V,  mul- 
dt 

tiplied  into  the  cosine  of  the  angle  which  the  radius  vector  makes  with  the  curve  or  tan- 

gent, t.  e.  it  is  equal  to  F.  cos  c. 
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but  by  No.  19,  we  have 

therefore  we  shall  have 

c  2         1  ) 
a  (I — e' )=:>'''. sin.  ̂ s.  }   C; (  r         a  ) 

by  means  of  this  equation,   we  can  determine  ae  the  excentricity  of  the 
orbit. 

From  the  polar  equation  of  a  conic  section,  namely 

«.(!—£-) /•  ̂    i   i — 

1-f-e.  COS.  V    ' 

we  obtain 

a.  (I — e') — r COS.  v=  — ^   . er 

PART  1.  BOOK  II.  Z 

dr^    ,  *er^  /  2         1  \ 
Substituting  for  — —r  its  value,  we  shall  have  2«.r—  -^ —  —  m  i   ]r'.  cos.  -i= «<■  ■  a  V  r         a  / 

ixa.{l  —  e"),   .'.(2r   I.  ( 1  —  cos.  -s)  =  n(l  —  e")  =  the  parameter ;  hence  it  appears 

that  when  the  distance  and  axis  major  are  given,  the  parameter  varies  as  the  square  of  the 

sine  of  projection,     since  k *  =   "^^    ,  see  page  4,  a(l  —  e')  =  >-.  — — -  ,    •_• 

the  parameter  depends  on  that  part  of  the  velocity  which  acts  perpendicularly  to  the  radius 

vector,  it  is  termed  the  paracentrick  velocity,  and  it  is  evidently  a  maximum  at  the  ex- 

tremity of  the  focal  ordinate. 

(2          1  \    . 
  I,  it  follows  that  sin.  "s  varies  in- 

(2(1   
r  \ 

  ),  but  the  sum  of  the  two  factors
  

is  given, 
 
being 

 
equal  to  2«,  •/  the 

product  is  a  maximum,  and  consequently  the  sine  of  projection  is  the  least  possible,  when 

the  distance  from  the  focus  is  equal  to  the  seraiaxis  major. 
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We  shall  thus  obtain  the  angle  v,  which  the  radius  vector  r  constitutes 

with  the  perihelion  distance,  consequently  we  have  the  position  of  the 

perihelion.  The  equations  (f)  of  No.  20,  will  make  known  the 

angle  ii,  and  by  means  of  it,  the  instant  of  the  passage  through  the 

perihelion. 
In  order  to  determine  the  position  of  the  orbit,  with  respect  to  a 

fixed  plane  passing  through  the  centre  of  M,  supposed  immoveable  ; 

let  (p  represent  the  inclination  of  the  orbit  on  this  plane,  and  S  the  angle 
which  the  radius  r  constitutes  with  the  line  of  the  nodes ;  moreover  let 

z  be  the  primitive  elevation  of  m,  above  the  fixed  plane,  which 

elevation  we  suppose  to  be  known  ;   we  shall  have 

r.  sin.  e.  sin.  (pzz  z  ; 

so  that  the  inclination  (p  of  the  orbit  will  be  known,  when  we  shall  have 

determined  S.  For  this  purpose,  let  \  represent  the  angle,  which  the 

primitive  direction  of  the  relative  motion  of  m,  makes  with  the  fixed 

plane,  which  angle  we  suppose  to  be  known  ;  if  we  consider  the  triangle 

formed  by  this  direction  produced  to  meet  the  line  of  the  nodes,  by 

this  last  line,  and  by  the  radius  r  ;  I  representing  the  side  of  the  tri- 

angle which  is  opposed  to  the  angle  Q,  we  shall  have 

     r.  sin.  £ 
sin.  (S+0 

we  have  also  -~-  zz.  sin.  a  ;  therefore  we  shall  have 
V 

,  z.  sin.  £ 
tan.  C= 

r.  sin.  A — z.  COS.  £ 

•  r.  sin.  e=fl  perpendicular  let  fall  from  the  extremity  of  r,  on  the  line  of  the  aodcs, 

and  z  =  this  perpendicular  multiplied  into  the  sine  of  <p.  The  supplement  of  the  angle 

which  the  primitive  direction  makes  with  the  line  of  the  nodes  =  £  -|-  f,  .*.  f  :  >'.'.  sin.  £ : sin.  (S  -fi); 

.   ,  r.  sin.  S  ?-.  tan.  €  ~         •/„:„,       » 
.•.  /—  — :   ,  —    =  -:   ,  .  .  (r.  sin,  A — z.  co«. «;. 

sin.  £.  cos.  £-{-sin.  S.  cos.  J        sin,  e-J*^''"' *• '-''^' '        sm.  a 
tan  £  =  z.  sin.  i. 
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The  elements  of  the  orbit  of  the  planet  being  determined  by  these 

fornuilfB,  in  functions  of  the  coordinates  r  and  z,  of  the  velocity  of  the 

planet  and  of  the  direction  of  its  motion  ;  the  variations  of  these  ele- 

ments, corresponding  to  the  variations  which  are  supposed  to  take  place 

in  its  velocity  and  in  its  direction  may  be  obtained  ;  it  will  be  easy, 

by  the  methods  which  will  be  given  in  the  sequel,  to  infer  the  differential 

variations  of  these  elements,  arising  from  the  action  of  disturbing  forces. 

Let  us  resume  the  equation 

F*=  V\  \—   ^ L  r         a 

In  the  circle  a=r,  and  consequently  V  ■=  U.\  —  ;    from    which   it 

appears,  that  the  velocities  of  the  planets  in  different  circles  are  reci- 

procally as  the  square  roots  of  their  radii. 

In  the  parabola,  a  =  oc,   .-.   y  ~  Z/M  — ;  therefore  the  velocities 

in  different  points  of  the  orbit,  are  in  this  case  reciprocally  as  the  square 

roots  of  the  radii  vectores,  and  the  velocity  in  each  point  is  to  that  which 

the  planet  would  have,  if  it  described  a  circle  whose  radius  was  equal 

to  the  radius  vector  r,  as  \/  2  :  1. 

An  ellipse,  of  which  the  minor  axis  is  indefinitely  small,  is  changed 

into  a  right  line  ;  and  in  this  case,  V  expresses  the  velocity  of  di,  if  it 

descended  in  a  right  line  towards  M.  Let  us  suppose  that  m  sets  out 

from  a  state  of  repose,  and  that  its  primitive  distance  from  M  is  r  ;  let 

us  moreover  suppose,  that  having  attained  the  distance  r,  it  has  ac- 

quired the  velocity  V ;  the  preceding  expression  for  the  velocity,  will 

give  the  two  following  equations  : 

r         a  (  r         a  S 

Z2 
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from  whicli  we  obtain 

rr  ' this  is  the  expression  of  the  relative  velocity  acquired  by  wa,  in  depart- 

ing from  the  distance  r,  and  in  falling  towards  M,  through  the  height 

r  —  /,  We  can  easily  determine  by  means  of  this  formula,  from  what 

height  a  body  m,  which  moves  in  a  conic  section,  ought  to  fall  towards 

M,  in  order  to  acquire,  in  departing  from  the  extremity  of  the  radius 

vector  r,  a  relative  velocity  equal  to  that  which  it  has  at  this  extremity  ; 

for  V  expressing  this  last  velocity,  we  have 

i  S  ~         ̂   } 

but  the  square  of  the  velocity  acquired  in  falling  through  the  height 

r  —  r ,  IS    ^   —  ;    by  equating  these   two   expressions,     we 

shall  have 

4a — r 

„              .       ,                     .              ,           2a— r         ̂ r—^r" 
*  By  equating  these  expressions  we  have   =    ; —  ,    •  • 

(2a — r)r'  =  2a.(r — r*);  and  consequently  {4a — r)  r  =  lar  ;  .'.  r'  =   ,  andr — >'= 

Sar 

ia- 

  ,  in  the  ellipse  4a — r  is  greater  than  twice  2a — r,  .'.  r — r'  is  less  than  -— ;  in  the — r  «  o  i^ 

parabola  a  being  infinite,  r — r'z:.—,  in  the  hjfperbola  r — )'=   — — ,  and  as  in  this  case 

^a-\-r  is  less  than  twice  2a -)- >•,  r — r'  is  greater  than  ~-. 

In  order  to  determine  the  space  through  which  a  body  must  fall  externally,  so  tliat  it 

may   acquire  the  velocity  which  it  has  in  a  conic  section,  r' — r  must  be  substituted  lor 

r — r*,  and  then  we  equate  — — ~  to  ,    from   which   we   obtain   fiflr* — Sor  = rr  ar 
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In  the  circle  «=r,  and  then  r — T'-=i\r ;  in  the  ellipse,  we  have 

r — r'Z-\r;  a  being  infinite  in  the  parabola,  we  have  r — r'-=.\r%  and 
in  the  hyperbola,  in  which  a  is  negative,  we  have  r — r'>^r. 

•27.  The  equation 

is  remarkable,  in  that  it  determines  the  velocity  independently  of  the 

eccentricity  of  the  orbit.  It  is  contained  in  a  more  general  equation, 

which  exists  between  the  axis  major  of  the  orbit,  the  chord  of  the  el- 

liptic arc,  the  sum  of  its  extreme  radii  vectores,  and  the  time  em- 

ployed to  describe  this  arc.  In  order  to  arrive  at  this  last  equation,  we 

will  resume  the  equations  of  elliptic  motion,  which|have  been  given 

in  No.  20 ;  /*  being  supposed  for  the  sake  of  simplicity  equal  to  unity. 

These  equations  will  consequently  become 

~  1-f-e.  cos.  V  ' 
r  z=.  a.{\ — e,  cos.  U)  ; 

t  •=.  a^.(u — e.  sin.  u). 

Let  us  suppose  that  r,  v,  and  t  correspond  to  the  first  extremity 

of  the  elliptic  arc,  and  that  r',  v',  and  f  correspond  to  the  other  ex- 
tremity ;  we  will  have 

,_    a.(l—e^) ~  1-f  e.  cos.  t/  ' 

r'zz  a.(l — e.  cos.  u')  ; 

f=  a^.  {ill — e.  sin.  m'). 

Let/'_/=Tj    i^±ii=ej    '^±^^^;  r'+r=R, 

2fli- — r'r,  •/  ia  an  ellipse  /'  is  =  to  the  axis  major,  in  a  circle  it  18=  to  tbe  diameter, 

it  is  infinite  in  the  parabola  ;  and  in  the  hyperbola  r'  becomes  =  — 2a. 
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subtracting  the  expression  of  /,  from  that  of  t',  and  observing  at  the 
same  time  that 

sin.  u'  —  sin.  u  -=.2.  sin.  €.  cos.  6' ; 

we  shall  have 

T  n  2a"5.  (€ — e.  sin.  6.  cos  S'). 

If  we  add  together  the  two  expressions  of  r  and  of  r'  in  terms  of  u  and 
i/,  and  if  we  observe  that 

COS.  ti  -f  cos.  M  =  2  COS.  E.  COS.  S' ; 

we  shall  have 

R  zz  2c.(l  —  e.  COS.  €.  cos,  f ). 

Now,  let  e  represent  the  chord  of  the  elliptic  arc,  we  have 

c''=:r''-{-r"' — 2rr'.  cos.  (v — v')  ; 

but  from  the  two  equations 

a.(l — e*)  .,  >. r  =  — -^   —  ;  rzzaJl — e.  cos.  u\ 

1-^e.  cos.  V  ^ 
we  obtain 

a.  cos.  w — e)       .  a.V  I — e^'.sm.u COS.  I'  zz  — ^    :  sm.  vzz    —    • r  r 

In  like  manner  we  have 

a.Ccos.  XL — e)      .       ,       a.\    1 — e*.  sin.  «' cos.  V  —  — =^   ;  sm.  v  —   — —      ; r  r 

therefore  we  shall  have 

rr.  cos.  (w — t'')=o*.(e —  cos.  v).{e — cos.  w')+a".(l — e*).  sin.  u.  sin.  tC' 
and  consequently 

c*n:2a*.(l — e'^).(l — sin.  «.  sin.  11 — cos. ?<.  cos.  iC^ 
+a*e*,(cos.  u — cos.  liy  ; 

> 
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but  we  have 

sin.  u.  sin.  i/^-cos.  u'.  cos.  m  =  2  cos.  *£ — 1  ; 

COS.  u — COS.  m'  =  2.  sin.  g.  sin.  6' ; 

therefore 

c*zr4a*.  sin.  *e.(l--e^  cos.*?');* 

consequently  we  will  by  this  means  obtain  the  three  following  equations, 

R  =  2«.(1 — e.  COS.  e.  COS.  S')  ; 

T  =  2a^.  (£ — e.  sin.  £.  cos.  C) ;         - 

e=  4>a\  sin.  *e.(l — e*.  cos.  ̂ e'). 

»  «'=£'  +  £,  «=€' — £;  .'.  sin.  u'  =  sin.  £'.  cos.€  +  sin.  g.  cos.  €' ;  sin.  uzz%m.Z'.  cos.  C 

— sin.  S.  COS.  S' ;  .*.  sin.  v! —  sin.  «=  2.  sin.  S.  cos.  £',  hence  Tzr/' — <=  ai.  (u   u   e. 

(sin.  ii' — sin.  u)  =  the  expression  in  the  text.  Cos.  u'=  cos.  £'.  cos.  £ —  sin.  S.  sin.  £' ; 

COS.  i/=cos.  €.  COS.  €'+  sin.  S.  sin.  S', .'.  cos.  «+cos.  u=i2.  cos.  S'.  cos.  £,  and  r'-\-r=R=L 

(7.(2 — e.  (cos.  m'+cos.  a)  :=  the  expression  given  in  the  text,  t — v'  is  evidently  equal  to 

the  angle  contained  between  r  and  r'. 

a.(I — e")      .                       «.(1 — e") — a.(l — e.  cos.  u)     „ 
1-fc.  cos.v=   ;  ..e.  cos.  "j=     ;   :,   (by  substituting  for 

,     .         ae.fcos.  « — e)      .  fi.(cos.  m — e) 
r  Its  value)  =   ^^   ;  . .  cos  v=  — )-   :  •    sin.  -v  = r  r 

n-.{\ — 2e.  cos,  it+e'.  cos. ';<) — cos. ';f+2g.  cos.  i<^e')       a^.{\ — cos. -!«— (-'.(sin.  -u) 
—  ^    —   p;   
T  j~ 

tt'.(l — e").  sin. '((  ,  ,         ,, 
=   5   '  consequently  cos.  |t) — v  )=cos.  v  .  cos.  i^  +  sin.  v.  sin.  v'~ 

a'.(cos.  ?'-e).(cos.  !i'-e)  +  (7^.(l-e")  sin.u.  sin.M* 
_i   LI   IZ^^    ;  r~  +  r^=n"-.(2  _2e.(cos.  ?<  -f  cob. «')-[- 

r".(cos.  "u+cos.  -u')),  .*.  r*  +  r'-— 2?-/. COS.  {i—v')  =c-.(2 — 2e.(cos.  «+co6.  u')+e-.  (cos.'u 
+cos."«') — 2o^(e' — e.(cos.  k  +  cos.  ;(')4.cos.  u.  cos. ;/) — 2a".  sin.  u.  sin.  M'+2aW.  sin.  u. 

sin.  ii'  =  by  reduction  2fl^(l  —  t?).  (1 — sin.  «.  sin.  u')  —  cos.  u.  cos.  u'  -)-  a'.e'.  (cos.  "k 
-j-  cos. "«') — 2o.-.e°.  cos.  «.  cos.  ;/. 

Cos.  n.  cos. !('  +  sin.  ii.  sin.  k'  =  cos.  2£=  cos.  £■ — sin.  €^=  2.  cos.  °S — 1 . 

.-.  &  =  2a-(l— «'').( 1  +  1.  —  2.  cos.  =S)+  n".e=.(4..  sin.  =£.  sin.  '£'=40^(1— e'),(l— cos.  'S) 

4-«a'.e°.  sin. "«.  sin.  =£'  =4a-.(l— e*).  sin.  -£+  4a'.e^  sin.  %  —  4a^e^  sin.  €"-.  cos.  V  =  4c"'. 

sin.  ■€.(! — e".  cos.  -o'). 
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The  first  of  these  equations  gives 

e.  COS.  fe  zr   —  1 2a,  COS.  G 

by  substituting  this  value  of  e.  cos.  C',  in  the  two  others,  we  shall  have 

c  zzi^a  .  tan.    e.  ■{  cos.   £ —  {     )    {• 
I  \      '2a     J    S 

These  two  equations  do  not  involve  the  excentricity  e  ;  and  if  in  the 

first  we  substitute  in  place  of  £,  its  value  given  by  the  second,  we  shall 

obtain  T  in  a  function  of  c,  R  and  a.  It  appears  from  this,  that  the 

time  T  depends  only  on  the  axis  major,  the  chord  c,  and  the  sum  R 
of  the  extreme  radii  vectores. 

If  we  make 

^  _  Qa—R-\-c        ,  _    2a—R—c 
^  ~         2a         '   ~  ~  2a         ' 

the  last  of  the  preceding  equations  will  give 

cos.  ae  =  x^'+\/(i— ̂ ^).(T^'*) ; 

Irom  which  may  be  obtained, 

2  £  :=  arc.  cos.  z' — arc.  cos.  z  ;* 

c'  .     ,.        /2n — Ry    sin.  *£       ,        c  la — R  ,         .     .. 
*   =  sin.   o  —  I    )  .    -.  ,   let   =11,  ■    =:  )",  and  as  sin.  -lozr 
4n-  \     2a    /       COS.  ■£  4a-  2a 

1 — COS.  -£,  .'.  71.  COS. '^b=cos.  ̂ £ — COS.  *£ — to^+jb".  cos.  %  .'.  COS.  ■"*-!-(" — '"'" — !)•  *"*•  "^ 

  fn   m'^ — 1)      \^(7i — nr — 1)- — im'^ 
—  — m',  and  solving  this  equation  cos.  °£  =    ^   ±   j,   ,  and 

as  COS.  2?=  2 COS.  ■£ — 1,  we  have  cos.  2»=— n+nj'±  V(n— m" — If — 4?)!*,  .and  substi- 
tuting for  n  and  m,  we  obtain  ; 
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arc.  COS.  z  denotes  here  the  arc,  of  which  the  cosine  is  z ;  consequently 
we  have 

sin.  (arc.  cos.  z'^ — sin.  (arc.  cos.  s) 
tan.  ̂ ■=.   ^^   ^-— > — ^=    ; 

we  have  likewise  z  -\-  z'  ■=.   ;  therefore  the  expression  of  T  will 

become,  (by  observing,  that  if  T  is  the  duration  of  the  sidereal  revolu- 
tion of  the  earth,  of  which  the  mean  distance  from  the  sun  is  taken 

for  unity,  we  have  by  No.  16,    T  —  S'tt)  ; 

T=  — — .  (arc. cos.z — arc.cos.2: — sin. (arc.cos.2;')-f  sin.(arc.cos.;s)).    («) 

As  the  same  cosine  may  appertain  to  several   arcs,  this  expression  of 

PART.  I.   BOOK  II.  A  A 

2a—RV^-c'-  ̂   dc*  +  {2a—Ry—2^.(2a—Rf        2c°-— 2.(2a— /?)'    ,  i^i.^os  2g- 
ia'  ~~  \  (2a}*  4a-  •"  /  ' ""   ' 

the  part  of  this  radical  of  which  the  denominator  (2a)''  =  s°.2'° ; 

„      „       (2a— /?)--!- c=+2.c.(2a—iJ)       ^    ,„       {2a— ff)'+c^— 2.c.(2a— iJ)  ,     . 
for  2-  =    i — — -!- — i   '  and  z"  =  -i   -■     ,„  ,. — ^   ;    and    the 

(2a)-  (2«)- 

part  of  this  radical  of  which  the  denominator  is  4a-= — ~- — :''= — (2a  —  RY —  C- — 

(2a — RY — c'+2c.(2a — R) — 2c.(2a — R),  the  part  without  the  radical  is  evidently  equal 

to  22/,  .'.by  substituting  we  shall  find  the   cosine  of  2%  ̂^  zz' ■{•V  z- z"^ — z'^ — =''+1, 
which  is  evidently  equal  to  the  expression  given  in  the  text. 

Let  z,z'  represent  the  cosines  of  two  arcs,  and  the  cosine  of  the  difference  of  these  arcs 

will  be  =  22' 4- '/l — 2''.(1 — 2*')  =cos.  2£;  .'.  2S  =  the  difference  of  two  arcs  of  which 
the  cosines  are  2  and  zi. 

o-  •     ,       n  («+*)        •      (a—h)  ,  ,       _  («+A)  {a—b) bm.  a — sm.  6zz  2.  cos.  - — - —  .  sm.   ,  cos.  a  4-  cos.  6  =  2.  cos.  — - — .  cos.   — -— 2  2  2  2 

sin. 
sin.  a — sin.  b  2         __  (n — b) 

cos.  a+cos.  6  la — b)  °'        2 
cos. -i   2 

value  of  tan.  S,  which  is  given  in  the  text. 

=  tang.  —   ,  from  this  formula  may  be  inferred  the 
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T  is  ambiguous,  and  it  is  necessary  carefully  to  distinguish  the  arcs 

to  which  the  cosines  z  and  z'  belong. 
In  the  parabola,   the  seraiaxis  major  a  is  infinite,  and  we  have 

arc.  COS.  z — sni.  (arc.  cos.  z)  =:  -—.  I  — ~  ]'  * o    \     a    / 

By  making  c  negative,  we  obtain  the  value  of  the  arc.  cos.  ̂  — sin.  (arc. 

COS.  z)  ;  the  formula  (a)  will  therefore  give  for  the  time  T,  employed 

to  describe  the  arc  subtended  by  the  chord  c. 

The  sign  —  having  place,  when  the  two  extremities  of  the  parabolic 

*  Arc.  COS.  z' — sin.  arc.  COS.  :'=arc.  sin.  V'l — z"  —  V'l — ^'^  —by  expressing  the 
          /i   *'2^■^    

arc.  in  terms  of  the  sine,  v'l — z" -{.  ~         +  &c.  —  Vl — z'^ 

_  AW—iia—R)"  +  2c.{2a—R)—c')\ i _   {{iRa—R^  +  4.ac—2cR—c''))i 

—  when  n  is  oo,  ——-■   -, —    * 
'     (2.a.4a') 

In  the  expression  for  arc.  sin.  VI — ;:",  the  approximation  is  not  continued  beyond 
the  second  term,  because  the  subsequent  terms  disappear  in  the  value  of  T,  when  a  is 

supposed  to  be  infinite.  The  second  term  of  the  value  of  T  vanishes  when  c  passes  through 

the  focus,  and  T  is  less  when  the  angle  fomied  by  r,r'  is  turned  towards  the  perehelion, 
than  when  the  second  term  vanishes,  it  is  manifest  that  the  sign  of  the  second  term  must 

be  in  this  case  negative,  and  positive  in  every  other  case. 

The  second  term  of  the  second  member  of  this  equation  vanishes  when  the  extremi- 

ties of  the  arc  described,  are  bounded  by  the  focal  ordiaates,  .'.  the  time  of  describing 
the  parabolic  arc  intercepted  between  vertex  and  focal  ordinate  varies  in  the  sesquiplicate 

ratio  of  the  parameter.  See  Newton,  Princip.  Vol.  3,  Lem.  9,  10.  Indeed  it  appears 

from  the  value  of  T,  that  the  time  of  describing  any  parabolic  arc,  of  which  the  chord 

passes  through  the  focus,  varies  in  the  sesquiplicate  ratio  of  the  chord. 
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arc  are  situated  on  the  same  side  of  the  axis  of  the  parabola,  or  when 

one  of  them  being  situated  below,  the  angle  formed  by  the  two  radii  vec- 

tores,  is  turned  towards  the  perehelion,  it  is  necessary  to  make  use  of  the 

sign  -j-  in  every  other  case.     T  being  equal  to  365''^'",  25638,   we  have 

—    =  9""%  688754.. 

In  the  hyperbola,  a  is  negative  ;  z  and  z  become  greater  than  unity  ; 

the  arcs,  arc.  cos.  z,  and  arc.  cos.  z'  are  imaginary,  and  their  hyperbolic 
logarithms  are, 

1  .   
arc.  cos.  2;=       __  .  log.  (^z-\-s/z'—\  ; 

1  /   

arc.  COS.  s'=     / — —  .  \og.  {z'  +  \/  z'- — 1  ; 

consequently  the  formula  {a)  becomes  by  changing  a  into  —a, 

3  rp             

T=^  .(v/^"— 1  +v/;s^— 1— log.(2r'+v/2'*— i)±log.(zf-\/5^IIi. 

The  formula  (<z)  determines  the  time,  of  rectilinear  descent  of  a 

body  towards  the  focus,  when  it  departs  with  a  given  velocity, 

from  a  given  distance ;  it  is  sufficient  for  this  purpose,  to  suppose 

that  the  ellipse  which  it  then  describes,  is  infinitely  compressed. 

If,  for  example,  we  suppose  that  the  body  departs  from  a  state  of  rest, 

at  the  distance  2a  from  the  focus,  and  that  the  time  T,  which  it  employs 

to   describe    the    distance  c  is  sought ;   in  this  case  R  =  ̂ a-\-r ;  rzr 

'2a — c  ;  which  gives  z' = — 1;  z=   ;    the  formula  (a)  will  conse- 
CI' 

quently  give 

T=:   ]-!r — arc.  cos.  (       )  +  V    7 — c  • 
'/ir  (  \     a     J  a'      3 

aa2 



ISO  CELESTIAL  MECHANICS, 

There*  is,  however  an  essential  difference  between  the  elliptic  mo- 
tion towards  the  focus,  and  tlie  motion  in  an  ellipse  infinitely  com- 

pressed. In  the  first  case,  the  body  arrives  at  the  focus,  passes  beyond 

it,  and  elongates  itself  to  the  distance  from  which  it  commenced  to 

move  ;  in  the  second  case  the  body  having  attained  the  focus,  returns 

to  the  point  from  which  it  set  out.  A  tangential  velocity  at  the  aphe- 

lion, ever  so  small,  suffices  to  produce  this  difference,  which  does  not 

influence  the  time  employed  by  the  body  in  descending  towards  the 
focus. 

2S.  As  the  circumstances  of  the  primitive  motions  of  the  heavenly 
bodies  are  not  known  from  observation,  the  elements  of  their  orbit 

cannot  be  determined  by  the  formulae  of  No.  26.  In  order  to  effect 

this  object,  we  should  compare  together  their  respective  positions  ob- 

served at  different  epochs  ;  which  presents  considerable  difficulties,  as 

these  bodies  are  not  observed  from  the  centre  of  their  motions.  Indeed, 

with  respect  to  the  planets,  we  can,  by  means  of  their  oppositions  and 

conjunctions,  obtain  their  longitude  such  as  it  would  be  observed  from 

the  centre  itself  of  the  sun  ;  and  this  consideration,  combined  with  the 

small  excentricity,  and  small  inclination  of  their  orbits  to  the  ecliptic, 

simplifies   very   much  the  determination  of  their  elements.     Besides, 

„    „     ,        ,              .     ,        2a— 4-a-f  c—c          ,            la — 4n-J-2c         c — 2a 
*  iZ=2a-h'=4a— c,   :.z'=   ^   =—\,z=   ,,  =  — ^   

le     u    ■   a   :    T        T     '^'"     I            ,    \  ho-c          a-^s/ c.  \^  c If  a  be  inhnite  1=2.  — r — .  (5r — x-T-   \/  — —  =   ^^ — -  =  T  —=r  ; 

arc.  COS. 

^.■/2.  OT  v/2 

c — a  .  /lac — c-     .  .         4  jlac — c"   ^  arc.  sin.  ==  v/    >  •  •  ̂ s  x —  arc.  sin.—  \/    ,  and  arc. 
a  ^         a-  ""   V        a* 

/lac   c' sin.  =  ̂     T    have  the  same  sine,  T  varies  in  nn  ellipse  as  the  arc  —  sin. ;  whicli 

agrees  with  Newton's  conclusion;  Princip.  Math.  Lib,  1.  Prop.  37-     See  Prony  Mecha- 

nique  Analytique,  Tom.  2.  No,  914,  and  Euler's  Mechanics,  No.  272,  672. 

If  c=2a  the  time  of  falling  to  the  centre  will  be  equal  to 
a?T 
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in  the  actual  state  of  astronomy,  the  elements*  of  these  orbits  require 
only  very  slight  corrections  ;  and  as  the  variations  of  the  distances  of 

the  planets  from  the  earth  are  not  at  any  time  sufticiently  great  to 

render  them  invisible  to  us,  we  can  observe  them  perpetually,  and  by  a 

comparison  of  a  great  number  of  observations,  correct  the  elements 
of  their  orbits,  and  also  the  errors  tliemselves  to  which  the  observations 

are  liable.  This  method  cannot  be  applied  in  the  case  of  the  comets, 

as  they  are  only  visible  near  their  perehelion  ;  and  if  the  observations 

which  are  made  on  them  during  the  time  of  their  appearance,  are  ina- 
dequate to  the  determination  of  their  elements,  we  have  not  then  any 

means  of  following  these  stars  in  imagination,  through  the  immensity  of 

space  ;  so  that  when  the  lapse  of  ages  brings  them  back  towards  the  sun, 

it  is  impossible  for  us  to  recognise  them  ;  it  is  therefore  of  the  greatest 

consequence  to  be  able  to  determine  by  observations  made  during  the 

time  of  the  appearance  of  a  comet,  the  elements  of  its  orbits;  but 

the  rigorous  solution  of  this  problem  surpasses  the  powers  of  analysis, 

and  we  are  obliged  to  recur  to  methods  of  approximation,  in  order  to 

obtain  the  first  values  of  these  elements,  which  we  can  afterwards 

correct  with  all   the  precision  which  the  observations  admit  of. 

If  we  employ  observations  which  are  at  a  considerable  distance  from 

each  other,  the  eliminations  would  lead  to  impracticable  computations ; 

it  is  therefoie  necessary  to  restrict  ourselves  to  the  consideration  of  near 

observations  ;  and  even  with  this  restriction,  the  problem  presents  con- 

siderable difficulties.  It  has  appeared  to  me,  after  mature  reflection, 

that  instead  of  employing  directly  the  observations  themselves,  it  would 

be  more  advantageous  to  deduce  from  them  data,  which  offer  a  simple 

and  exact  result ;  and  I  am  satisfied  that  the  geocentric  latitude  and 

longitude  of  the  comet,  at  a  given  moment,  and  their  first  and  second 

*  In  the  present  state  of  Astronomy,  the  motions  of  the  planets  may  be  considered  as 

very  accurately  known,  and  the  object  of  these  observations  is  to  determine  them  with 

still  greater  accuracy.  And  when  the  elements  have  been  determined  uuder  the  most 

favourable  circumstances,  i.  e.  in  those  in  which  they  have  the  greatest  influence,  they 

should  be  afterwards  corrected  simultaneously,  by  the  method  of  the  equations  of  con- 
dition. 
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differences  divided  by  corresponding  powers  of  the  element  of  the  time, 

are  those  which  best  satisfy  this  condition  ;  for  by  means  of  these  data,  we 

can  determine  rigorously,  and  with  facility,  the  elements,  without  having 

recourse  to  any  integration,  and  by  the  sole  consideration  of  the  differ- 

ential equations  of  the  orbit.  Tiiis  mode  of  considering  the  problem 

permits  us  also  to  employ  a  great  number  of  neighbouring  observations, 

and  by  this  means,  to  embrace  a  considerable  interval  between  the  ex- 
treme observations,  which  is  very  useful  in  diminishing  the  influence  of 

the  errors,  to  which  these  observations  are  always  liable,  in  consequence 

of  the  neb:;losity  which  surrounds  the  comets.  I  proceed  now  to  pre- 
sent the  formulas,  by  means  of  which  the  first  differences  of  the  longitude 

and  latitude  may  be  deduced  from  any  number  of  neighbouring  observa- 
tions ;  I  will  afterwards  determine  the  elements  of  the  orbit  of  the 

comet  by  means  of  these  differences,  finally,  I  will  point  out  the 

means  which  have  appeared  to  me  the  simplest,  for  correcting  these 

elements,  by  three  observations,  made  at  a  considerable  distance  from 
each  other. 

29.  Let  at  any  given  epoch,  a.  be  the  geocentric  longitude  of 

a  comet,  and  6  its  northern  geocentric  latitude,  the  southern 

latitudes  being  supposed  negative.  If  we  denote  by  s,  the  num- 
ber of  days  which  have  elapsed  since  this  epoch ;  the  geocentric 

longitude  and  latitude  of  the  comet,  after  this  interval,  will  be  ex- 

pressed in  consequence  of  the  formula  (i)  of  No.  21,  by  the  two  fol- 

lowing series, 

The  values  of  a,  (  y  ) ,  \  'T'^)  ■>  ̂̂  '>  ̂'  (  ̂  )  '  ̂̂ '  '"^^  ̂ ^  ̂^' 

termined  by  means  of  several  observed  geocentric  longitudes  and  la- 
titudes. 
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In  order  to  obtain  them  in  the  simplest  manner,  let  us  consider  the 

infinite  series  which  expresses  the  geocentric  longitudes.  The  coef- 

ficients of  the  powers  of  5,  in  this  series,  may  be  determined  by  the 

condition  that  it  ought  to  represent  each  observed  longitude,  when 

we  substitute  for  s,  the  number  of  days  which  corresponds  to  it ; 

we  shall  by  tliis  means  obtain  as  many  equations  as  there  are  observa- 

tions ;  and  if  the  number  of  these  last  be  n,  we  cannot  determine  by 

their  means,   in   the  infinite  series,   but  n  quantities  a,  f   —  j  ,     &c. 

However,  it  ought  to  be  observed,  that  s  being  supposed  very  small,  we 

can  neglect  the  terms*  multiplied  by  s",  s""*"*,  &c.,  so  that  the  infinite 
series  is  reduced  to  the  n  first  terms,  which  we  are  able  to  deter- 

mine by  the  ?i  observations.  These  determinations  are  only  approxi- 

mative, and  their  accuracy  will  depend  on  the  smallness  of  the 

terms  which  we  have  neglected  ;  they  will  be  always  more  exact,  in 

proporron  to  the  smallness  of  5,  and  to  the  greater  number  of  obser- 

vations employed.  Therefore  the  question  is  reduced  to  a  problem  in 

the  theory  of  interpolations,  namely  to  find  an  entire  and  rational  function 
of  5,  of  such  a  nature,  that  when  we  substitute  for  s,  the  number  of 

days  which  correspond  to  each  observation,  this  function  is  changed  into 

the  observed  longitude. 

Let  £,  S',  6",  represent  the  observed  longitudes  of  the  comet,   and 

*  As  the  values  of  the  differential  coefficients  in  the  series  expanded  according  to  the 

formula  of  No.  '2 1 ,  are  independent  of  the  value  of  the  increments,  these  values  will  remain, 

when  the  increment  varies;  and  there  are  as  many  series  of  the  form  «  -f  — ( -r)  "4" 

.  f  -— )  -[-<ic.  as  there  are  observations ;  if  i  be  very  small,  it  may  be  proved  that  the 

terms  of  the  series  after  the  n  first  diminish  very  rapidly,  and  consequently  may  be 

neglected  ;  and  as  there  will  remain  but  n  terms,  if  we  have  n  observations  we  have  as 

many  observations  as  unknown  quantities  ;  if  the  number  of  observations  be  increased,  a 

greater  number  of  coefficients  can  be  determined,  and  if  s  become  less,  the  value  of  the 

terms  which  are  rejected  will  be  less. 
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I,  i',  i'',  the  number  of  days  which  intervene  between  them  and  the 
given  epoch  ;  these  numbers  ought  to  be  supposed  negative,  for  the 

observations  anterior  to  tliis  epoch.     By  making 

t'   e  g'   g  t,'"   t" 

I — t  I — i  I  ' — I 

i'—l 

z=  Pt  kc. 
&c.  ; 

the  function  sought  will  be 

g  +  (^s—i).K^(s—i).(^s—i').y-Q-h(s—i).(s—i').(s—i').P&  +  Sic. ; 

for  it  is  easy  to  be  assured,  that  if  we  make  successively,   s=:i,   szzi', 
szzi",  he.  this  function  will  be  converted  into  €,  €',  6  ,  &c. 

Now,    the   comparison   of   the   preceding   function,    with  the   fol- 
lowing : 

"-•(S)+^(^)  +  ̂- 
will  give,   by  putting  the   coefficients  of  similar  powers  of  s  equal  to 
each  other, 

a  =  g— i.  S^-\-i.  i'J'Q—i.i '.  i'.  SK  +  &c. ; 

i  (J)  =r<r^e-(i+/'+/"V^e+&c.- the  ulterior  differences  of  a.  will  be  useless  to  us.     The  coefficients  of 

*  These  equations  evidently  obtain  from  the  principle  of  indeterminate  coefficients,  and 

it  ia  manifest  that  the  greater  the  number  of  observations  the  more  accui-ately  will  they  be 

determined,  and  the  less  i',  i",  i"',  &c.  are,  the  more  rapid  will  be  the  convergence  of 
the  series. 
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these  expressions  are  alternately  positive  and  negative  ;  the  coefficient 

of  S't  is,  abstracting  from  the  sign,  the  product  of  r  into  r,  of  the  r 

quantities  i,  i',  i",  i^''~^\  in  the  value  of  a ;  it  is  the  sum  of  the  products  of 

the  same  quantities,  r — 1,  into  r — 1,  in  the  value  of  f  -^  J  ;  finally  it  is 

the  sum  of  the  products  of  the  quantities,  r  —  2,  into  r — 2,  in  the  value 

If  y,  y,  y'\  Sec.  represent  the  observed  geocentric  latitudes  of  the 

;7"  )  '  (  zr^  )   ̂c.j  by  chang- 

ing in  the  preceding  expressions  for  «,  ("j-)>(~j"— )>  ̂c.,  the  quantities 

e,  e',  Q'\  &c.  into  y,  y'y  y\   he. 

These  expressions  will  be  more  exact,  according  as  the  number 

of  observations  is  increased,  and  as  the  intervals  which  separate 

them,  are  less  ;  we  could  therefore*  employ  all  the  neighbouring  obser- 
vations of  the  selected  epoch,  provided  that  they  were  exact ;  but  the 

errors  to  which  they  are  always  liable,  would  lead  to  an  erroneous 

result ;  therefore  in  order  to  diminish  the  influence  of  these  errors, 

the  interval  between  the  extreme  observations  should  be  increased, 

in  proportion  as  a  greater  number  of  observations  is  employed.  We  are 
able  in  this  manner,  with  five  observations,  to  embrace  an  interval  of 

thirty-five  or  forty  degrees,  which  ought  to  lead  to  very  approximate 
values  of  the  geocentric  longitudes  and  latitudes,  and  of  their  first 

and  second  diflPerences.  If  the  epoch  which  we  select,  is  such  that 

there  exists  an  equal  number  of  observations  before  and  after  it,  so 

that  each  longitude  which  follows,  has  a  corresponding  longitude  which 

precedes   it  by   the   same   interval  ;     this    condition    will  render  the 
PART  I.   BOOK  ir.  B  B 

*  The  number  of  observations  will  of  itself  produce  an  increase  in  the  error,  .'.  in  order 
that  the  error  may  be  distributed  over  a  greater  number  of  degrees,  we  must  increase  the 
interval  between  the  extreme  observations. 
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values  of  a.  I  t;  )  ,  (  yi  )    more  accurate,*  and  it  is  easy  to  perceive 

*  When  the  obsenrations  are  assumed  at  different  sides  of  the  epoch  which  is  selected 

j',  i"',  i""',  &c.  are  negative  when  i,  i",  i"",  &e.  are  positive,  and  vice  versa.  In  the 
values  of  a,  which  are  given  above,  the  terms  after  the  first,  are  negative  and  positive  in  pair* 

and  in  the  values  of —;-,  — r^.  the  coefficients  of  c?£,  rf'S,  &c.   are  less  than  when  all  the 

as      as- 
observations  are  made  at  the  same  side  of  the  selected  epoch,  .*.  the  convergence  of  the 
terms  will  be  more  rapid,  and  the  terms  which  are  omitted  are  of  less  consequence. 

Let  the  number  of  observations  be  odd,  and  =:2r  +  l,  and  let  i  be  the  number  of  days 

between  each  observation,  and  let  the  epoch  from  which  we  count  be  the  instant  of  the 

mean  observation  when  «=?'''' ,  then  we  have 

d»__  J_ 

Is  ~   2i u   — .  ̂  A^e^'--^) + A=e('-3)   \ 
^  1.2.3  A.5    I  ^  S 

  =-^^   -J  A  ■'£''■-3)  +  A  '£"•-♦) 
1.2.3.4.5.6.7^  ^ 

(P«.       a'€('-i>  1 
di«  ~      2.?^  2.3.4..r 

A  *.£('•-*) 
^       -       A^eC-S)   f_±   r^.  A^e'-^'+Ac. 

1.2.3.4..5.6.Z'  2.3.4..S.6.7.8«7 

A  is  the  characteristic  of  finite  differences,  so  that  a  .EM  =  €<'■+') — €('>. 
If  the  number  of  observations  be  even,  and  equal  to  3r,  we  should   assume  for  the 

epoch,  the  mean  time  between  the  first  and  last  observation,  and  then  we  shall  have 

g(')+£(r-i)_  _L.  a'csc- D+et'-s') 

+  2Z6¥-^*(^''-"+«<'-''
) 

A«.(C('--3)+e'-* ) 2.4.6.8.10.12 

d»  A  C''"^'  1  •>  ft,     o\    ,  3  *  ^fr.     t  a 
-T-=  -^   T-?^-  ̂ -^^     '+TT-5-r7r^'  a'.SC-'  — &C.; dt  t  4.6.«  4.6.8.10.t 
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that  new  observations  assumed  at  equal  intervals,  and  at  opposite  sides 

of  this  epoch,  will  cause  quantities  to  be  added  to  those  values, 

which  will  be,  with  respect  to  their  last  terms,  of  the  same  order,  as  the 

ratio  of  5*.  [ -TT  J  to  «.     This  symmetric  disposition  obtains  when  all 

the  observations  being  equidistant,  we  fix  the  epoch  in  the  middle  of  the 

interval  contained  between  them  ;  it  is  therefore  advantageous  to  em- 

ploy corresponding  observations. 

In  general  it  will  be  always  useful  to  fix  the  epoch  towards  the  middle 

of  this  interval ;  because  that  the  number  of  days  which  separates  the  ex- 

treme observations,  being  less  considerable,  the  approximations  are 

more  convergent.  The  calculus  will  be  likewise  simplified  by  fixing 

the  epoch  at  the  very  instant  of  one  of  the  observations  ;  for  then  the 

values  of  a.  and  of  6  will  be  immediately  given. 

When,  by  the   preceding  process,  we  have  determined,    (  ~  J  , 

f  -j-^  )  '  (  Z  ) '  (  rf?  )  '  ̂ ^  ̂ ^'^  deduce  in  this  manner  the  first 

and  second  differences  of  a.  and  9,  divided  by  the  corresponding  powers 

of  the  element  of  the  time.  If  the  masses  of  the  planets  and  of  the 

comets,  are  neglected  in  comparison  with  that  of  the  sun  assumed  to  re- 

present the  unity  of  the  mass  ;  if,  moreover,  we  assume  for  the  unity 
of  distance,  its  mean  distance  from  the  earth  ;  the  mean  motion  of  the 

earth  round  the  sun,  will  be,  by  No.  23,  the  measure  of  the  time/; 

let,  therefore  x  represent  the  number  of  seconds  which  the  earth  de- 

BB  2 

\.1.ds^        4.4^  ̂   ̂         '    4.6.8.21  ̂        ̂         ' 

4..6.8.10.1'i.j»  •  '^  •^*        ̂   I      °"-^ 

It  is  easy  to  prove  these  theorems  from  the  theory  of  finite  differences.    See  Lacroix, 
Tom.  3. 
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scribes  in  a  day,  in  consequence  of  its  mean  sidereal  motion  ;  the  time 
t  corresponding  to  the  number  s  of  days,  will  be  xs ;  therefore  we 
shall  have 

\dt)-  x'  \Js)'  \l?)~—{l?)' 
Observations  give  in  logarithms  of  the  tables,  log.  Azr 4,0394622  ;  more- 

over, log.A"=log.  A  +  log.  ̂ ,  R  being  the  radius  of  the  circle,  re- 
duced into  seconds;  from  this  it  appears  that  log.  a- =  2,2750444 ; 

therefore,  if  the  values  of  ̂   -^  j  ,  and  of  (~\,  be  reduced  into  se- 

conds ;    the  logarithms  of  (  y  j  and  of   (  ~  J     will  be  obtained,    by 

subducting   from     the    logarithms  of    these    values,    the    logarithms, 

4,0394622,  and  2,2750444.     We   shall  obtain   in   like   manner,  the 

the  logarithm  of  {  7^  )  »  and  of  (  -77  1  ;    by    subtracting  respectively 

the  same  logarithms,  from  the  logarithms  of  their  values  reduced  into 
seconds. 

■     As  the  precision  of  the  following  results  depends  on  the  accuracy  of 

the  values  of  .,   (^),  (^^:),   6,  (i^)  ,  and   (^^')  ,    and    as their  formation  is  very  simple,  the  observations  ought  to  be  selected  and 

multiplied  in  such  a  manner,  as  to  obtain  them  with  the  greatest  pos- 

sible precision.  We  now  proceed  to  the  determination  of  the  elements 

of  the  orbit  of  the  comet  by  means  of  these  values,  and  in  order  to 

generalize  these  results,  we  will  consider  the  motion  of  a  system  of 

bodies  actuated  by  any  forces  whatever. 

30.  Let  X,  y,  z,  be  the  rectangular  coordinates  of  the  first  body  ; 

x',  y',  z',  those  of  the  second  body,  and  so  on  of  the  rest.  Let  us 
conceive  that  the  first  body  is  sollicited  parallel  to  the  axis  of  a;  of  y, 

and  of  z,  by  the  forces  X,   Y,  and  Z,  which  forces  we  will   suppose 
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to  tend  to  diminish  these  variables.  Let  us  conceive,  in  like  manner, 

that  the  second  body  is  sollicited  parallel  to  the  same  axes,  by  the 

forces  X',  Y',  Z,  and  so  of  the  rest.  The  motions  of  all  these 
bodies  will  be  given  by  differential  equations  of  the  second  order, 

&c. 

If  the  number  of  bodies  is  n,  the  number  of  these  equations 

will  be  2>n,  and  their  finite  integrals  will  involve  &n  arbitrary  quan- 
tities, which  will  be  the  elements  of  the  orbits  of  these  different 

bodies.* 
In  order  to  determine  these  elements  by  means  of  observations,  we 

should  transform  the  coordinates  of  each  body  into  others,  of  which  the 

origin  will  be  at  the  observer.  Therefore  supposing  a  plane,  of 

which  the  position  may  remain  always  parallel  to  itself,  to  pass  through 

the  eye  of  the  observer,  while  the  observer  moves  on  a  given 

curve,  let  f,  f',  ̂' ,  represent  the  distances  of  the  observer  from  the 

different  bodies,  projected  on  this  plane ;  and  «,  a',  a.",  &c.,  the  ap- 
parent longitudes  of  these  bodies,  referred  to  the  same  plane,  and 

6,  6',  %",  their  apparent  latitudes.  The  variables  x,  y,  z,  will  be  given 
in  a  function  of  f,  a,  6,  and  of  the  coordinates  of  the  observer.  In  like 

manner,  a/,  y',  z,  will  be  given  in  functions  of  f',  a',  6',  and  of  the 
coordinates  of  the  observer,  and  so  of  the  rest.  Moreover,  if  we  sup- 

pose that  the  forces  X,  F,  Z,  X',  Y',  Z,  &c.,  arise  from  the  re- 
ciprocal action  of  the  bodies  of  the  system,  and  from  the  action  of 

foreign  bodies  j  they  will  be  given  in  functions  of  f,  p',  {,  &c. ;  «,  «, 

*  Each  body  furnishes  three  equations,  and  consequently  tlie  n  bodies  furnish  3«  equa- 
tions, and  as  in  the  integration  of  each  differential  equation  of  the  second  order,  two  ar- 

bitrary quantities  are  introduced,  the  total  number  of  arbitrary  quantities  must  be  6«. 
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01." y  &c. ;  9,  0',  %" ,  &c. ;  and  of  known  quantities ;  consequently  the 
preceding  differential  equations  will  be  between  these  new  variables, 

and  their  first  and  second  differences  ;  now  observations  make  known, 

for  a  given  time  instant,  the  values  of  a,  (  -^  )  »    (  -^  )  ,  6,  {  -7-  )  . 

I  —  j  ;  o''*  {  7/7  ) '  (  ~j^  )  >    ̂c.  ;    therefore,    the   quantities   which 

remain  unknown,  are  f,  f',  ̂' ,  &c.,  their  first  and  second  differences. 
These  unknown  quantities  are  Zn  in  number,  and  as  we  have  3?*  differen- 

tial equations,  we  can  determine  them.  There  is  also  this  advantage 

connected  with  this  method,  that  the  first  and  second  differences  of  j, 

f',  ̂',  &c.  occur  in  these  equations,  in  a  linear  form. 

The  quantities  «,  6,  j,  «',  6',  §',  &c.,  and  their  first  differentials  di- 
vided by  dt,  being  known  ;  we  shall  have  for  any  given  instant,  the 

the  values  of  x,  y,  z,  a/,  r/,  z',  Sec,  and  of  their  first  differentials  di- 

vided by  dt.  These  values  being*  substituted  in  the  3n  integrals  of 
the  preceding  differential  equations,  and  in  the  first  differences  of  these 

integrals  will  give  6?z  equations,  by  means  of  which  we  can  determine 

the  6n  arbitrary  quantities  of  these  integrals,  or  the  elements  of  the 
orbits  of  these  different  bodies. 

31.  Let  us  apply  this  method  to  the  motion  of  the  comets.  For 

this  purpose  it  may  be  observed,  that  the  principal  force  which  ac- 
tuates them,  being  the  attraction  of  the  sun,  we  may  abstract  from 

the  consideration  of  every  other  force.  However,  if  the  comet  passes 

sufficiently  near  to  any  large  planet,  to  experience  a  sensible  per- 

turbation, the  preceding  method  would  still  make  known  its  velo- 

city, and  its  distance  from  the  earth ;  but  this  case  being  of  rare  oc- 
currence, we  shall  only  consider,  in  the  subsequent  researches,  the 

action  of  the  sun. 

*  The  number  of  unknown  quantities  for  each  body  is  tliree,  namely  5,  --^,  -r-f-  , 

therefore  there  are  3«  unknown  quantities  in  the  system  of  n  bodies. 
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Assuming  the  mass  of  the  sun  to  repi'esent  the  unity  of  mass,  and 
its  mean  distance  from  the  earth,  the  unity  of  distance,  and  moreover 

placing  the  origin  of  the  coordinates  x,  y,  z,  of  a  comet  of  which 

the  radius  is  r,  at  the  sun;  the  differential  equations  (O)  of  No.  17, 

will  become,  (the  mass  of  the  comet,  in  comparison  with  that  of  the 

sun  being  neglected) 

0=  '^'^  •   ̂ 

Let  us  now  suppose  that  the  plane  of  x  and  of  ?/,  is  the  plane  of 

the  ecliptic  ;  tliat  the  axis  of  or  is  the  line  drawn  from  the  centre  of  the 

sun  to  the  first  point  of  Aries,  at  a  given  epoch  ;  that  the  axis  of  z/  is  the 

line  drawn  from  the  centre  of  the  sun  to  the  first  point  of  Cancer,  at 

the  same  epoch  ;  that  the  positive  z'  are  on  the  same  side  with  the  north 
pole  of  the  ecliptic  ;  and  finally,  that  a/  and  y  are  the  coordinates 

of  the  earth,  and  R  its  radius  vector ;  this  being  premised, 

Let  the  coordinates  a;  y,  z,  be  transformed  into  others  relative  to 

the  observer ;  and  for  this  purpose  let  a.  represent  the  geocentric 
longitude  of  the  comet,  9  its  geocentric  latitude,  and  f  its  distance 
from  the  earth  projected  on  the  ecliptic ;   we  shall  have 

x-=.3!-\-^.  COS.  a,  ;  y=.y'-\-f.  sin.  a. ;   zzz^.  tan.  6. 

If  from  the  first  of  the  equations  (k),  multiplied  by  sin.  «,  be  sub- 
tracted the  second  multiplied  by  cos.  a,  we  shall  have 

n—  o-„         ̂ °*                      '^V  I    ̂ -  sin*  <^—y-  cos.  a.   „ 
0=  sin.  «.  -^  -  COS.  a.-^  +   -^    * 

^     ds  _dx'        di  .  d»       ,    d^s      .  dV      .  rf«e 
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Iience  we  deduce,  by  substituting  for  x  and  y  their  preceding  values 

c?V                    d°y'      x' .  sin.  a — y' .  cos.  a. 
sin.  *.  -^  -  COS.  «.  -^  +   y,   . 

The  earth  being  retained  in  its  orbit,  as  the  comet,  by  the  attraction 

of  the  sun,  we  have 

df  ̂     R'  '  dt'    '    R' 

consequently, 

dV  d^u'      1)'.  cos.  a — x'.  sin.  a 

therefore,   we  shall  have 

0=:(^.cos.a-y.sm.«).J-^— ^J-2.J-^5.J^j-f.  ̂ ^|. 

Let  A  be  the  longitude  of  the  earth,  as  seen  from  the  sun  j  we  shall 
have 

x'=R.  COS.  A  ;  y'=R.  sin.  A; 

therefore 

y'.  COS.  a — x\  sin.  x=zR.  sin.  (^ — «)  ; 

the  preceding  equation  will  consequently  become, 

^    dp     da        .     „  dx^  .     „      d°-tc     dy        du' 
sin.  «.  COS.  « — 2.  — ^.  -T— .  sm.  -«  —  g.  sin.  «.  cos.  «.  -.-   e.  sin.  -«.  -t-t-  ;  — j-  =  -3— ri<     dt  ^  dr  dr      dt        dt 

de       .         ,  (l»        .    '^'y  dW  ,     d-p 
+  -^.  sm.  «+£.  COS.  «.  — r-  ;   . .  -~  .  COS.  »  —     ,„     .  COS.  »  +  -rr-  sin.  «.  cos.  a 
^  </<  ^^  _     dt  dt-  dt'  ^    dt- 

^    dp      da  „  .  da'  „       t^-«         ,  ,.       ,.  ,  . 
+  2.  -f-,  —-.  COS.  -«  —  5.  Sin.  «.  cos.  «.  -jj-  +  5.  cos.  "«--tt'  '    "J'   subtracting    this (tf      ct't  dt''  Oft 

equation  from  the  value  of  -— -  .  sin.   «,    observing   the  quantities   which  destroy   each 

other,  and  also  those  which  coalesce,  we  an*ive  at  the  expression  given  in  the  text. 
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S^O       JZ.  sin.  (A — a)    C    1         17  ^  d^x } 

Let  us  now  investigate  a  second  expression  for  \-4.\.     For  this  pur- 

pose  multiplying  the  first  of  the  equations  (A:),  by  tan.  9,  cos.  a. ;  the 

second  by  tan.  6.  sin.  a  ;  and  then  subtracting  the  third  equation,  from 

the  sum  of  these  two  products  ;   we  shall  have 

/,    i.      A  ̂             d''x   ,    .         d^y )  ,  .       /,  C  -r.  cos.  «  4-  y.  sin.  a,  > 
Ozitan.  9.  \  cos.  a..  ----+sin.  «.  ̂   ̂  4-tan.  9.  ̂    TA.   ( 

IF       r^' This  equation  will  become,  by  substituting  for  x,  y,  z,  their  values, 

0  =  tan.9.|)^+^^.cos.«+|^'+f(.sin..j_* 

^   5^^? 
^^/i 

cos.  *9 PART  I.  BOOK  II.  C  C 

*  -7?T-=  — rr  T — rr-  cos.  «  — 2.  -p-.  —7- .  sin.  « —  ».  cos. «.  — —   £.  sin.  «.  — — 
</<-         dt^         dt^  dt      dt  ^  dl"        ̂   dt- 

d^u        d-y'         d'p      .  dp      d»  .         da."  d'cc 

-de-  =-lF+^'  *'"•  «  +  2-  -^.  -dt  ■  cos.«-c.sm.«.—  +  ,.  cos.«.— 

.    d"x  d}y       .  d^x'  d'y'      .  d\  rf«' •  •  "Zr  •    COS.  «  +  -—V  .  sm.  «  =    -77-  .   COS.  a  A   7^.  sin.  a-l   pj-  —  f.  — TT-. 
df-                 ̂     dt"                      dt"  ^    dt^  ^  dt'        ̂      dt" 

X.  COS.  cc-\-2/.  sin.  »     x'.  COS.  «+^'.  sin.  «         g 

,  .    rfs        rff  rf«        d'z        d-p z  —  {.tan.  «  . .— — =  -f-.  tane. «+».    r-:  ——-  =  -—4  .  tan.  «  + 
^  dt        dt         ̂      ̂ '^   COS. -«'    rf<^         dt-  ^ 

o    d?      d)        1  d-d       p  2p        df       .  ,  .  .      .    .         ̂  
"jT*  -jT*   57  +  -rr*         3^  H   TT    -rr^  •  sin.  i,  this  expression  being  subtract- dt      dt    COS.  ̂ «        d<^     COS.  'i       COS.  '6  •    dt" 

ed  from  the  preceding  multiplied  into  tan.  6,  gives  0  = 
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COS.  *9         COS.  ̂ 6 
but  we  have 

therefore 

.  ,                   i  )— -C           ̂   ,„                      i^  f  •  sin.  6.  COS.  6 

|;  =  _iJM  +  2.®.tang.9  +  ̂̂^i--_   

jR.  sin.  6.  COS.  6.  COS. (^-a)    (1       1  >    * 

if  this   valae    of   -^  be  subtracted  from  the  first,  and  if  we  suppose 

W  ̂ .  sin.  9.  COS.  fi.  cos.(yf — »)+  j-ji .  sin.  (.4 — «)     t 

tan.  e.  [  —7-- .   COS. «  J   fi-  .   sin.  «.  -^   .    cos.  «  +  •^.  sm. «.  1 4-  -^   

—  .  tan.«_  2.—.  —    _^_  __._____.._.  sm.  6-  —.  tan.^ 

^.  tan.  6 

p.= 

*  This  value  of  ~  is  derived  immediately  from  the  preceding  equations,  by  multiply- 

ing the  entire  expression,  by  cos.  "l.  and  dividing  by  — ,  and  observing  that  tan.  «=   '—, 

f  If  the  two  values  of  —,  be  multiplied  by  -^'—r  >  and  if  the  second  be  then  sub- dt  "^  •'    dl      dt 
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The  projected  distance  ̂ ,  of  the  comet  from  the  earth,  being  always 

positive  ;  this  equation  shews  that  the  distance  r  of  the  comet  from  the 

sun  is  greater  or  less  than  the  distance  R  of  the  earth  from  the  sun, 

according  as  /u.'  is  positive  or  negative  ;  these  two  distances  are  equal, 
if  i^'  =  0. 

We  can,  by  the  sole  inspection  of  the  celestial  globe,  determine  the 

sign  of/  ;  and  consequently,  whether  the  comet  is  nearer  or  farther 

than  the  earth  from  the  sun.  For  this  purpose,  let  us  conceive  a  great 

circle,  which  passes  through  two  geocentric  positions  of  the  comet, 

indefinitely  near  to  each  other.  Let  y  represent  the  inclination  of  this 

circle  to  the  ecliptic,  and  ̂ ,  the  longitude  of  its  ascending  node  •,  we 
shall  have 

tan.  y.  sin.  (« — x)—  tang.  9 ; 

fiom  which  may  be  obtained 

rfO.  sin.  (a — x):=.doi..  sin.  6.  cos.  6.  cos.  (a — a)  ; 

differentiating  a  second  time,  we  shall  have 

c  c  2 

traded  from  the  first,  the  quantity  by  which  g  is  multiplied  is  the  numerator  of  the  value 

of  fi',  and  the  quantity  independent  of  5,  is  its  denominator. 

If  r  be  less  than  R,—   ^  is  positive,  .".  in  this  case  ft'  must  be  positive ;  if  r  is 

greater  than  R,  then  —   —  is  negative,  .',  /*'  must  in  this  case  be  negative ;  when 
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+  <.-r,  c  •  sm.  9.  COS.  6: 

(at ) 
f/*9,  being  the  value  of  c?^9,  which  it  would  have,  if  the  apparent  mo- 

tion of  the  comet  continued  in  the  great  circle.     Consequently  the 

value  of  j!*'  becomes,   by  substituting  for  d0,   its   value 
dx.  sin.  S'  cos.  G.  cos.  (a — x)  ̂ 

sin.  (« — x)  ' 

^  sin.  0.  cos.  6.  sin.  {A — x)     j 

The  function   ̂ ■^"'  ;        {■  is   constantly  positive  :  therefore  the   value 
sin.  9.  cos.  G  •'  "^ 

^   ..        .  .  .  T  W9)       Sd'^J  u     .1- 
01  ju.'  is  positive  or  negative,  according  as  j-jjit  —  )  -ttt  c  has  the  same 

or  a  contrary  sign,  to  sin.  (^4— x)  ;  A — x  is   equal  to   two   right   an- 
gles, plus  the  distance  of  the  sun  from  the   ascending  node   of  the 

^    ,  ,         ,  di  ...  COS.  (« — a),  tan,  6  di  . 
*  d*.  COS.  let — a),  tan.  y—   j-  ,  . .  a«.   ■ — 7—^ — r   =   r-  ,  . .  rf«.  cos. 

^         '  COS.  ̂ «  '       sin.  (a— x)  cos.'« 

(« — x).  sin.  6.  COS.  6  =  dS.  sin.  (« — x)  ;  hence 

dH,.  sin.  (« — a)+6?«.  d6.  cos.  (« — x)=:d'<».  sin.  6.  cos.  «.  cos.  (a — A)+c?<t.  (f^  cos.  ■'«.  cos. 
(»  —  a)  —  d».  di.  sin.  ̂ «-  cos.  («— a) — da,^.  sin.  t.  cos.  6.  sin.  (« — a),  by  substituting  for 

dx  (1^0  •  da, 
sin.  U —  x)  its  value  — r-.  sin.  6.  cos.  6.  cos.  (a — a),  we  obtain  — ^ — .  sm.  6.  cos.  6.  cos. 

(« — x)  +  d».di,  (cos.  (« — x)=:d'«.  sin.  «.  cos.  «.  cos.  (« — x)-\-d».de.  cos.  '^  cos.  (»  —  a)  — 

da^ 

tUMe.  siu.  "6.  cos.  («— a)   -— .  sin.  '6.  cos.  '«.  cos.  («— x) ;  dividing  both  sides  of  this 

sin.  6.  cos.  d  ,         ,  ,     .     ,  .        , .  L  •      •        •»»,.. 
equation  by    .  cos.  {« — a),  we  obtain  the  expression  which  is  giTen  m  the  text. 

t  By  substituting  for  — — •  —r-^.  tang. «  +(-;-)•  sin.  (.  cos.  i.  its  value  given  in  the 
(lb  (it  \(lt    '  ' 

preceding  equation,  and  for  di  its  value,  we  obtain  ̂ '= 

r  —   j-j-'J.  sin.  (« — a)  divided  by  sin.  6.  cos.  6.  (sin.  («— a),  cos.  (j4 — «)-I-cos.  (»— a), 

sin.  (A — a)) ;  =  (sin.  i,  cos.  *.  sin.  (« — X4.^ — «)=sin.  t.  cos. «.  sin.  (.4— x). 
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great  circle  ;  hence  it  is  easy  to  infer  that  f^'  will  be  positive  or  nega- 

tive, according'  as  in  a  third  geocentric  position  of  the  comet,  inclefi- 

Jiitely  near*  to  the  two  first,  the  comet  deviates  from  this  great  circle 
from  the  very  side  in  which  the  sun  exists,  or  from  the  opposite  side. 

Let  us  conceive,  therefore,  that  a  great  circle  of  the  sphere  passes 

through  two  geocentric  positions  of  the  comet,  indefinitely  near  to  each 

other ;  if  in  a  third  consecutive  geocentric  position  indefinitely  near 

to  the  two  first,  the  comet  deviates  from  this  great  circle,  from  the 

same  side  as  the  sun,  or  from  the  opposite  side,  it  will  be  nearer  or 

farther  than  the  earth  from  the  sun,  it  will  be  equally  distant,  if  it 

continues  to  appear  in  this  great  circle ;  thus  the  different  inflexions 

of  its.  apparent  route  will  throw  some  light  on  the  variations  of  its 
distances  from  the  sun. 

In  order  to  eliminate  r  from  the  equation  (3),  so  that  this  equation 

may  only  involve  the  unknown  f,  it  is  to  be  observed  that  we  have  r*=: 

x''-\-i/*-\-z'',  and  by  substituting  in  place  of  x,  t/,  z,  their  values  in 
terms  of  f,  a.  and  « ;  we  shall  have 

r*=z'*+y*+2f.  (a/,  cos.  «+y.  sin.  «)-|   ^—rr'tf 
cos.     V 

*  A=^  180+  a(=  the  sun's  longitude,  as  seen  from  the  earth)  and  .'.  A — a  =  180  + 

a — A=180+  the  distance  of  the  sun  from  the  ascending  node  of  the  great  circle,  .'.  when 

«  is  >  A  the  sign  of  sin.  (^A — a)  is  negative,  and  if  —r~,   -r-^  be  also    negative,    the 

comet  in  the  third  position  must  deviate  from  the  great  circle  from  the  very  direction  in 

which  the  sun  appears  as  seen  from  the  earth,  if  a  be  Z  A,  then  sin.  {A — a)  is  positive, .'.  if 

d^i    d^6 
—  -  -fibe  also  positive,  it  is  evident  that  the  comet  must  be  nearer  than  the  earth  to  the  sun, 

and  .'.  that  in  the  third  position,  the  comet  must  deviate  from  the  great  circle,  from  the  direc- 
tion in  which  the  sun  appears  from  the  earth ;  on  the  contrary,  if  sin.  (^-a)  be  negative,  and 

d't        d'e  ,.      . 
—jY   -rf  positive,  in  order  that  this  may  obtain,  in  this  situation  of  the  bodies,  it  is 

necessary  that  in  the  third  position  the  comet  should  deviate  from  the'great  circle,  from  the 
opposite  side  to  that  in  which  the  sun  appears,  as  seen  from  the  earth.  See  Memoirs  of 

the  Academy  of  Berlin,  for  the  years  1772,  and  1778. 

t  **=x'*+2§.j'.cos.  «  +  5*.  cos. '« ;  7/' =  y  +  2ry.  sin.  «  +  g^  sin."*;  s'=5» 



198  CELESTIAL  MECHANICS, 

but  we  liave  a/zzR.  cos.  A  ;  y'zzB.  sin.  A  ;  therefore 

r'  =  — ^—--  +  2R.(.  cos,  (A—c,)i-R'. 
COS.  -0  ^ 

By  squaring  the  members  of  the  equation  (3),  when  arranged  under 

the  following  form, 

we  shall  obtain,  by  substituting  in  place  of  r^,    its  value, 

■  (h^+^^?-  '^'-  (^—n^y
-  (y-'-R'?+iy'=R' ;    (4) 

In  this*  equation,  ̂   is  the  only  unknown  quantity,  and  it  ascends  to  the 
seventh  degree,  because  the  term  which  is  entirely  known  in  the  first 

member  being  equal  to  72*,  the  entire  equation  is  divisible  by  f.  Hav- 

ing by  this  means  determined  f,  we  will  obtain  \-4.{  by  means  of  the 

equations  ( 1 )  and  (2).     By  substituting,  for  example  in  the  equation 

(1),  instead  of  —^   ^^ ,  its  value -^,  which  is  given  by  the  equa- 

tion  (3) ;   we  shall  have 

Y4l=      "/        $5???  + />^'.  sin.  (A-«)  I. 

The  equation  (4)  is  frequently  susceptible  of  several  real  and  positive 

roots ;  by  making  its  second  member  to  coalesce  with  the  first,  and 

tlien  dividing  by  f,  its  last  term  will  be 

tan.'fl.   .-.ar^+^H^'^  •'^''-+j/"  +  2e.(j'.  cos.  a+y.  sin.  a)+5^(l-ftan.  '^)=['^^^. 

Multiplying  both  sides  of  equation  (3)  by  fi'.  R'.r^,  and  we  obtain  ft'.R\^.r^  =  R*  ~ 

R.i",  :.  r\lfi'.R'i-\.l)=R';  .'.  substituting  for  r^  its  value  we  obtain  f ~^  +  2i??. 

COS.  (A—u)  +  R^)r.  ifc'Rr-.^+l)=R\ 
*  Ti*^  occurs  on  both  sides  of  this  equation  with  the  same  sign,  therefore  it  may  be 

omitted,  and  as  the  remaining  quantity  is  divisible  by  g,  it  may  be  depressed  to  the  seventh 

degree. 
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2.  R'.  COS.  «9.  (ix'.R^+3.  COS.  (A—<^))  ;* 

Thus  the  equation  in  ̂ ,  being  of  the  seventh  degree,  it  will  have  at 

least  two  roots  which  are  real  and  positive,  if /^'.  iJ'+3.  cos.  (A — a) 
is  positive  jt  for  by  the  nature  of  the  problem,  it  must  always  have  a 

positive  root,  and  it  is  evident  from  the  nature  of  equations  that  when 

this  is  the  case  the  number  of  its  positive  roots  cannot  be  odd.  Each 

real  and  positive  value  off,  gives  a  different  conick  section  for  the  orbit 

of  the  comet ;  therefore  we  will  have  as  many  curves  which  satisfy  three 

neighbouring  observations,  as  ̂   will  have  real  and  positive  values,  and 
in  order  to  determine  the  true  orbit  of  the  comet,  we  must  have  recourse 
to  a  new  observation. 

32.  The  value  of  f,  deduced  from  the  equation  (4)  would  be  rigor- 

ously  exact,  if «,   ('^),(^),  6,    (|),^^^   ,    were    exactly 
known  ;  but  these  are  only  approximate  values.  Indeed,  we  can  by 

the  method  already  laid  down  approach  to  them  nearer  and  nearer,  by 

employing  a  considerable  number  of  observations,  which  has  also  the 

advantage,  of  enabling  us  to  consider  intervals  sufficiently  great, 

and  thus  to  compensate  by  each  other,  the  errors  of  observations. 

But  this  method  is  liable  to  the  analytic  inconvenience  of  employing  more 

than  three  observations,  in  aprobleni  in  which  three  is  sufficient.  We  can 

obviate  this  inconvenience  in  the  following  manner,  which  at  the  same 

*  This  equation  when  expanded  becomes 

^]i^.cos.(A—»)).R*-^R%{ft'°.R*f+2ftR''i  +  l)=RS  when  ii-^  is  obliterated,  and  this 
expression  is  multiplied  by  cos.  ''6,  and  divided  by  {,  the  absolute  quantity  is  evidently  equal 

to  (2i?.  cos.  ( 4—»).  SR^  +  ̂fiR").  cos.  H. 
f  This  equation  being  of  the  seventh  dimension,  when  the  absolute  quantity  is  positive 

it  must  have  one  real  negative  root,  -and  from  the  nature  of  the  problem  it  has  one  real 

affirmative  root,  .'.  as  impossible  roots  enter  questions  by  pairs,  the  number  of  those  in 

the  proposed '  equation  cannot  exceed  four ;  consequently,  in  order  that  the  sign  of  the 
absolute  quantity  may  be  positive,  the  remaining  real  root  must  be  pos  itive. 
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time  that  it  only  employs  three  observations,  will  render  our  solution 

as  accurate  as  we  please. 

,  For  this  purpose  let  us  suppose  that  a  and  6  represent  the  geocen- 

tric longitude  and  latitude  of  the  intermediate  observations ;  by  sub- 

stituting in  place  of  a-,  y,  z,  their  values  a^+f .  cos.  «  ;  y +f  •  sin.  «  ;  and 

J.  tang.  6;  they  will  g'^^)^^?')  ̂ ^(^"'^  LdfY  ̂"  functions  of  f,  «, 

and  e,  of  their  first  differences  and  of  known  quantities.     By  differen- 

tiating  these  functions,  we  will  obtain,  -l  --|  oi  -;^  f  and  -{^Yy 

in  functions  of  f,  «,  9,  and  of  their  first  and  second  differences.  We 

can  eliminate  the  second  difference  of  f,  by  means  of  its  value,  and  its 

first  difference,  by  means  of  the  equation  (2)  of  the  preceding  number. 

By  continuing  to  difference  successively,  the   values  of  <-^>-, 

J  —  t,  and  then  by  eliminating  the  differences  of  a.  and  9,  superior 

to  the  second,  and  all  the  differences  of  f,  we  will  obtain  the  values  of 

j^ll'  ®'  {SKIS}  '  *^"'  ̂ ""^  premi
sed,  let  «,  a',  a'",  be  the 

three  observed  geocentric  longitudes  of  the  comet ;  6,  9',  9''',  its  three 

corresponding  geocentric  latitudes ;  let  i  be  the  number  of  days  which 

intervene  between  the  first  and  second  observation,  and  i',  the  number 

which  separates  the  second  observation  from  the  third  j  finally,  let  a  be 

the  arc  which  the  earth  describes  in  a  day  by  its  mean  sidereal  motion  j 

by  No.  29,  we  shall  have 
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By  substituting  in  these  series,  tor   ■<  -T-f  r  >  <  -jji  r  >  ̂ ^-  i  ̂   j  > 

-7^  >-,  &c.,  their  values  obtained  by  the  preceding  method;  we 

shall  have  four  equations  between  the  five  unknown  quantities  f, 

{l}.{|-"}'{l!}'{S}-  These  
equations  wUlbe  alwa,sn,ore 

exact,  according  as  we  consider  a  greater  number  of  terms  in  the  preced- 

^      ..  ,    „    .     •      ff/»l      (d"i^\     idH        . ing  series.    By  this  means  we  shall  obtain,  <  j^f,   iTTai'i^j   ̂  

-3  T-y  >  ,  in  functions  of  f  and  of  known  quantities  ;  and  by  substitut- 

ing them  in  the  equation  (1)  of  the  preceding  number,  it  will  only 

involve  the  unknown  quantity  ̂ .  In  fine,  this  method  which  has 

been  detailed  here,  merely  in  order  to  shew  how  by  means  of  three 

observations  only  we  can  obtain  continually  approaching  values  of  f, 

would  require  in  practice,  very  troublesome  computations,  and  it  is 

at  the  same  time  more  exact  and  more  simple,  to  consider  a  greater 

number,  by  the  method  explained  in  No.  29. 

33.   When  the  values  of  ?  and  of  4  -r^  >  shall  have  been  determined, 

we  can  obtain  those  of  J-,  t/,  ̂ A^)>\-Jt)  ̂ ^^(~77)    ̂ y   "1^^"^    of    the 

equations  x  —  R.  cos.  A-{-^.  cos.  a  ;  j/  =r  72.  sin.  A  +  ̂ .  sin.  a. ;  z  zr.  ̂ . 
tang.  6 ;  and  of  their  differentials  divided  by  dt. 

PART.  I.   BOOK  II.  U  D 
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(§)=  ©•  «'»•  ̂   +  ̂-  ©•  ̂««-  ̂ 4+  (|)-  «'"•  -+e-  ©•  ̂•'>^-  - ; 

(^)=(|).tan.H.O. 

COS.  ̂ e 

The  values  of  f-^]  and  of  (-77)  are  given  by  the  theory  of  the  mo- 

tion of  the  earth  :  in  order  to  facilitate  their  computation,  let  E  repre- 

sent the  eccentricity  of  the  earth's  orbit,  and  H  the  longitude  of  its 
perihelion  ;  by  the  nature  of  the  elliptic  motion  we  have, 

•dA\     ̂ ^\—E^     „  l—E'' fdA\_Vl-E\ 

dti-       R^     '  l+E,cos.{A—H) 

These  two  equations  give 

ulR\  _  E.  sin.  (A—//)  . 

let  R'  represent  the  radius  vector  of  the  earth  corresponding  to  A, 
the  longitude  of  this  planet,  increased  by  a  right  angle  ;  we  shall 
have 

R'=  
'-^' 

l—E.  sin.  (A—H)  ' 

from  which  may  be  obtained 

R'—l  +  i- 
E.  sin.  (A—H)=- 

M'
 

dA  ,    . 
*    ,   being  equal  to  the  angular  velocity  of  the  earth,  it  is  equal  to  the  square  root  of  the dt 

parameter  divide  by  the  square  of  the  distance,  .'.  it  is  equal  to  — ™ —  • 
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consequently 

(dR\_  R'  +  E'—l  ̂  
\dtf-  R'.k/x—E'' 

If  we  neglect  the  square  of  the  excentricity  of  the  terrestrial  orbit, 
which  is  very  small,  we  shall  have 

the  preceding  values  of  i—jj)  ̂ ^^\^)  ̂^^^^  consequently  become 

(§)=(^'-''-  ™^-  ̂   -■ Tr-+  (*)•  ""'■  "-<•  (^)-  ''"•  "• 

(f  )=  (^'-l).si„.  A  +  SStA+  ©,  sin,  .+,  (§).  COS..; 

R,  R'  and  ̂   being  gi/en  immediately  by  the  tables  of  the  sun,  the  com- 

putation of  the  six  quantities  x,  y,  z,  (^j)'  (~^)'  ̂^^  \^)^^^^  be  easy, 

when  f,   and  f;^)  will  be  known.     The  elements  of  the  orbit  of  the 

comet  can  be  deduced  from  them,  in  the  following  manner. 

D  D  2 

dt         dt        {\-\-L.cos.  A — Hf       (1 — L-f     ̂   ^  '         • 

(\—E%E.  sin.  (A—H)  ̂   E.  sin.  {A—H)  _  1— £' 

{\-irE.coi.{A—Hf  VT^E"      '         ~  l+E.cos.  {A  +  90—H) 

=(1  — £').(! — E.  sin.  (^ — //))-'=  (when  the  square  of  E  is  ne- 1— jE.  sin.  (^-//) 

glected)  l+£.  sin.  (A—H),  :.  R'—\(=E.  sin.  (A—H))  isequal(^)  ,  when  £> 
dected. 
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The  indefinitely  small  sector,  which  the  projection  of  the  radius 

vector  of  the  comet  on   the  plane  of  the  ecliptic,  describes  during  the 

element  of  time  dt,  is  - — ^^-^- —  ;  and  it  is  manifest  that  this  sector  is 

positive  or  negative  according  as  the  motion  of  the  comet  is  direct  or 

retrograde}     thus,   the    sign    of  the    quantity    x.    x-jA — 2/'(^f)>   ̂^''' 

indicate  the  direction  of  the  motion  of  the  comet. 

In  order  to  determine  the  position  of  the  orbit,  let  us  name  <p,  its 

inclination  to  the  ecliptic,  and  /  the  longitude  of  the  node,  which 

will  be  the  ascending  one,  if  the  motion  of  the  comet  be  direct ; 
we  shall  have  « 

z  ■=.  y.  cos.  /.  tan  (p  —  x.  sin.  /.  tan.  f. 

This  equation,  combined  with  its  differential,  gives 

tan.  /— - 

•"■  (^)-~-(^) ' 
*    s  =  tan.  <p.  multiplied  into  the  distance  of  z  from  the  line  of  the  nodes,  and  if  ti)e 

axi»  of  X  be  a  line  drawn  to  the  first  point  of  Aries,  this  last  distance  =^.  cos.  / — x.  sin.  I. 

dz—dy-  cos.  /.  tan.  (p — dx.&m.  I.  tan.  ip  ;  •/ dz y-  dt  ■ 

di 

dz 
'-dt- 

dx 

"    dt 

(dii  ,  dx      .      ,  dii  -  dy       .  \ 

y-i-'"''-  ̂ -^-  -di-  ''"•  ̂ -  y-   di-  co«-/+x.^.s.n.ij.tan.y 

(dy  ,  dx      .      ̂   dx  ,  dx       . 
X.  -^.  COS.  / —  X.  -;-.  Sin.  / —  V  -7-.  COS.  J+x.  -7-  ■   sin.  /).  tan.  <p. 
dt  dt  ^     dt  ^      dt 

(,4-,,4),,in.. 

=  tan.  /. 

=:  tan.  /. 
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1 

tan.  p=  "^^  ̂ «^^ ^^■'■Hfy^m 

0  must  be  always  positive  and  less  than  a  right  angle  ;  this  condition 

determines  the  sign  of  sin.  7";  but  the  tangent  of  /,  and  the  sign  of 
its  sine  being  determined,  the  angle  I  is  entirely  determined.  This 

angle  is  equal  to  the  longitude  of  the  ascending  node  of  the  orbit, 

provided  that  the  motion  is  direct,  but  if  the  motion  is  retrograde,  we 

must  add  to  it  two  right  angles,  in  order  to  obtain  the  longitude  of 

this  node.  It  will  be  simpler  to  consider  only  the  direct  motions,  by 

making  ip  the  inclination  of  the  orbits  to  vary,  from  zero  to  two  right 

angles ;  for  it  is  manifest,  that  then  the  retrograde  motions  corres- 

pond to  an  inclination  greater  than  a  right  angle.     In  this  case,   tan.  <p 

is  of  the  same  sign  as  a-.    (  -77  )  — JJ'  (  "37  )  >  which  determines  sin.  /, 

and  consequently  the  angle  7,  which  expresses  always  the  longitude  of 
the  ascending  node. 

a  and  ea  representing  the  semiaxis  major,  and  excentricity    of  the 

orbit,  we  have,  by  N°'.  IS  and  19,  f*  being  supposed  =1, 

I       dz  rfy  \ 

By  substituting  we  obtain   ^    — sin./.(..^_^.^) 

dy  ,  dx      .      ̂   du  dii  _,  \ 

y-^-  cos-  '—y'~^-  *"*'  ̂ —y-  -^-  cos./+x.  -^.  sm.  /).  tan.  ?.j 

(dy  dx\     .      ̂  '• -df-y-df  )■''''■  ̂■ 

t       dy  dx\     .       ̂  

=  /     du        dx  \  T  ■  '="'^  f- 
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a~  r         \dt  J         \dt  ]         \~di )     ' 

The  first  of  these  equations  determines  the  semiaxis  major  of  the 

orbit,   and  the  second  determines  its  excentricity.     The  sign  of  the 

timctioncr.  (  y,  J  -\-y-  \Zjf)  +**{"^)    '"^kes   known  whether  tlie 

comet  has  ah-eady  passed  through  its  perihelion  ;  for  if  this  function  is 
negative,  it  approaches  towards  it ;  in  the  contrary  case,  it  has  already 

passed  this  point. 

Let  T  represent  the  interval  of  time  comprised  between  the  epoch 

which  we  have  selected,  and  the  passage  of  the  comet  through  the  pe- 

rehelion  ;  the  two  first  of  the  equations  (f)  of  No.  20,  will  give,   by 

observing  that  /^  being  supposed  equal  to  unity,  we  have  n  =  a~^, 

r— 0.(1 — e.  COS.  ii)  ;      Tzza^.(u — e.  cos.  u). 

The  first  of  these  equations  gives  the  angle  u,  and  the  second  makes 

known  the  time  T.  This  time  added  or  subtracted  from  the  epoch, 

according  as  the  comet  approaches  or  departs  from  the  perihelion, 

will  give  the  instant  of  its  passage  through  this  point.  The  values  of 

a;  and  of  i/,  determine  the  angle  which  the  projection  of  the  radius 

vector  r  makes  with  the  axis  of  x,  and  as  we  know  the  angle  /  made 

by  this  axis,  with  the  line  of  the  nodes,  we  shall  have  the  angle  which 

this  last  line  constitutes  with  the  projection  of  ?• ;  from  which  may  be 
obtained,  by  means  of  the  inclination  (p  of  the  orbit,  the  angle  which 

the  line  of  the  nodes  makes  with  the  radius  /•.  But  the  angle  u  being 

known,  we  shall  have  by  means  of  the  third  of  tlie  equations  (J"),  of  No. 
20,  the  angle  v,  which  this  radius  forms,  with  the  line  of  the  apsides ; 

therefore  we  will  have  the  angle  comprised  between  the  two  lines,  of  the 

apsides  and  the  nodes,   and,   consequently,  the  position   of  the  peri- 
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lielion.     All  the  elements  of  the  orbit  will  be  thus  determined. 

34.  These  elements  are  given,   by   what  precedes,  in  functions  of  c 

(  -£  ) ,  and  of  known  quantities  ;  and  as  (  -4.)    is  given  in  f ,    by  No. 

31  ;  the  elements  of  the  orbit  vvill  be  functions  of  f,  and  of  known 

quantities.  If  one  of  them  was  given,  we  would  have  a  new  equation, 

by  means  of  which  we  could  determine  j ;  this  equation  will  have  a 

common  divisor  with  the  equation  (4)  of  No.  31;  and  seeking  this 

divisor  by  the  ordinary  method  we  will  arrive  at  an  equation  of  the 

first  degree  in  ̂ ,  we  shall  have  besides,  an  equation  of  condition  be- 
tween the  data  of  the  observations,  and  this  equation  will  be  that  which 

should  have  place,  in  order  that  the  given  element  might  belong  to  the 
orbit  of  the  comet. 

Let  us  now  Jpply  this  consideration  to  nature.  For  this  purpose, 

we  may  observe  that  the  orbits  of  the  comets  are  very  elongated  el- 

lipses, which  are  sensibly  confounded  with  a  parabola,  in  that  part  of 

their  orbit  in  which  these  stars  are  visible ;  therefore  we  may  suppose 

without  sensible  error,  that  a  =  oo,  and  —  =  0 ;  consequently  the 

expression  for  — of  the  preceding  No.  will  give, 

^-  T  de 

If  we  afterwards  substitute,  instead  of{^)>(-hj)f^]  their  va- 

lues, which  are  found  in  the  same  No.  ;  we  shall  have,  after  all  reduc- 

tions, and  by  neglecting  the  square  of  R' — 1, 

-a)V(^:)v{(i)— ^my t  cos.  *G  y 
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^dx\    C  ,^      •       r  ̂        N  COS.  (^ — a)  7        1  2 

by  substituting  in  this  equation,  instead  of  (  -^^  )  its  value 

which  has  been  found  in  No.  3 1  ;    and  then  by  making 

+  f  tan...  (g?)  +.■.  .a,..  ..  si„.  (..-.)-.,   {^,).{§M'  ̂ ^  cos.^0  ) 

|(g)+p-.si.,.(^-.)^       .^ 

*  By  making  this  substitution,  the  equation  (.5)  becomes 

^  (    -© 
"^/  V  — ^^~+;.c'.sin.  (.J— «)y(iJ'  — l).cos.(^  — a)  — sin.-i;^!^^) COS.  *(i   J  dt 

+  .<.(S){,.._„.s..C.-,,+^i^}+i-f 
It  is  evident  from  an  inspection  of  this  expression,  that  B  is  equal  to  the  quantity  by 

^vhich  5^  is  multiplied,  and  that  C  is  equal  to  the  corresponding  factor  of  {. 

*) ) .  tan.  (. 



PART  L— BOOK  II.  209 

_    /'da\    C  .„,         .       .       ,    .         .  COS.  [A — at)   ) 
R 

we  shall  have 

and  consequently 

r\|5.f^+C.e  +  -i^r=l; 

this  equation  is  only  of  the  sixth  degree,  and  in*  this  respect  it  is 
simpler  than  the  equation  (4)  of  No.  31  ;  but  it  is  peculiar  to  the  pa- 

rabola, on  the  contrary,  the  equation  (4)  is  applicable  to  every  species 
of  conic  section. 

35.  We  may  perceive  by  the  preceding  analysis,  that  the  determi- 
nation of  the  parabolic  orbits  of  comets,  leads  to  more  equationst 

than  unknown  quantities,  we  can,  by  different  combinations  of  these 

equations,  form  as  many  different  methods  of  calculating  these  orbits. 

Let  us  investigate  those  from  which  we  ought  to  expect  the  greatest 

precision  in  the  results,  or  which  participate  the  least  in  the  errors 
of  observations. 

It  is  principally  on  the  values  of  the  second  differences  \-f^)  and 

i-fjij,  that  these  errors  have  a  sensible  influence  ;  in  fact,  it  is  neces- 

sary,  in  order  to  determine  them,  to  take  the  finite  differences  of  the 

geocentric   longitudes  and  latitudes  of  the  comet,    observed  during  a 

PART  I.   BOOK  II.  E  E 

*  This  equation  is  of  the  sixth  degree  for  {*  and  r^  occurs  in  it,  and  if  we  substitute  for 

r^  its  value,  in  terms  of  j  ;  f  will  be  the  liighest  dimension  of  5  which  occurs  in  it. 
t  The  reason  why  there  are  more  equations  than  unknown  quantities  in  this  case,  is 

because  the  axis  major  is  supposed  to  be  infinite. 
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very  short  interval  of  time  ;  but  these  differences  being  less  than  the 

first  differences,  the  errors  of  observation  are  a  greater  aliquot  part  of 

them  ;  besides,  the  formulae  of  No.  29,  wliich  determine,  by  the  com- 

parison of  observations,  the  values  of  «,  9,  \7>)'(;t,)'Vj7i)»  ̂ ^^  \7jp')  ' 

determine  with  greater  precision  the  four  first  of  these  quantities, 

than  the  two  last ;  it  is  therefore  advantageous  to  rely  as  little  as  pos- 
sible on  the  second  differences  of  a.  and  of  9 ;  and  as  we  cannot  reject 

them  all  at  once,  the  method  which  only  employs  the  greatest  ought  to 

lead  to  the  most  exact  results;  this  being  premised. 

Let  the  equations  which  have  been  found  in  the  N"'.  31   and  34,  be 
lesumed 

>_      ? » 

^*=  7^-^  +  222f.  cos.  (^-^)+72*  ; 

cos.  *9 

(d^'\_  R-  sin.  (^— g)     (J_        1   5  /rf^«\ 

^dtf-        ̂ ~7^Y~V/i^""^i      _^;^5     (L) ■  \dt)  ^   r(U\ 

"'  \dt/ 

,                  C(^)           ̂^                 /^")\sin.^.cos.O 
\7ff)— — aP-  •<     ,„  ,  +  2.  {-j-J.  tan.  64-  ̂^   jr — — — 

,    -r,  sin.  6.  cos.  6,  cos.  (A  —  a)     (I        1    > 
^dtJ 

»=(S)"+e*.{|)Vi©--+!j)r t  COS.  ■'9  ) 

(dp\    (    „        V          ,  ..     N       sin.  (A — a)  > 

^p.  j(/i'— 1).  COS.  {A-»)   5^   ^^ 
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COS.  (J — a)  ?    .      1  2 

+2e.(^).[(i?'-l).sin.(^-.)+^ 

"•"ie* 

rd'h If  we  wish  to  reject  (tjs)*  'f  is  only  necessary  to  consider  the  first, 

the  second,  and  the  fourth  of  these  equations  ;  eliminating  (-J\  ,    from 

the  last,  by  means  of  the  second,  we  will  obtain  an  equation  which 

freed  from  fractions  will  contain  a  term  multiplied  by  r*.  f'',  and  other 
terms  affected  with  even  and  odd  powers  of  ̂   and  of  r.  If  all  the 

terms  affected  with  the  even  powers  of  r,  be  reduced|into  one  member, 

and  likewise  all  the  terms  affected  with  the  odd  powers  of  r  ;*  the 

term  multiplied  by  r*.  f*  will  produce  one  multiplied  by  r"'.  f*  ;  there- 

fore by  substituting  instead  of  r*,  its  value  given  by  the  first  of  the 
equations  (L),  we  shall  have  a  final  equation  of  the  sixteenth  degree 

in  f.  But  instead  of  forming  this  equation,  in  order  afterwards  to 

resolve  it,  it  will  be  simpler  to  satisfy  by  trials,  the  three  preceding- 
equations. 

If  we  wish  to  reject   (         /  ;  we  must  consider  the  first,  the  third 

and  the  fourth  of  the  equations  (L).  These  three  equations  would 

also  lead  us  to  a  final  equation  of  the  sixteenth  degree  in  f,  which 
can  be  easily  satisfied  by  trials. 

The  two  preceding  methods  appear  to  me  the  most  exact  which 

can  be  employed  in  the  determination  of  the  parabolic  orbits  of  the 

comets  ;  it  is  even  indispensably  requisite  to  recur  to  them,  if  the  mo- 

tion of  the  comet  in  longitude  or  in  latitude  is  insensible,  or  too  small 

for  the  errors  of  the  observations  not  to  alter  sensibly  its  second  differ- 

ence ;  in  this  case  we  should  reject  that  one  of  the  equations  (L), 
which  contains  this  difference.     But  although  in  these   methods,  we 

G£  2 

•  By  squaring  each  member,  we  get  rid  of  the  odd  powers  of  r,  and  the  value  of  any 
even  power  will  be  obtained  by  means  of  the  first  of  the  equations  (L ). 



212  CELESTIAL  MECHANICS, 

only  employ  three  of  the  preceding  equations  ;  yet  the  fourth  is  useful,  in 

order  to  determine  amongst  all  the  real  and  positive  values  of  ̂  ,  which 

satisfy  the  system  of  the  three  other  equations,  that  which  ought  to  be 
admitted. 

36.  The  elements  of  the  orbit  of  a  comet,  determined  by  what 

precedes,  would  be  exact,  if  the  values  of  a,  6,  and  of  their  first  and 

second  differences,  were  rigorously  correct ;  because  we  have  taken  into 

account  in  a  very  simple  manner,  the  excentricity  of  the  earth's  orbit, 

by  means  of  the  radius  vector  R'  of  the  earth,  corresponding  to  its  true 
anomaly,  increased  by  a  right  angle ;  we  are  only  permitted  to  neglect 

the  square  of  this  excentricity,  as  being  too  small  a  fraction  for  its 

omission  to  influence  sensibly  the  results.  But  6,  a,  and  their  differences, 

are  always  liable  to  some  inaccuracy,  as  well  on  account  of  the  errors  of 

observation,  as  because  these  differences  are  collected  from  the  obser- 

vations in  an  approximate  manner.  It  is  therefore  necessary  to  correct 

these  elements  by  means  of  three  observations  at  considerable  intervals 

from  each  other,  which  may  be  effected  in  an  indefinite  number  of 

ways ;  for  if  we  know  very  nearly  two  quantities  relative  to  the  motion 

of  a  comet,  such  as  the  radii  vectores  corresponding  to  the  two  ob- 

servations, or  the  position  of  the  node,  and  the  inclination  of  its  orbit, 

by  computing  the  observations,  at  first  with  these  quantities,  and  then 

with  other  quantities  which  differ  very  little  from  them ;  the  law  of 

the  differences  between  these  results,  will  easily  make  known  the  cor- 

rections which  those  quantities  ought  to  undergo.  But  among  the 

binary  combinations  of  quantities  relative  to  the  motion  of  the  comets, 

there  is  one  of  which  the  calculation  is  the  simplest,  and  which  on 

this  account  deserves  to  be  preferred  ;  and  in  a  problem  so  compli- 

cated, it  is  a  matter  of  importance,  to  spare  the  computer  every 

superfluous  operation.  The  two  elements  which  have  appeared  to 

me  to  afford  this  advantage,  are  the  perihelion  distance,  and  the 

instant  of  the  passage  of  the  comet  through  this  point ;    for  they  not 

only  may  be  readily  deduced  from  the  values  off  and  of(^-r.)i  but  it  also 



PART  I.— BOOK  II.  '  2J3 

is  very  easy  to  correct  them  by  observations,  without  being  obliged, 

at  each  variation  which  they  are  made  to  undergo,  to  determine  the 

other  corresponding  elements  of  tlie  orbit. 

Let  us  resume  the  equation  which  has  been  found  in  No.  19, 

a.n—e^')=2r—~l- 

r\dr' 

dV 

a.{\ — e*)  is  the  semiparameter  of  the  conic  sections  of  which  a  is  the 
semiaxis  major,  and  ea  the  excentricity  ;  in  the  parabola,  where  a  is 

infinite,  and  ea  equal  to  unity,  a.(l — e*)  is  equal  to  twice  the  peri- 
helion distance ;  let  Z)  equal  this  distance,  the  preceding  equation 

becomes,   relatively  to  this  curve, 

-=^-4-  m- 

■  is  equal  to   '^  ,'       ;  by   substituting   in  place    of   r*,    its  value dt  ^  dt 

+  2/?f .  COS.  {A — a)+i2*,  and  instead  of  ]  -^  ̂  and  of  j  -t-  [  , 
COS.  *9 

their  values  found  in  No.  33,  we  shall  have 

rdr  p        C  C  dttl  .       ( d^ 

dt 

=^•lls^e■li^-■«^«•li•-(^-
.)• 

V/T^.     ,\           ,A       ̂        sin.  M — a)  7 

+  ?•  ̂(^—1)-  cos.  (/f— «)   ^-^   -\^ 

+  f.i2.  &?.  sin.  (^— «)+iJ.(i2'— 1). 

rdr 

-iff.  sin.  (^  -  «)  {  (^)-  (J*)  }  +  iJ-C^);  and  by  substituting  R'-\  for  (^) , 
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Let  P  represent  this  quantity ;  if  it  is  negative  the  radius  vector  r 

goes  on  diminishing,  and  consequently  the  comet*  tends  towards  its 
perihelion  ;   but  it  moves  from  it,    if  P  is  positive.     We  have  then 

tiie  angular  distance  i;  of  the  comet  from  the  perihelion  will  be  de- 

termined by  the  polar  equation  of  the  parabola 

cos.   i»  =  -^; 

finally,  the  time  employed  to  describe  the  angle  v  will  be  obtained,  by 
the  table  of  the  motion  of  comets.     This  time  added  or  subtracted 

from  that  of  the  epoch,  according  as  P  is  negative  or  positive,  will  give 

themoment  of  the  passage  through  the  perihelion. 

37.  These  different  results  being  collected  together,  will  give 

the  following  method,  for  determining  the  parabolick  orbits  of  co_ 
mats. 

A  general  method  for  determining  the  Orbits  of  the  Comets. 

This  method  will  be  divided  into  tdvo  parts-;  iii  the  first,  we  will 

give  the  means  of  obtaining  very  nearly  the  perihelion  distance  of  the 
comet,  and  the  instant  of  its  passage  through  the  perihelion ;  in  the 

second,  we  will  determine  exactly  all  the  elements  of  the  orbit,  these 

quantities  being  supposed  to  be  very  nearly  known. 

and  _L  for  f4)  we  shall  have  ̂   = -1-  j /|) +,.i!^.g)  I  +  cos.  (A-,). 
R'         \dt/  dt        cos.^i    \\dtJ         COS.  6    \dt/ } 
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An  approximate  determination  of  the  perihelion  distance  of  a  Comet, 

and  of  the  instant  of  its  passage  through  perihelion.         i 

Let  three,  four,  or  five,  &c.  observations  of  the  comet  be  selected 

as  nearly  as  possible*  equi-distant  from  each  other  ;  with  four  observa- 

tions we  can  embrace  an  interval  of  30°  ;  with  five  observations,  an 

interval  of  36°,  or  40°,  and  so  on  of  the  rest ;  but  it  is  necessary 
always  that  the  interval  comprised  between  the  observations  should 

be  more  considerable,  as  they  are  more  numerous,  in  order  to  dimi- 
nish the  influence  of  their  errors  ;    this  being  premised. 

Let  €,  €',  C^',  &c.  be  the  successive  geocentrick  longitudes  of  the 

comet ;  y,  y',  y'',  the  corresponding  latitudes,  these  latitudes  being 
supposed  positive  or  negative,  according  as  they  are  north  or  south. 

Let  the  difference  S' — E  be  divided  by  the  number  of  days  which  se- 
parates the  first  from  the  second  observation ;  in  like  manner,  the 

difference  C^'  —  S'  be  divided  by  the  number  of  days  which  sepa- 
rates the  second  from  the  third  observation ;  we  will  also  divide 

the  difference  C'''" — S  ',  by  the  number  of  days  which  separates  the 
third  from  the  fourth  observation,  and  so  of  the  rest.  Let  J£,  J6',  i^'\ 

be  these  quotients  ;  let  the  difference  <?£' — SS,  be  divided  by  the 
number  of  days  which  separates  the  first  observation  from  the  third  ; 

in  like  manner  let  the  difference  $Q^^  —  K',  be  divided  by  the 
number   of  days  which   separates  the    second   observation   from    the 

*  The  precision  which  might  be  expected  from  an  increased  number  of  observations 

would  not  (as  M.  Laplace  has  since  ascertained)  compensate  for  the  errors  to  which  the 

observations  are  liable,  and  also  for  the  greater  length  of  the  calculus ;  he  therefore  pro- 

poses in  the  15th  Book,  to  employ  only  three  observations,  and  by  fixing  the  epoch  at  the 

intermediate  observation,  to  render  the  extreme  observations  at  such  inconsiderable  dis- 

tances from  each  other,  that  for  the  interval  which  separates  them,  the  preceding  data 

may  be  supposed  very  nearly  the  same ;  an  additional  advantage  in  having  the  intervals 

short  is,  that  the  differences  superior  to  the  second  are  inconsiderable,  and  may  therefore 
be  negkcted. 
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fourth  ;  and  J'S' — <JS*,  by  tlie  number  of  days  which  separates  the  third 

observation  from  the  fifth  ;  and  so  of  the  rest.  Let  ̂ *S,  <J*6',  S'^",  re- 
present these  quotients. 

Dividing  the  difference  J^'S' — S'S,  by  the  number  of  days  which 
separates  the  first  observation  from  the  fourth  ;  and  in  like  manner 

iJ*?''' — S'^',  by  the  number  of  days  which  intervenes  between  the  second 

and  fifth  observation,  and  so  of  the  rest.  Let  PQ,  PQ',  &c.  represent 
these  quotients.  Let  these  operations  be  continued  till  we  arrive  at 

^~*.€,  91  being  the  number  of  observations  employed. 
This  being  performed,  let  an  observation  which  is  a  mean,  or  very 

nearly  so  between  the  instants  of  the  extreme  observations  be  selected, 

and  let  i,  i',  i",  i"',  &c.  represent  the  number  of  days  by  which  it  pre- 

cedes each  observation,  i,  i',  i",  being  supposed  to  be  negative  for  the 
observations  which  are  anterior  to  this  epoch ;  the  longitude  of  the 

comet,  after  a  small  number  z  of  days  reckoned  from  the  epoch,  will  be 

expressed  by  the  following  formula  : 

e— /.<^e+/.i'.^e_i.i'.?^^5e+&c. 

+z*.(<?*e— (i  +  i'+i").  S^^-\-i.i'-\-i.i".-\-U"-\-i'.i"+i'.i").d*^—kc.). 

J  he  coefficients  of  — J^S,  +<?*£,  — S^^,  &c.  in  the  part  which  is  in- 

dependent of  z,  are,  1".  the  number  « ;  ;2'\  the  product  of  the  two 

numbers  i  an  1  i' ;  3'".  the  product  of  the  three  numbers  /,  i',  i",  &c. 

The  coefficients  of  — S""^,  +^'e,  — <J^€,  &c.  in  the  part  multiplied  by 

z  are,  1".  the  sum  of  the  two  numbers  i  and  i;  2'".  the  sum  of  the 

binary  products  of  the  three  numbers  i,  i',  i" ;  3".  the  sum  of  the 

products  of  the  four  numbers  i,  i',  /',  i"',  &c.  taken  three  by  three. 

The  coefficients  of — PQ,  -^(J^e,  — SK,  &c.  in  the  part  multiplied  by 

z^,  are  1".  the  sum  of  tie  three  numbers  i,  i',  i" ;  2'".  the  sum  of  the 

products  of  the  fbai  numbers  i,  i',  i",  i"',   taken  two  by  two  ;  3'"^  the 
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sum  of  the  products  of  the  five  numbers,  i,  i',  i'\  i ',  i"\  &c.  taken  three 
by  three. 

In  place  of  forming  these  products,  it  would  be  as  simple  to  develope 
the  function 

z  +  (^z—i).s^+{z—i).{z—i').  <^e+(z—«').(3—«0-(2— '■"')•  ̂ '^  +  &c. 

the  powers  of  z  superior  to  the  second,  which  the  preceding  formulas 

would  give,   being  rejected. 

If  we  perform  similar  operations  on  the  observed  geocentrick  lati- 
tudes of  the  comet ;  its  geocentrick  latitude  after  the  number  z  of 

days,  reckoned  from  the  epoch,  will  be  expressed  by  the  formula  (  p), 

by  changing  £  into  y  ;  and  let  {q)  represent  what  this  formula  becomes 

after  this  change  ;  this  being  premised,  a.  will  be  the  part  independent 

of  z,  in  the  formula  (p)  ;  9  will  be  the  part  independent  of  z,  in  the 
formula  (y). 

If  the  coefficient  of ;:  be  reduced  to  seconds,  in  the  formula  (j?), 

and  if  the  logarithm  4,0394622  be  subducted  from  the  tabular  loga- 

rithm of  this  number  of  seconds  ;  it  will  give  the  logarithm  of  a  number 

which  we  will  denote  by  a. 

And  if  the  coefficient  of  z^  in  the  same  formula  be  reduced  to  se- 

conds, and  if  the  logarithm  l,974011i4<  be  then  subtracted  from  this 

number  of  seconds,  it  will  give  the  logarithm  of  a  number,  which  we 
will  denote  by  b. 

The  coefficients  of  z  and  of  z''  being  in  like  manner  reduced  to 
seconds  in  the  formula  {q),  and  then  the  logarithms  4,0394622,  and 

1,9740144  being  subtracted  from  the  logarithms  of  tliese  numbers  re- 

spectively, will  give  the  logarithms  of  two  numbers,  which  we  will 
denote  by  h  and  /. 

The  accuracy  of  this  method  depends  on  the  precision  of  the  values 

of  a,  b,  h,  I ;  and  as  their  formation  is  very  simple,  we  should  select 

and  multiply  the  observations,  so  as  to  obtain  them  with  all  the  preci- 

sion which  the  observations  admit  of.     It  is  easy  to  perceive  that  these 
PART  I.  BOOK  II.  FF 
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values  are  the  quantities  (^),  (^A  \^J  ̂^^  l^A  which  for  greater 

simplicity  we  have  expressed  by  the  preceding  letters. 
If  the  number  of  observations  be  odd,  we  can  fix  the  epoch  at  the 

instant  of  the  mean  observation ;  this  enables  us  to  dispense  with  the 

computation  of  the  parts  independent  of  ;:,  in  tlie  two  preceding  for- 
mulae ;  for  it  is  evident  that  these  values  are  then  respectively  equal 

to  the  longitude  and  latitude  of  the  mean  observation. 

The  values  of  a,  a,  b,  6,  h  and  /,  being  thus  determined  ;  the  longi- 

tude of  the  sun  at  the  instant  which  we  select  for  the  epoch,  must 

next  be  determined  j  let  this  longitude  be  equal  to  E,  R  being  the  cor- 

responding distance  of  the  sun  from  the  earth,  and  R'  the  distance 
which  answers  to  E  increased  by  a  right  angle,  the  following  equations 
will  be  obtained, 

■^*  -— ^ii-.rr.  cos.  (£— a)+i?*;       (1) 

y- 

cos.  ̂ G 
R.  sin.  (E—x)   (1  17        bx 

'^fl 

"11^       TVS       ̂ 2a'       ̂ ^^ 

C  ,            „  .     ̂    .    «*•  sin-  6.  cos.  6 
y=  _.r.  \h.  tan.  6  +  ̂ +   ^^   

B.  sin.  e.  cos.  6  ,  T.       N    W  1 
  ,    .    cos.  [E   a).  <-f^   1 
ih  ^  LR^       r^ 

K              .         fi-^    1'     ̂      C  sin.  (■£ — «)       ,  „,     ,>,* 

0=3/^+«\.r^+  Ji/.  tan.  e+  -^^j-^l  +2y.  ̂    ^^^   L-^R'-l). 
COS.  (E—=c))       (4) 

•  All  tlie  observations  made  in  the  interval  between  the  extreme  observations  may  be 

made  use  of  in  determining  «  a,  i,  «,  '■,  and  / ;  for  if  each  observaiion'be  expressed  in  a 
linear  function  of  these  data,  there  will  be  more  equations  than  unknown  quantities ;  the  first 

final  equation  will  be  obtained  if  each  equation  be  multiplied  by  the  coefficient  the  first  un- 

known quantity,  the  second  final  equation  will  be  obtained  by  a  similar  process,  and  so 

on ;  and  the  data  will  be  given  by  a  resolution  of  these  equations  with  a  precision  which  will 

be  greater,  as  moie  observations  are  made  use  of.  This  advantage  is  peculiar  to  this  mcr 

thcd.    (See  Connaissance  ties  Temps,  Annee  1824.) 
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a        rr-D,       in     •        r  t?        \,      COS.  (£ — a)  12 

— 2ff^.((/2'— 1).  sin.  (£— «)H   ^   V-^^  +— . 

In  order  to  deduce  from  these  equations,  the  values  of  the  unknown 

quantities  x,  y,  and  r ;  we  must  consider,  in  the  first  place,  whether, 

abstracting  from  the  sign,  b  is  greater  or  less  than  /.  In  the  first  case, 

we  employ  the  equations  (l),  (2)  and  (4).  We  make  a  first  supposi- 
tion for  a;,  by  supposing  it,  for  example,  equal  to  unity  ;  and  from  this 

we  conclude,  by  means  of  the  equations  (IJ  and  (2),  the  values  of  r 

»nd  of  ̂ .  We  substitute  then,  these  values  in  the  equation  (4),  and 

if  the  remainder  vanishes,  it  shews  that  the  value  of  x  has  been  rightly 

assumed  ;  but  if  this  remainder  be  negative,  the  value  of  x  must  be 

increased,  and  it  must  be  diminished,  if  this  remainder  be  positive. 

By  this  means,  we  shall  obtain  by  a  small  number  of  trials,  the  values 

of  X,  y,  and  r.  But  as  these  unknown  quantities  are  susceptible  of 

several  real  and  positive  values,  it  is  necessary  to  select  that  value 

which  satisfies  exactly  or  very  nearly  the  equation  (3). 

F  F  2 

Since  the  publication  of  this  book  M.  Laplace  has  ascertained  that  the  best  means  of 

diminishing  the  influence  which  the  errors  of  observation  have  on  their  results,  consists 

in  combining  the  equations  (2)  and  (3),  by  multiplying  the  first  by  a',  and  the  second 

by  A',  and  then  adding  the  products  together,  by  means  of  which  the  following  equation 
will  be_obtained, 

_asin.  (£ — a) — ^.  sin.  ̂ .  cos.  fl.  cos.  (£ — a).R     /_!   1_ -\ 

X.  A^.  tang,  i  +  ̂  al.  +  \.  h.  l-\-\.  a°h.  sin.  6.  cos.  6  i 

This  equation  combined  with  the  equations  (1),  (4),  will  give  the  values  of  x,  y,  r.  By 

making  a  first  hypothesis  for  x,  the  equations  (a)  will  give  the  corresponding  values  of  r. 

and  then  the  equation  (5)  will  givey.  Now  if  the  value  of  x  has  been  properly  assumed, 

these  values,  when  substituted  in  the  equation  (4)  ought  to  satisfy  it ;  if  this  equation  is  not 

satisfied,  a  second  value  of  x  should  be  taken,  and  so  on.  Hence  the  perehelion  distance 

D,  and  the  instant  of  the  passage  through  the  perehelion,  may  be  determined, 
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In  the  second  case,  i.  e.,  if  we  have  /  >  6,  we  must  employ  the 

equations  (1),  (3),  and  (4),  and  then  the  equation  (2)  will  serve  to 

veri  y  the  values  deduced  from  these  equations. 

Having  by  this  means  obtained  the  values  of  .r,  y,  and  r  j  let  P 
be  assumed 

=    ^'/^  +  ''•  *"•  *^°'  n — ^^'  ̂^^'  ̂-^ — *^ 

+^.  f '"'  '^f  ~''^—  (^'—0.  cos.  (E—cc)  l—R.ajr.  sin.  (E— a) 

+  E.(R'—1). 

The  perihelion  distance  D  of  the  comet  will  be  determined  by  the 

equation 

the  cosine  of  its  anomaly  v  will  be  given  by  the  equation 

COS.  ̂ .V  :=  —  } 

and  from  this  we  infer,  by  the  table  of  the  motion  of  the  comets,  the 

time  employed  to  describe  the  angle  v.  In  order  to  obtain  the  in- 
stant of  the  passage  through  the  perihelion,  this  time  sh.ould  be  added 

to  the  epoch,  if  P  is  negative,  and  subtracted  from  it,  if  P  is  positive, 

because,  in  the  first  case,  the  comet  approaches  the  perihelion,  and  in 
the  second  case,  it  moves  from  it. 

Having  thus  determined  very  nearly  the  perihelion  distance  of  the 

comet,  and  the  instant  of  its  passage  through  the  perihelion,  we  can 

correct  them  by  the  following  method,  which  has  the  advantage  of 

being  independent  of  an  approximative  knowledge  of  the  other  ele- 
ments of  the  orbit. 
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An  exact  determination  of  the  elements  of  the  orbit,  when  ive  knoxv 

very  nearly  the  'perihelion  distance  of  the  Comet,  and  the  instant 

of  its  passage  through  the  'perihelion. 

In  the  first  place,  three  observations  of  the  comet,  at  a  considerable 

distance  from  each  other,  should  be  selected,  and  then  from  the  peri- 

helion distance  of  the  comet,  and  from  the  instant  of  its  passage 

through  the  perihelion,  as  data  which  are  determined  by  what  pre- 

cedes, we  compute  three  anomalies  of  the  comet,  and  the  radii 

vectores  which  correspond  to  the  instants  of  the  three  observations. 

Let  V,  xf ,  x/',  represent  these  anomalies,  (those  which  precede  the  passage 
through  the  perihelion  being  supposed  negative)  j  moreover,  let 

r,  r',  r",  represent  the  corresponding  radii  vectores  of  the  comet ; 

f' — V,  x/' — V,  will  be  the  angles  contained  between  r  and  r',  and  be- 

tween r,  and  r^' ;  let  U  be  the  first  of  these  angles,  and  U  the  se« 
cond. 

Likewise  let  a,  a',  a.",  represent  the  three  observed  geocentrick  longi- 

tudes of  tlie  comet,  referred  to  a  fixed  equinox  ;  0,  6',  fi',  its  three  geocen- 
trick  latitudes,  the  southern  latitudes  being  supposed  to  be  negative  ;  let 

e,  S',  %",  be  its  three  corresponding  heliocentrick  longitudes  j  and  sr, 

■zs',  -m",  its  three  heliocentrick  latitudes,  finally,  let  E,  E',  E\  be  the 

three  corresponding  longitudes  of  the  sun  ;  and  i?,  il',  jB' ,  its  three 
distances  from  the  centre  of  the  earth. 

Let  us  suppose  that  the  letter  S  indicates  the  centre  of  the  sun ; 
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T  that  of  the  earth  ;  C  the  centre  of  the  comet,  and  C,  its  projection 

on  the  plane  of  the  ecHptic.  Tlic  angle  STC\  is  the  difference  of 

the  geocentrick  longitudes  of  the  sun  and  of  the  comet ;  by  adding 

the  logarithm  of  the  cosine  of  this  angle,  to  the  logarithm  of  the  co- 

.sine  of  the  geocentrick  latitude  of  the  comet,*  we  will  obtain  the  lo- 
garithm of  the  cosine  of  the  angle  STC;  therefore  in  the  trian^^le  STC 

there  will  be  given  the  side  52'  or  R  ;  the  side  SC  or  ?;  and  the  angle 
STC;  we  can  thus  by  trigonometry  obtain  the  angle  CST.  The 

heliocentrick  latitude  of  the  comet  will  then  be  obtained  by  means  of 

the  equation 

sin.  S.  sin.  C^r     . 
sm.  ro-n   -. — „^p   .  T sin.  CTS 

The  angle  TSC  is  the  side  of  a  right  angled  spherical  triangle,  of 

which  the  hypothenuse  is  the  angle  TSC,  and  of  which  one  of  the 

sides  is  the  angle  zj ;  from  which  we  can  easily  obtain  the  angle  TSC', 
and  consequently,  the  heliocentrick  longitude  S  of  the  comet. 

In  like  manner,  z/,  Q',  zr",  ̂ " ;  and  the  values  of  §,  ̂■,^",  will  deter- 
mine whether  the  motion  of  the  comet  is  direct  or  retrograde. 

If  we  conceive  the  two  arcs  of  latitude  w,  w',  to  meet  in  the  pole  of 
the  ecliptic,  they  will  make  an  angle  equal  to  C — S  ;  and  in  the  spherical 

triangle  formed  by  this  angle,  and  by  the  sides  -— -  — w,  and  -^  —  w'. 

*  If  £  be  the  longitude  of  the  sun,  STC'=:x — E,  and  in  the  right  angled  spherical  tri- 
angle, of  which  one  side  is  the  measure  of  « — E,  and  the  other  side  about  the  right 

angle  the  measure  of  «,  the  hypothenuse  will  be  equal  to  the  measure  of  the  angle  at  the 

earth  between  the  sun  and  comet  i.  e.  equal  to  S  TC,  .'.by  Napier's  rules  we  have  cos. 
(«—£).  cos.  «=cos.  STC. 

t  Sin.  CST :  CTS  :  distance  of  comet  from  earth  :  r'.:  sin.  w  :  sin.  I,  .'.  sin.  «7  = 
sin.  i.  sin.  CST 

sin.  CTS 
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7r  being  the  semiciicumference,  the  side  opposite  to  the  angle  €' — g, 
will  be  the  angle  at  the  sun,  contained  between  the  radii  vectores  r  and 

r'.  It  may  be  easily  determined,  by  spherical  trigonometry,  or  by  the 
following  formula  : 

sin.  *iF.  rz  COS.  *i-.  (zj-f-T;/) — COS.  *^  (%'   E).  cos.  zr.  COS.  -a/,* 

in  which  V  represents  this  angle ;  so  that  if  we  name  A,  the  angle  of 

which  the  square  of  the  sine  is  cos.  ̂ tV.(S — £).  cos.  -sr.  cos.  -s/,  and  which 
can  be  readily  derived  from  the  tables,  we  shall  obtain 

sin.  'ir=COS.  (iTir+iar'  +  J).  COS.  (i^+|n-' — A). 

Naming  in  like  manner  V  the  angle  constituted  by  the  two  radii  vec- 

tores r  and  ?■',  we  will  have 

sin.  'iP  =  cos.  (iur+i7i/+^0-  COS.  (^^  +  ̂t;/  — ^'), 

A'  being  what  A  becomes,  when  T3-'  and  C  are  changed  into  is"  and  ̂ ". 
Now,  if  the  perihelion  distance  of  the  comet,  and  the  moment  of  its 

passage  through  the  perihelion  were  accurately  determined,  and  if  the 

*  This  expression  may  be  easily  derived  from  the  known  formulae  of  spherical  trigono- 

metry, for  if  we  assume  B  =  (S' — S)  ;  C  =  —   ro ;  C'=  — —  ■a' ;  we  shall  have,  cos.  B 

*  cos.  V — cos.  C.  cos.  C  ,  _  1     _ 
1—  COS.  B—  2 sin. «--.  B sm.  C.  sin.  C  2 

_  sin.  C.  sin.  C— cos.  F+cos.  C.  cos.  C  _  cos.  f  C  —  C)  —  cos  V 

~  sin  C  sin.  C  sin.  C.  sin.  C"  ' 

.-.  2  sin.  ̂ i  B.  sin  C.  sin.  C  =cos.  (C—C)— cos.  F  =2  sin.'f  F— ?  sin.  ̂ ^  (C— C), 

and  since  sin.  "\B  =  1  — cos."^B;  and  sin.  -^  {C —  C)  =  sin.  'A  (C+C)  —  sin.  C. 

sin.  C,  we  shall  have  (2—2  cos.  '^.  7?).  sin.  C.  sin.  C'=  2  sin.  ̂   F— 2  sin.  'J  (C+  C)+  2. 

sin.  C.  sin.  C".  .'.  sin.  =iF=  sin.  i  (C+  C')— cos.  ̂ iR  sin.  C.  sin.  C;  which  will  give  the 
expression  in  the  text  when  their  values  are  substituted  for  B,  C,  C. 
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observations  were  rigorous,  we  would  have 

V=U;    F'=U  i 

but  as  this  can  never  be  the  case,  we  will  suppose 

m=  U—V;    m'=  U'—V. 

(It  is  to  be  observed  here,  that  the  computation  of  the  triangle  STC, 

gives  for  theangle  CST  two  different*  values.  Most  frequently,  the 
nature  of  the  cometary  motion  will  make  known  which  of  them  ought 

to  be  employed,  especially  if  these  two  valufes  are  very  different ;  for 

then  one  of  them  will  place  the  comet  farther  than  the  other  from  the 

earth,  and  it  will  be  easy  to  determine,  by  the  apparent  motion  of  the 

comet  at  the  instant  of  observation,  which  ought  to  be  selected.  But 

any  uncertainty  which  remains  on  this  account  may  be  removed,  by 

taking  care  to  select  that  value  which  renders  Fand  V  very  little 

different  from  U  and  Z7'.) 
Then  we  will  make  a  second  hypothesis,  in  which  the  instant  of  the 

transit  through  the  perihelion  remaining  the  same  as  before  the 

perihelion  distance  varies  by  a  small  quantity;  .e  g.  by  a  live  hun- 

dreth  part  of  its  value,  and  then  we  seek  in  this  hypothesis  the  values 

of  U—  V,  and  of  U'—V  ;  let  then 

n  =  Cf—  V;   n'  zz  U—V. 

Finally,  we  make  a  third  supposition  in  which,  the  distance  of  the 

perihelicm  remaining  the  same  as  in  the  first  hypothesis,  we  make  to 

vary  by  half  of  a  day,  more  or  less,  the  instant  of  the  passage  through 

the  perihelion.  And  then  let  the  values  of  U —  V,  and  of  U' —  V  be 
investigated  on  this  new  hypothesis.     Let  in  this  case 

p-  U—V;  f'-  U'—V. 

This  being  premised,  if  u  represents  the  number  by  which  the  sup- 

•  The  values  of  C5r,  are  CST,  and  180— 2  STC— C'S 7'. 
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posed  variation  in  the  perihelion  distance  should  be  multiplied,  in  order 

to  obtain  the  true  distance,  and  t  the  number  by  which  the  supposed 

variation  in  the  instant  of  the  passage  through  the  perihelion  should  be 

multiplied,  in  order  to  obtain  the  true  instant ;  we  shall  have  the  two 

following  equations, 

{m  —  n).  u-\-(7n — p).  tz=i7n; 

(m'  —  ?/).  tt-\-  {m' — p').  t  =  m!  ; 

by  means  of  which  equations  we  obtain  the  values  of  wand  of?,  and 

consequently  the  corrected  flistance  of  the  perihelion,  and  true  instant  of 

the  passage  of  the  comet  through  the  perihelion. 

The  preceding  corrections  suppose  that  the  elements  determined  by 
the  first  approximation,  are  sufficiently  accurate  to  enable  us  to  treat 

their  errors  as  indefinitely  small.  Both  if  the  second  approximation 

does  not  appear  to  be  sufficient,  we  must  recur  to  a  third,  by  ope- 
rating on  the  elements  already  corrected,  as  we  have  done  on  their 

first  values ;  it  is  solely  necessary  in  addition  to  secure  that  they  un- 

dergo small  variations.  It  will  also  suffice  to  compute  by  these  cor- 

rected elements  the  values  of  U — V,  and  of  Z7' — P  j  by  represent- 

ing them  by  iVf  and  N,  and  substituting  them  in  place  oi  m  and  m',  in 

the  second  members  of  the  two  preceding  equations ;  we  shall  have  by 

this  means  two  new  equations  which  will  give  the  values  of  u  and  of 

t,  relative  to  the  corrections  of  these  new  elements.* 

Having  by  this  method  obtained  the  accurate  distance  of  the  peri- 

PART.  I.   BOOK  II.  G  G 

If  in  place  of  computing  17,  U' ,  V,  V,  on  the  three  hypothesis  mentioned  in  the  text, 
they  were  computed  on  the  five  following  hypotheses,  1st,  with  the  elements  found  in  the 

first  approximation  ;  2dly,  by  making  the  perihelion  distance  to  vary  by  a  very  small  quan- 

tity ;  3dly,  by  making  it  to  vary  by  twice  the  same  quantity ;  4thly,  the  same  perihelion 

distance  as  in  the  first  hypothesis  being  preserved,  by  mab'ng  the  instant  of  the  passage 
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helion,  and  the  true  instant  of  the  passage  of  the  comet  through  the 

perihelion  ;  the  other  elements  of  the  orbit  may  be  inferred  in  the  fol- 

lowing manner. 

Let  J  be  the  longitude  of  the  node  which  will  be  the  ascending  one, 

if  the  motion  of  the  comet  be  direct,  and  (p  the  inclination  of  the 

orbit ;  we  shall  obtain  by  a  comparison  of  the  first  and  last  ob- 
servation, 

.    tan.  ■ST.  sin.  Q'^ — tan.  zj''.  sin.  g  ̂^ 
''^~  tan.  ■nr.  cos.  S'' — tan.  z/^  cos.  Q  ' 

tan.  ■sr''' 

tan.  <p: 
sin.  i^'—J) 

As  we   can  thus  compare   two  by   two,  the  three  observations,   it 

through  the  pereheUon  to  vary  by  a  very  small  quantity ;  5thly,  by  making  the  same  in- 

stant to  vary  by  twice  this  quantity.  Let  m,  m' ,  m",  m'",  m"",  be  the  values  of  U — V  i 
n,  n',  n",  n"',  «"",  the  values  of  V — V ;  in  order  to  determine  in  this  case  the  value  of 

n,  and  t,  the  two  following  equations  should  be  formed 

(4„/_3m— m")a  +  {rn"—%n'  +  «)«-  +  (4'm"'—3»n— »«"")•« 

^(m""—'2,m<"—m)t-=2m  ;  (4n'—3n— «").!(  +  )«"— 2n'+ «).«= 

+  (4.B'"— 3«— »"").  <+(«""2n"'  +  M).<^=2?J. 

The  values  of  u  and  of  t  which  satisfy  those  equations,  are  much  more  precise  than  the 

preceding.  Although  this  precision  is  for  the  most  part  unnecessary,  it  is  however  indis- 

pensably necessary  to  form  these  equations,  when  the  terms  depending  on  the  second 
differences  will  be  of  the  same  order  as  those  which  depend  on  the  first  differences,  as  for 

instance,  when  the  radius  vector  is  very  nearly  at  right  angles  to  the  visual  ray  from  the 

earth  to  the  comet;  in  which  case  the  angle  SCT  is  very  nearly  equal  to  a  right  angle  ; 

on  the  other  hand,  if  SCT  was  =  45°,  the  two  values  of  SCT  would  be  very  nearly 

equal. *  Let  /be  the  inclination  of  the  orbit  to  the  plane  of  the  ecliptic,  and  we  shall  have 

rad.  sin.  (S  —j)—  cot.  /.  tan.  ̂   =  rad.  sin.  (€"— j)=  cot.  /.  tang.  sr".  therefore 
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will  be  more  exact  to  select  those  which  give  to  the  preceding  fractions, 

the  greatest  numerators  and  the  greatest  denominators. 

Tan.  j  may  appertain  to  the  two  angles  j  and  j  -\-  it,  j  being  the 
smallest  of  the  positive  angles  to  which  its  value  belongs ;  in  order  to 

determine  which  of  these  two  angles  we  ought  to  select,  it  may  be 

observed  that  <f  is  positive  and  less  than  a  right  angle  ;  and  that  thus " 

sin.  {^" — J)  must  have  the  same  sign  as  tan.  -us".  This  condition  de- 
termines the  angle  j,  and  this  angle  will  give  the  position  of  the  as- 
cending node,  if  the  motion  of  the  comet  is  direct ;  but  if  its  motion 

be  retrograde,  we  should  add  two  right  angles  to  the  angle  J,  in  order 

to  have  the  position  of  this  node. 

The  hypothenuse  of  the  spherical  triangle  of  which  ̂ " — j  and  is^' 
are  the  sides,  is  the  distance  of  the  comet,  from  its  ascending  node  in 

the  third  observation  ;  and  the  difference  between  r"  and  this  hypo- 
thenuse is  the  interval  between  the  node  and  the  perihelion,  reckoned 

on  the  orbit. 

If  we  wish  to  give  to  the  cometary  theory  all  the  precision  which 

the  observations  admit  of,  it  ought  to  be  established  on  a  comparison  of 
all  the  best  observations,  which  can  be  effected  in  the  following  manner : 

denoting  by  one,  two  strokes,  &c.  the  letters  m,  n,  p,  relative  to  the 

second  observation,  to  the  third,  &c.  compared  all  with  the  first  ob- 

servation, we  shall  form  the  following  equations, 

(w2  —  n).  u-\-(jti  —  p).  t  —  m  J 

(jii' — n').  u-\-(ni' — p).  t=m' ; 

(m'—n").  u+(m'—p").  t=m" ; 
&c. 

G  G  2 

,  S.cos. ; — COS.  £.  Sin.  7         sin.  €".  cos.  j — cos.S".  sm.  »      ,    .....      ,   —  —    -^ — r,    ;  •  •  dividing  by  cos. tar,    ̂   tan    -^r"  °      ■' 
Sin. 

tan.  w  ~  tan.  ̂ " 

J- 

,  sin.  €  —  cos.  €.  tan. ;        sin.  £"  —  cos.  €".  tan.  »     ,  ,    .       , 
we  have   —  =   7.   ~ ,  neuce  we  derive  the  expres- 

tan.  «r  tan.  s"  "^ 

sion  for  tan.  7,  which  is  given  in  the  text. 
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If  then  tliese  equations  be  combined  in  the  most  advantageous  manner, 

'n  order  to  determine  ic  and  t,  we  will  have  the  corrections  of  the 

perihelion  distance,  and  of  the  instant  of  the  transit  through  the  peri- 

helion deduced  from  all  the  observations  compared  together.  From  these 

values,  we  can  deduce  the  values  of  £,  6',  C*,  &c.  z:,  ■=/,  zs'\  &c.,  and 
we  shall  have 

._  tan.  ■nr.fsin.  S'+sin.  6''''-(-&c.) — sin.  £.(tan. -zs-'-j-tan.  ̂ /''-f&c.)    ̂, 

'•^~"   tan.  7s-.(cos.  g'-j-cos.  ̂ "-{-ikc.) — cos.  E.(tan.  i=-'+tan.  ■sj''''-j-&c.)  ' 

         tan.  •nr'-f-tan.  z/'-\-Si.c. 
'^~  sin.  (g'  -j)+sin.  (^"—J)-\-&c.' 

38.  There  is  a  case,  of  rare  occurrence  indeed,  in  which  the  orbit 

of  a  comet  can  be  determined  in  a  rigorous  and  simple  manner ; 

namely,  when  the  comet  has  been  observed  in  the  two  nodes.  The 

right  line  which  joins  these  two  observed  positions,  passes  then  through 
the  centre  of  the  sun,  and  coincides  with  the  line  of  the  nodes.  The 

length  of  this  line  can  be  determined  by  the  time  which  intervenes 

between  the  two  observations  ;  T  representing  this  time  reduced  to 

decimals  of  a  day,  and  c  denoting  the  right  line  in  question,  we  shall 

have,  by  N".  27, 

Now  let  €  be  the  heliocentrick  longitude  of  the  comet,  at  the  in- 

stant of  the  first  observation  ;  and  r  its  radius  vector,  ̂   its  distance 

from  the  earth,  and  «  its  geocentrick  longitude.  Also  let  R  be  the 

radius  of  the  orbit  of  the  earth,  and  E  the  corresponding  longitude  of 

the  sun  at  the  same  instant ;  we  shall  have 

*  Bj'  composition  of  ratios  we  obtain  these  values  of  tan. 7,  tan.  <p,  wliich  are  more  ac- 
curate than  the  preceding. 
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r.  sin.  S:=  f,  sin.  « —  R.  sin.  JS  ; 

r.  COS.  ?=  f.  COS.  X —  R.  COS.  jB. 

TT-j-S  will  be  the  hsliocentrick  longitude  of  the  comet,  at  the  instant 
of  the  second  observation  ;  and  if  we  denote  by  one  stroke  the  quantities 

r,  a,  f,  R  and  E,  relative  to  the  same  instant,  we  shall  have 

r'.  sin.  g  =  R'.  sin  E' —  ̂ '.  sin.  a,'. 

r'.  COS.  €  =  i?'.  COS.  E' —  f'.  cos.  «'. 

These  four  equations  give 

^       p.  sin.  a — R.  sin.  £         p'.  sin,  a!. — R'.  sin.  jE' tan.  G^r  -^    z;r  • 
f .  cos.  a   R.  cos.  ̂   f'.  COS.  a'   id'.  COS.  £'    ' 

hence  we  obtain 

,  _   RR'.  sin.  (E—E')—R.^.  sin,  (a-  E) 

^   ~        f .  sin.  (a' — as) — id.  sin.  {a! — E) 

We  have  aftei'vvards 

(r-|-/^).  sin.  gzrf.  sin.  « — f'.  sin.  a! — R.  sin.  £-|  K.  sin.  ̂ '. 

(r+r').  COS.  e=f.  COS.  a — f'.  cos.  a' — i2.  COS.  E-\-R.  cos.  JS'. 

By  squaring  these  two  equations,  and  adding  them  together,  we  shall 

obtain,  (c  being  substituted  in  place  of  r-\-r') 

ezuR^—QRR'.  COS.  <iE'—E)  +  R"- 

+%.(/?'.  cos.Xoc—E')—R.  COS.  (cc—E)) 

+2^'.(R.  COS.  («.'—E)—R'.  COS.  (^  — iJ')) 
-j-^»   2ff'.  COS.  (a   «)+f!\ 

If  in  this  equation,  we  substitute  instead  of  f'  its  preceding  values 
given  in  terms  of  ̂  ,  we  shall  have  an  equation  in  ̂   of  the  fourth  degree, 

which  can  be  resolved  by  the  known  methods  ;  but  it  will  be  simpler  to 

suppose  f  equal  to  some  given  value,  to  infer  from  it  the  value  of  f', 
then  to  substitute  these   values   in   the  preceding  equation,  and   see 
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whether  they  satisfy  it.     A  few  trials  will  serve  to  determine  with  ac- 

curacy, f  and  f'. 
By  means  of  these  quantities  we  can  obtain  €,  r  and  r'.  And  v  re- 

presenting  the  angle  which  the  radius  r  makes  with  the  perihelion 
distance  denoted  by  Z) ;  -n  —  v  will  be  the  angle  formed  by  this 
same  distance,  and  by  the  radius  r,  thus  we  will  obtain  by  No.  23, 

D  .,  _        -D 

consequently* 

cos.  ̂ ^  V  '  sin.  *4 

2  1  '>'  -r^  ^f^ ian.^vzz  —  ;  D  = 

Therefore  we  shall  have  v  the  anomaly  of  the  comet  at  the  instant  of 

the  first  observation,  and  its  perihelion  distance  D,  hence  it  is  easy  to 

infer  the  position  of  the  perihelion,  and  the  instant  of  the  passage  of 

the  comet  through  this  point.  Thus,  of  the  five  elements  of  the  orbit 

of  the  comet,  four  are  known,  nauiely,  the  pei'ihelion  distance,  the 
position  of  the  perihelion,  the  instant  of  the  transit  of  the  comet 

through  this  point,  and  the  position  of  the  node.  It  only  remains  to 

find  out  the  inclination  of  the  orbit ;  but  for  this  purpose  it  will  be 

necessary  to  recur  to  a  third  observation,  which  will  also  be  useful  in 

indicating  amongst  the  different  real  and  positive  roots  of  the  equation 

in  f,  that  of  which  we  ought  to  make  use. 

38.  The  hypothesis  of  the  parabolick  motion  of  the  comets,  is  not 

rigorously  true,  it  is  even  very  improbable,  considering  the  infinite  num- 

ber of  cases  which  give  an  elliptic  or  a  hyperbolic  motion,  relatively  to 

those  which  determine  a  parabolic  motion.  Besides,  a  comet  which  moves 

r        sin.  -A  u 
♦  Dividing  r  and  its  value  by  r'and  its  value  respectively,  we  have  -t  =  — " — n — , 

— -,  and  also  we  nave   \-  —r—  — - —  =  -^rr  • 
D  r     '    r'  rr  D 
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in  either  a  parabolic  or  an  hyperbolick  orbit,  would  be  only  visible  once  ; 

therefore  we  may  with  great  appearance  of  probability  suppose,  that  the 

comets  which  describe  these  curves,  if  any  such  ever  existed,  have  long- 
since  disappeared,  so  that  at  the  present  day,  we  only  observe  those, 

which  moving  in  orbits  returning  into  themselves,  are  perpetually 

brought  back,  after  greater  or  less  intervals,  into  the  regions  of  space, 

near  to  the  sun.  We  can  by  the  following  method,  determine  nearly 

within  an  interval  of  some  years,  the  duration  of  their  revolutions,  when 

we  shall  have  made  a  great  number  of  very  accurate  observations  before 

and  after  the  passage  through  the  perihelion. 

For  this  purpose,  let  us  suppose  that  we  had  four  or  a  greater 
number  of  accurate  observations,  which  may  embrace  all  the  visible 

part  of  the  orbit,  and  that  we  have  determined  by  the  preceding 

method,  the  parabola,  which  satisfies  very  nearly  these  observations. 

Let  V,  v',  i/^,  if',  &c.,  be  the  corresponding  anomalies,  r,  /•',  -Z^,  r"', 
&c.,  the  corresponding  radii  vectores.     Let  also 

i/—v=U;  i/'—v=U';  'i/''—v=U";   &c. 

this  being  agreed  upon,  we  compute  by  the  preceding  method,  with 

the  parabola  already  found,  the  values  of  U,  U,  U'\  &c.,  V,  V, 
V\  &c.;  let 

m=U—F;  m'=U'—V';  m"=iU"—V";  m'"=U"'—V'";  &c. 

Afterwards,  suppose  the  perihelion  distance  in  this  parabola,  to  vary 

by  a  very  small  quantity  ;  and  let  in  this  hypothesis, 

n=U—V;  n'zzU'—V;  n"zzU"—V";  n'"zzU"'—V'" ;  &c. 

We  then  make  a  third  hypothesis,  in  which  the  same  distance  of  the 

perihelion  being  preserved,  as  in  the  first,  the  instant  of  the  passage 

through  the  perihelion  is  varied  by  a  very  small  quantity ;  let  then 

p=  U—V;  p'=zU'—V' ;  p"=U"—V'';  f'=U'"—V'";  &c. 

Finally,  we  will  compute  with  the  perihelion  distance,  and  the  instant 
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of  the  passage  of  the  comet  through  the  perihelion  of  the  first  hy- 

pothesis, the  angle  v,  and  the  radius  vector  r,  on  the  hypothesis  that 

the  orbit  is  elliptic,  and  that  the  difference  1  —  e  between  its  excen- 

tricity,  and  unity,  is  equal  to  a  very  small  quantity,  for  example, 

to  a  50th  part.  In  order  to  obtain  the  value  of  the  angle  v  on  this 

hypothesis,  it  will  suffice,  by  No.  23,  to  add  to  the  anomaly  v,  com- 

puted in  the  parabola  of  the  first  hypothesis,  a  small  angle  of  which 
the  sine  is 

-j^^.  (1  —  e).  tang.  \v.  (i— 3.  cos.  *^t;— 6.  cos.  "^^v).* 

By  substituting  then  in  the  equation 

r-=z   iT-.il —       ^       .  tan.^lyC; 

in  place  of  v,  this  anomaly  thus  computed  in  the  ellipse  ;  we  will 

obtain  the  corresponding  radius  vector.  In  a  similar  manner  we  can 

compute,  v',  r',  %>",  r",  'o",  r'",  &c. ;  by  means  of  which  we  can  obtain 

the  values  of  U,  V,  U",  U'\  &c.,  and  by  No.  37,  those  of  V,  V,  V\ 
&c.    Let  in  this  case 

q=zU—V;  q'=U'—V'',   q'zzU'  —  V";   q"'  =  U"—V";  &c. 

Lastly,  let  u  denote  the  number  by  which  we  must  multiply  the 

supposed  variation  in  the  distance  of  the  perihelion,  in  order  to  obtain 

the  true  distance ;  and  t  the  number  by  which  the  supposed  variation 

in  the  instant  of  the  transit  through  the  perihelion  must  be  multiplied, 

in  order  to  obtain  the  true  instant ;  and  s  the  number  by  which  the 

*  When  the  orbit  is  supposed  elliptic,  we  must  have  at  least  four  observations ;  and 

then  if  the  arc  obsei-ved  be  considerable,  and  particularly  if  it  is  greater  than  90°,  the 

ellipticity  will  be  very  sensible,  and  the  periodic  time  may  be  determined  with  tolerable  pre- 
cision, if  the  four  observations  be  made  with  all  the  precision  of  modern  observations.     If 

the  square  of  a  be  neglected,  the  expression  for  r  will  be  — ^-57 — II  —  ̂ -—  .   tan.   i  I 

which  becomes  the  expression  in  the  text  when  1 — e  is  eubstituted  for  a. 
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supposed  value  of  1 — e  must  be  multiplied,  in  order  to  obtain  the  ac- 
curate value,  we  will  thus  form  the  following  equations, 

(m — n).  u-\-(7)i — p).  t-\-(m — q).  s=m 

(in — n').  u-\-{in' — p'^.  t-{-(iii' — q').  s:zzni 

(^m"—n").  u+(m"—p").  t-\-{vi"—q'').  s=m" 

(ot'"— n'").  u-^(ni"—p").  t-\-(rn"'—q"'),  s=m"' ; &c. 

The  values  of  m,  t,  s,  may  be  determined  by  means  of  these  equations, 

from  which  we  can  infer  the  true  distance  of  the  perihelion,  the 

true  instant  of  the  transit  of  the  comet  through  the  perihelion,  and 

the   true   value  of  1 — e.     Let  D    be   the   perihelion   distance,  and  a 

the  semiaxis  major  of  the  orbit ;  we  shall  have  a  =:  —   ;  the  time  of 

the   comets   sidereal   revolution  will  be    expressed   by  a  number   of 

sidereal  years,  equal  to  a~,  or  to   {    )  ",  the  mean  distance  of  the 

sun  from  the  earth  being  taken  for  unity.  Afterwards  by  N°.  37,  we 
shall  get  the  inclination  of  the  orbit,  and  the  position  of  the  node. 

Whatever  be  the  precision  of  the  observations,  they  will  always  leave 

some  uncertainty  as  to  the  duration  of  the  comets  revolution.  The 

most  exact  method  to  determine  it,  consists  in  comparing  the  observa- 
tions of  a  comet,  in  two  consecutive  revolutions;  but  this  means  is  not 

practicable,  except  when  the  lapse  of  time  brings  the  comet  back  to- 

wards its  perihelion.* 

PART  I. — BOOK  II.  H  H 
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CHAPTER  V, 

General  methods  for  determining,   by  successive  approximations,  tlie 

motions  of  the  lieavenli]  bodies. 

40.  In  the  first  approximation  of  the  motions  of  the  heavenly  bodies, 

we  have  only  considered  the  principal  forces  which  actuate  them,  and 

from  thence  the  laws  of  the  elliptic  motion  have  been  deduced.  We 

will  consider,  in  the  following  investigations,  the  forces  which  disturb 

this  motion.  In  consequence  of  the  action  of  these  forces,  it  is  only 

requisite  to  add  small  terms  to  the  differential  equations  of  the  elliptic 

motion,  of  which  we  have  previously  detei'mined  the  finite  integrals :  it 
is  necessary  now  to  determine,  by  successive  approximations,  the  inte- 

grals of  the  same  equations,  increased  by  the  terms  which  arise  from 

the  action  of  the  disturbing  forces.  For  this  object,  we  here  subjoin 

a  general  method,  which  is  applicable  whatever  be  the  number  and  the 

degree  of  the  differential  equations,  of  which  it  is  proposed  to  find  the 

perpetually  approaching  integrals. 

Let  us  suppose  thai  we  have  between  the  n  variables  y,  i/',  y",  &c. 
and  the  variable  /,  of  which  the  element  dt  may  be  considered  as  con- 

stant, the  n  differerential  equations 

&c. 

P,  Q,  F,  Q',  &c.  being  functions  of  t,  y,  y',  &c.  ;  and  of  their   dif- 
ferences continued  to  the  order  i — 1   inclusively,  and  a  being  a  very 
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small  constant  coefficient,  which,  in  the  theory  of  the  celestial  motions, 

is  of  the  order  of  the  disturbing  forces.  Let  us  in  the  next  place  sup- 

pose that  we  have  obtained  the  finite  integrals  of  these  equations,  when 

Q,  Q,  &c.  vanish  ;  by  differencing  each,  i — 1  times  in  succession, 

they  will  constitute  with  their  differentials,  in  equations  by  means  of 

which  we  can  determine  by  elimination,  the  arbitrary  quantities  c,  c',  c", 

Sic.  in  functions  of  t,  i/,  y,  y",  &:c.  and  of  their  differentials  to  the 

order? — 1.  Therefore,  if  T,  V,  V",  &c.  represent  these  functions,  we 
shall  have* 

c=V;  c  =  V';    c"=V" ;  &c. 

These  equations  are  the  in  integrals  of  the  order  i — 1,  which  the  dif- 

ferential equations  ought  to  have,  and  which  their  finite  integrals  fur- 
nish by  the  elimination  of  the  differences  of  these  variables. 

Now,  by  differentiating  the  preceding  integrals  of  the  order  i — 1,  we 
shall  have 

0-dV;  O-dV;  0  =  dV" ;  he. 

but  it  is  evident  that  these  last  equations  being  differentials  of  the  order 

i,  without  involving  arbitrary  quantities  ;  they  can  be  no  other  than 

the  sums  of  the  equations 

H  H  2 

•  In  every  differential  equation  of  tlie  order  i,  the  number  oi  Jirst  integrals  is  equal  to 

f,  these  integrals  are  of  the  order  i — 1,  and  therefore  they  only  contain  the  i — 1  differen- 

tial coefficients  —  >    — —   — —4;  and  if  these  could  be  eliminated  we  would  have 
dt         dt~  d'~h 

the  1'*  integral,  or  the  primitive  equation,  which  corresponds  to  the  proposed  differential 

equation  ;  consequently,  if  we  have  n  differential  equations,  the  number  of  first  integrals,  or 

of  integrals  of  the  order  i — 1,  must  be  in,  from  which  if  the  differential  coefficisnts  of  the 

variables  y,  y,  y",  &c.  could  be  eliminated  we  would  obtain  the  n  finite  integrals  of  the 
proposed  equations. 
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multiplied  respectively  by  suitable  factors,  in  order  that  these  sums  may 

be  exact  differences  ;  therefore  representing  the  factors  which  ought 

to  multiply  these  equations  respectively  in  order  to  form  the  equation 

dV  =  0,  by  Fdt,  F'dt,  &c.,  and  in  like  manner,  representing  by  Hdt, 

H'dt,  Sec.  the  factors  which  ought  respectively  to  multiply  the  same 

equations,  in  order  to  constitute  the  equation  O^dF' ;  and  so  of  the 
rest,  we  shall  have 

dV-F.dt.  I  ^  +  -P  (  +  -P"'-^^- 1  "^'  +  -P'  (  +  ̂^' ' 

dV  =  HAL  1^^  +  P^+//'.rf/.  j^'  +  P'(  4-  &c.  5 
F,  F',  he.  Hf  H',  &c.  are  functions  of  t,  y,  y',  y" ,  &c.  and  of  their 
differences  to  the  order  i— 1  :  it  is  easy  to  determine  them,  when  V, 

d'y 

V,  &c.  are  known  
;  for  F  is  evidently  

the  coefficient  
of  — ^  ,   in  the 

d'y' 

differ
ential

  

of  F;  jF"  is  the  coeffi
cient 

 
of-^

  
,  in  the  same 

 
differ

ential
, 

and  so  on  of  the  rest.     In  like  manner,  H,  H',  &c.  are  the  coefficients 

of  -^  ,  ̂,  &c.    in   the   differential   of    V ;  consequently,  as   the tit  Ut 

functions   of  V,  V,  &c.   are  supposed  to  be  known,  by  differencing 

d'~^  11      d'~^  v' 
them  solely  with  respect  to  -^^  ,  -r^ ,  &c.   we  will   obtain  the 

factors  by  which  the  differential  equations 

should  be  multiplied  in  order  to  obtain  the  exact  differences  ;  this  being- 

premised,  let  us  resume  the  differential  equations 

0  =  -g-  +  P^.,Q, ;   0  =  -^  +  F^«.Q;  &c. 
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The  first  being  multiplied  by  Fdt,  the  second  by  F'dt,  and  so  of  the 
rest,  and  then  added  together,  will  give 

0  -  dV'+cc.dt.(FQ+F'Q+  &c.)  ; 

in  like  manner  will  have, 

0  =z  dr'+o^,dt.(HQ+H'Q+  &c.)  ; 
&c. 

hence  we  obtain  by  integrating, 

c  —  a^.fdt.{FQ-\-FQ+kc.)-V; 

c'—oc.fdt(HQ+H'Q+kc.)  =  V ; 
&c.  ; 

we  will  have  by  this  means  i?i  differential  equations  which  will  be  of  the 

same  form  as  when  Q,  Q',  &c.  are  equal  to  nothing,  with  this  sole  dif- 
ference, that  the  arbitrary  quantities,  c,  d ,  d',  ho.,  must  be  changed  into 

c_a./^?/.(J'Q+FQ'+&c.)j  c—o,.fdt.{HQ.-\-H'Q+  &c.) }  &c. 

Now  if,  on  the  hypothesis  of  Q,  Q',  &c.  equal  to  zero,  we  eliminate 
from  the  m  integrals  of  the  order  i — 1,  the  differences  of  the  variables 

y,  y,  &c.  ;  we  shall  have  the  n  finite  integrals  of  the  proposed  equa- 

tions ;  consequently,  the  integrals  of  the  same  equations,  when  Q,  Q', 
&o.  do  not  vanish,  will  be  had,  by  changing  in  tlie  first  integrals  c,  d, 
&c.  into  • 

c—^.fdt.{FQ  +  F'Q+  he);  c—c..fdL(HQ  +  H'Qi-  &c.) 
4(1.  If  the  differentials 

dt.(iFQ+FQ:-\-  &c.),  dt.{HQ-\-H'Q[-\-  &c.)  &c. 

were  exact,  we  could  obtain  by  the  preceding  method  the  finite  integrals 

of  the  proposed  differential  equations ;  but  this  does  not  obtain  except 

in  some  particular  cases,  of  which  the  most  extensive  and  the  most  in- 

teresting, is  that  in  which  these  equations  are  linear.     Let  us,  there- 
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fore,  suppose  that  P,  P',  &c.  are  linear  functions  of  y,  y',  &c.  and  of 
their  differences  to  the  order  i — J,  without  any  term  independent  of 

these  variables,  and  at  first  let  us  consider  the  case,  iu  which  Q,  Q,  &c. 

vanish.  The  differential  equations  being  linear,  their  successive  inte- 

grals will  be  also  linear,  so  that  c—  V,  d  —  V,  being  the  in  integrals 
of  the  order  i — 1,  of  the  differential  linear  equations 

V,  V,  &c.  may  be  considered  as  linear  functions  of  ?/,  y,  he.  and  of 

their  differences,  to  the  order  i — 1.  In  order  to  demonstrate  this,  let 

us  suppose,  that  in  the  expressions  of  r/,  y,  &c.  the  constant  arbitrary 

quantity  c  is  equal  to  a  determinate  quantity,  added  to  an  indeterminate 

Sc  ;  the  constant  quantity  c',  is  equal  to  a  determinate  quantity  added 
to  the  indeterminate,  Sc,  &c.  ;  these  expressions  being  reduced  into 

series,  arranged  with  respect  to  the  powers  and  products  of  Sc,  Sd,  &c., 

we  will  have  by  the  formula  of  No.  21, 

&c. 

Y,  Y,  {  -J-  )  ,  &c.  being  functions  of  t,  without  arbitrary  quan- 

tities. By  substituting  these  values  in  the  proposed  differential 

equations,  it  is  manifest  that  Sc,  Sc,  &c.  being  indeterminate,  the 

coefficients  of  the  first  powers  of  each  of  them,  must  vanish  in  those 

different  equations ;  but   these  equations  being  linear,  we  shall  have 
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evidently  the  terms  affected  with  tlie  first  powers  of  Sc,  Sc',  &c.,  by  sub- 

stituting (  -7—  )  ■  oC-\-  {  —p-  !.<?(/+  &c.  in  place  of  3/,  &c.  [  —p-  j . 

^c  ■\-   {  —rj-  J  .  Sc'-^  &c.  in  place   of  y',  Sec.     These  expressions  of 

T/,  y',  &c.  satisfy  separately  the  proposed  differential  equations  ;  and  as 
they  contain  the  in  arbitrary  quantities  Sc,  Sc\  &c.  they  are  their  com- 

plete integrals.  Therefore  it  follows  that  the  arbitrary  quantities  exist 

in  a  linear  form,  in  the  expressions  of /y,  y',  &c.  and  consequently  also, 
in  their  differentials ;  hence  it  is  easy  to  infer  that  the  variables 

y,  y,  &c.  and  their  differences  may  be  supposed  to  exist  in  a  linear 

form,  in  the  successive  integrals  of  the  proposed  differential  equations. 

It  follows  from  what  has  been  stated  that  F,  F',  &c.  being  the  co- 

efficients  of  ~jj-  ,       '     ,  &c.  in  the  differential  of  V,  H,  H'  &c.  being 

the  coefficients  of  the  same  differences,  in  the  differential  of  V ;  and  so 

of  the  rest ;  these  quantities  are  functions  of  the  sole  variable  t.  There- 

fore, if  we  suppose  Q,  Q,  Sec.  to  be  functions  of  t  only,  the  differ- 

ences dL{FCl-\-F'Q-\-  &c.)  ;  dt.{HQ+H'Q;+  &c.)  ;  will  be  exact. 
From  the  above  results  a  simple  means  of  obtaining  the  integrals  of 

any  number  n  of  linear  differential  equations  of  the  order  i,  and  which 

involve  any  terms  a.Q,  a.Q,  &c.  which^  are  functions  of  the  sole  va- 

riable t ;  when  we  know  how  to  integrate  the  same  equations,  in  the 

case  in  which  these  terms  vanish  ;  for  then,  if  we  difference  their  n 

finite  integrals,  i — 1  times  in  succession,  we  shall  have  in  equations 
which  will  give  by  elimination,  the  values  of  the  in  arbitrary  quantities 

c,  d,  &c.,  in  functions  of  t,  y,  y',  &c.,  and  of  the  differences  of  these 
variable  quantities  to  the  order  i — 1.  We  will  thus  form,  the  in  equa- 

tions, cz=  V,  (/  —  V,  &c. ;  this  being  premised,  F,  F',  &c.  will  be 

the  coefficients  of        '    ,        X    ,  &c.,  in  V;  H,  H\  &c.,  will  be  the 

coeffieients  of  the  same  differences  in  V,  and  so  of  the  rest ;  thereibre. 
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we  will  obtain  the  finite  integrals  of  the  linear  differential  equations, 

0  =  -^  +P-^..Q  ;  0=^  +  P'+a.Q  ;  &c., 

by  changing  in  the  finite  integrals  of  these  equations  deprived  of  their 

last  terms  a,Q,  aQ',  See,  the  arbitrary  quantities  c,  </,  &c.,  into  c — x. 

fdt.CFQi-F'Q'+kc),  c'—x.fdt.{HQ+H'Q!-\-kc.);  &c. 
Let  us,  for  example,  consider  the  linear  differential  equation 

0  =  -^  +  a^rj+o^.Q. 

The  finite  integral  of  the  equation  0  =  ■   ,^   A-  a^y  is 

c  d  * y  z=.  —.  sin,  at-\-  — .  cos.  at ; ^        a  a 

c  and  &  being  arbitrary  quantities.     By  differentiating  this  integral  we 
obtain 

dv  , 
-       zzc.  cos. at —  c.  sm.  at. 
dt 

If  this  differential  be  combined  with  the  integral  itself,  we  can  form  tw» 
integrals  of  the  first  order, 

dy 

c  =  ay.  sin.  
at  +  -ij-'  

cos.  
at-, 

dy     •      , 
c  —  ay.  cos.  at   ^.  sm.  at ; 

thus  we  shall  have  in  this  case, 

F=cos.  a^j  H=  —  sin.  a^; 

therefore,  the  complete  integral  of  the  proposed  will  be 
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C      .        .    ,     C  a.  siu.  at     /,  „     ,^ 
y=  —.  sin.  at  -\   .  cos.  at — •   .  fQ.  at.  cos.  at  + 
^       a  a  a 

a..  COS.  at      rr\  jt    ■ 
.  J  Q..dt.  sin.  at. a 

It  is  easy  to  perceive  that  if  Q  is  composed  of  terms  of  the  form 
Sin 

^.         *    (ffi/  +  i),  each   of  these  terms  will  produce  in  the  value  of 

y^  the  corresponding  term 

a.K        sin.  . 

wr — a      cos.^ 

PART.  I.   BOOK  II.  1 1 

*  If  Q  be  of  the  form  sin.  (nz^+s)  then  we  shall  have  — fQ..dt,  cos.ai=—^sm.[mt^i). 

dt.  COS.  at,  which  by  partial  integration  becomes 

— .  sin.  (mt+t).  sin.  at   .  /'cos.(mi4£).  sin.  ai.dt.(=    .  cos.  (mt-\-t).  cos.  at a  ^       •    '  a  a/^  v       i    / 

  ^.ysin.  (wi+e).  COS.  a^o';./  =—  .  sin.  ()7it+i).  sin.at   ^.J'cos.(mt.^)sih.at.dt.) 

(=   —  .  cos.{mt-\-i),  cos.  at   —  .ysin.{m*-l.e).  cos.  at.dt.  )  = 

— — .  sin.  )int-\-t).  sm.  a<    .  /cos.  {jn^-fO-  S'"-  ot.dt; 

now  if  the  factors  of  sin.  at,  and  of  cos.  at,  be  collected  respectively,  we  shall  obtain 

  1 — ^   .  /sin.  (mt-\-i).  cos.  ai.rfi  =  sin.  (mi+e).  sin.*a<.a.(a--  +  a-'.TO^+a-*'.JM*4-a:) 

—  cos.  (jKi-f-e).  sin.  at  cos.  a<.  «.(a— '.w  -(-a~^.OT^+a— '.m'-j-  &c.) 

and  if  the  term  /.  sin.  (m^+s).  sin.  at.dt,  be  expanded  into  a  series  by  a  similar  process 
we  shall  have 

—   '■ —  .  /.  sin.  (mt-\-i).  sin.  at.dt  =  sin.  (mt  +  i).  cos.  'a^«. 

(a-'+a-*.m2+o-«.TO*+&c.)+  cos.  (mt+i).  sin.  af.  cos.  af.a.  (a-'m-ffl.-=.m'+o-''.OT'4&c.) 
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sin. 

If  wz  is  equal  to  a,  the  term  K.  oqJ  (''^^•{■0  will  produce  in  i/,  1st, 

the  term   r*     *  («^+0>  which  being   comprized  in   the  two 
4a      COS.   ̂        '     ■'  or 

terms  — .  sin.  at-\   .  cos.   at,  may  be  neglected  ;    2dly,  the  term 

a  7^f    COS 

±   .  .    \at-\-t),  the  sign  +  obtaining,  if  the  term  of  the  expression ^Cl     sill* 

of  Q  is  a  sine,  and  the  sign  —  having  place,*  if  this  term  is  a  cosine. 
It  appears  from  what  has  been  stated  above,  how  the  arc  t  is  produced 
without  the  signs  of  sine  or  cosine,   in  the  values  of  2/,  y,  &c.  by  the 

"/  adding  these  two  expressions,  and  observing  that  a-°-[-a-*.m'-|-a-^.w*-f  &c.  = 

we  shall  arrive  at  the  expression  given  in  the  text. 

*  The  parts  under  the  sign  of  integration  in  this  case  are  respectively  /.  sm.  ( at+t). 

COS.  at.dt,/.  sin.  (a«  +  e).  sin.  at.dt)  —f.  sin.  at.  cos.  at.  cos.  i.dt  -\-  f.  cos.  ̂ at.dt.  sin.  1, 

f.  sm,  ''at.  cos.  i.dt  +_/.  sin.  at.  cos.  at  sin.  i.dt,  and  these  expressions  are  =  \f.  sin.  2,at. 
cos.  i.dt  +  ̂ f.  cos.  2at,  sin.  udt  -|-^ /sin.  i.dt,  and  — ^f.  cos.  2at. cos.  i.dt-\-^/.  cos.  i.dt 

■\-\f.  sin.  2.at.  sin.  i.dt,  and  by  integrating  these  expressions  become  — — .  cos.  2at.  cos.  c 

J   .  sin.  2at.  sin.  i  +  A.  sin.  e.  t,  —  — — .  sin.  9.at.  cos.  s +*  cos.  ut.   ; — .    cos.   2.at.' ^   4a  ''4a  4a 

sin.  t,  and  if  the  three  first  terms  be  multiplied  by   '■ — '■ —  ,  and  the  three  last  by a 

a. cos.  at     ̂       .  .    , 
   they  become  respectively 

+  -^.  sin.  at.  cos.2a<.  cos.  1   — ; .  sin.  2a*.  sin.  at.  sin.  1   — -.  sin.  at.  sin.  t.t —  —-r. 
'   4a*  40*^  2a  4a' 

sin.  2a^  cos.  at.  cos.  i  A   .  cos.  at.  cos.  i.t  —  -—,.  cos.  at.   cos.  2ai.   sin.  t  = 
^     2a  'ia' 

4.  JL  .  sin.  at.  (cos.  2a^  cos.  e  —  sin.  2at.  sin.  e)  _  -^  .   cos.   at.  (sin.  2af.    cos  1  + 
'    4a"  40' 

COS.  2o^  sin.  A  +  ~  .  (cos.  a«.  cos.  «— sin.  at.  sin.  t)  =  — ^.  sin.  a^  cos."  (2a<  +  t)  — 

cos.af.  sin.  (2at  +  1))  =^^-  s'".  (ai+i)+-^  ■  cos.(af+e). 
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successive  integrations,  although  the  differential  equations  do  not  con- 
tain it  under  this  form.  It  is  evident  that  this  will  be  the  case  as 

often  as  the  functions  FQ,  F  Of,  &c.  HQ,  H'Q\  &c.  contain  con- 
stant terms. 

42.  If  the  diflFerences  rfA(2^Q+  &c.),  dt.(HQ-\-  &c.,  are  not  exact, 
the  preceding  analysis  will  not  give  their  rigorous  integrals;  but  it 

suggests  a  simple  means  of  obtaining  integrals  more  and  more  approach- 

ing, when  a  is  very  small,  and  when  the  values  of  i/,  y' ,  &c.  on  the 
hypothesis  of  a.  being  equal  to  cypher,  are  known.  By  differentiating 

these  values,  i — 1  times  in  succession,  we  will  obtain  the  following 

differential  equations  of  the  order  i — 1, 

cz^V;  c'-V;  &c. 

d'li        d'li' The  colficients  of  —-jjj- ,   —~  >    i"   the  differentials  of  V,   V,  &c. 

being  the  values  of  F,  F,  &c.  H,  H',  &c. ;  we  will  substitute  them 
in  the  differential  functions 

dt.iFQ+FQfi-  &c.);  dt.(HQ-{-H'Q+8cc.)* 

Afterwards,  we  must  substitute,  in  place  of  y,  y',  &c,,  their  first  ap- 
proximate values  ;  which  will  give  their  differences  in  functions  of  t, 

and  of  the  arbitrary  quantities  c,   d,  &c.     Let   T.dt,   T'dt,  &c.,  be 
I  I  2 

*  Let  y  =  (p.(<,  c,  c',  c",  &c.)  be  the  value  of ;/,  when  «=0,  which  being  substituted  in 

place  of^,  in  the  function  dt.{FQ+F'Q.'),  dt.(HQ+H'Q.')+  &c.  these  functions  will  de- 

pend on  t,  and  c„  c/,  c,",  &c.  •.•  i/  =  <p.(t„  c — af  Tdt,  d — af  T'dt,  &c.),  and  if  this  value 

ofy  be  also  substituted  in  dt.(FQ.-\-F'Q-\-S:c.),  dt.{HQ  + H'Q'-\-&c.),  they  will  become 
=  T,.dt,  T;dt,  &c.;  hence  _y=ip.(t,c  —  ».fT^t.  d —  u./TJ.dt,  &c.) 

The  successive  powers  of «  must  necessarily  occur  in  these  approaching  values  of  y. 

This  method  corresponds  to  the  method  of  continued  substitutions  adopted  by  Newton. 
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these  functions.  If  in  the  first  approximate  values  of  y,  y'.  Sec,  we 

change  the  arbitrary  quantities  c,  c',  &c.  respectively  into  c  —  a.J'Tdt; 
d — x.fTdt,  &c.  we  will  have  the  second  approximate  values  of  those 
variables. 

These  second  values  being  substituted  again,  in  the  differential 
functions 

dt.{FQ+  &c.)  ;  dL(HQ+  &c.)  ;  &c. 

it  is  manifest  that  these  functions  are  then  what  Fdt,  F'dt,  become, 

when  the  arbitrary  quantities  c,  c\  &',  &c.  are  changed  into  c — a„JTdt\ 

c'—x.fTdt,  &c.  Therefore,  let  F,  F',  &c.  be  what  T,  T.  &c.  be- 
come  in  consequence  of  these  changes ;  we  shall  have  the  third  ap- 

proximate values  of  y,  y',  &c.  ;  by  changing  in  the  first,  c,  c',  &c. 

respectively  into  c — oi..fT(i.  c' —  a..fT'.dt ;  &c. 

In  like  manner,  T,„  T,',,  &c.  representing  what  T,,  T,',  &c.  become 

when  c,,  c/,  &c.  are  changed  into  c — 01..J  TfH,  c — xfT'dt,  &c. :  we 

shall  have  the  fourth  approximate  values  of  y,  y',  &c.  by  changing  in 

the  first  approaching  values  of  these  variables,  c,  c',  into  c — a.J'T„.dt, 
c — (x.JT'j.dt,  &c.  ;  and  so  on  of  the  rest. 

We  shall  see  in  the  sequel,  that  the  determination  of  the  celestial 

motions  depends  almost  always  on  differential  equations  of  the  form 

Q  being  an  entire  and  rational  function  of  ?/,  and  of  the  sines  and 

cosines  of  angles  increasing  proportionably  to  the  time  represented 

by  t.     The    following  is  the  easiest  means  of  integrating   this   equa- 

*  Let  Q  =  y.  COS.  2<,  and  we  have  0=  -rf  +  a'-y-\-»y-  cos-  2/ ;  let  a=0,  and  we  shall 

have  0  =  — —  +  n'^-y ;  of  which  the  integral  is  —  .  sin.  at  -^  —  .  cos.   at,  which  value 
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tion.  We  suppose,  in  the  first  place,  a.  equal  to  nothiug,  and  by  the 

preceding  number  we  will  obtain  a  first  value  of  y. 

This  value  being  substituted  in  Q,  it  will  by  this  means  become  an 

entire  and  rational  function  of  the  sines  and  cosines  of  angles  pro- 

portional to  the  time  t.  Afterward  by  integrating  the  differential 

equation  we  will  obtain  a  second  value  of  j/,  approximate  as  far  as  quan- 
tities of  the  order  a,  inclusively. 

This  value  being  substituted  in  Q, ;  will  give,  by  integrating  the 

differential  equation,  a  third  approximate  value  of  y,  and  so  on  of  the 
rest. 

This  manner  of  integrating  by  approximation,  the  differential  equa- 
tions of  the  celestial  motions,  although  the  simplest  of  all,  is  however 

liable  to  the  inconvenience  of  giving  in  the  expressions  of  the  variables 

y,  y,  '&€.,  the  arcs  of  circles  without  the  signs  of  the  sine  and  cosine, even  in  the  case  in  which  these  arcs  do  not  exist  in  the  accurate  values 

of  these  variables  ;  in  fact,  we  may  conceive,  that  if  these  values  involve 

the  sines  and  cosines  of  angles  of  the  order  at,  these  sines  and  co. 

sines  ought  to  be  exhibited  in  the  form  of  a  series,  in  the  approximate 

values  which  are  found  by  the  preceding  method ;  because  these  last 

values  are  arranged  according  to  the  powers  of  a.  This  expansion  into 

a  series  of  the  sines  and  cosines  of  angles  of  the  order  at,  ceases  to 

be  exact,  when  in  the  progress  of  time,  the  arc  at  becomes  consider- 

able ;  consequently  the  approximate  values  of  y,  y',  &c.,  cannot  be 
extended  to  an  indefinite  time.     As  it  is*  of  consequence  to  have  values 

tPy 

being  substituted  
for  y  in  ay.  cos.  2t,  the  differential  

equation  
-—  -f-  a^y  •\-  »y.  cos.  2t, 

can  be  integrated  by  the  method  pointed  out  in  the  preceding  page. 

*  It  would  seem  at  first  sight  only  necessary  to  substitute  for  the  arc  t  and  its  powers 

,,    .     J      ,                    :i    ,        ,- ^          ,           .                 .         .      sin.  <'         3.  sin.  <=     .     „ their  developements   deducea]  from  the  series  t  ̂   sm.  t  •\-  ■   1    -f-  &c. 

but  it  is  to  be  considered,  that  when  t  exceeds  a  quadrant  the  series  ceases  to  be  exact, 

•/  this  series  cannot  be  substituted  for  any  arc  ivhatever. 
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which  embrace  the  past  as  well  as  future  ages ;  the  reversion  of  the 

arcs  of  a  circle,  which  the  approximate  values  contain,  to  the  functions 

which  would  produce  them  by  their  expansion  into  a  series,  is  a  very 

delicate  problem,  and  of  great  interest  in  analysis.  The  following  is  a 

very  simple  and  general  method  of  resolving  it. 

43.  Let  us  consider  the  differential  equation  of  the  order  i, 

a.  being  a  very  small  quantity,  and  P  and  Q  being  algebraic  functions 

ofj/,  — ^         ■_^ ,  and  of  the  sines  and  cosines  of  angles  increasing 

proportionably  to  t.  Let  us  suppose  that  we  have  the  complete  integral 

of  this  differential  equation,  in  the  case  of  a  =  0,  and  that  the  vahie  of 

3/,  determined  by  this  integral,  does  not  involve  the  arc  t,  without 

the  signs  sine  and  cosine  ;  let  us  afterwards  suppose,  that  this  equation 

being  integrated  by  the  preceding  method  of  approximation,  when  a. 

does  not  vanish,  gives 

y  -  X  -\-  t.  Y  -\-  t\  Z  -\-  t\  S  -\-  &c. 

X,  Y,  Z,  &c.,  being  periodic  functions  of  /,  which  involve  the  i  ar- 

bitrary quantities  c,  &,  d' ,  &c.  ;  and  the  powers  of  t,  in  this  expression 

of  7/,  extending  to  infinity  by  the  successive  approximations.  It  is 

manifest  that  the  coefficients  of  these  powers  will  always  decrease  with 

greater  rapidity,  as  a.  is  smaller.  In  the  theory  of  the  motions  of  the 

heavenly  bodies,  a.  expresses  the  order  of  the  disturbing  forces  rela- 

tively to  the  principal  forces  which  actuate  them. 

If  the  preceding  value  of  j/,  be  substituted  in  the  function -^p — Y  P 

-\-  »Q;  it  will  assume  the  following  form,  k  +  k't-\-¥f'+  Sec. ;  k,  hf, 
k',  being  periodic  functions  of  t;  but  by  hypothesis  the  value  of  y 
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satisfies  the  differential  equation 

o=-^  +  P  +  '<i' 

therefore  we  ought  to  have  identically 

0  = /<:  +  A-"?  +  F^+ &c. 

If  k,  k',  k",  &c.,  do  not  vanish,  this  equation  will  give  by  the  re- 
version of  series,  the  arc  t,  in  a  function  of  the  sines  and  cosines  of 

angles  proportionable  to  t ;  therefore  «  being  supposed  to  be  indefi- 
nitely small,  we  would  have  t  equal  to  a  finite  function  of  the  sines 

and  cosines  of  similar  angles,  which  is  impossible ;  consequently,  the 

functions  k,  V,  &c.,  are  identically  equal  to  cypher. 

Now,  if  the  arc  t  is  only  elevated  to  the  first  power  under  the  sign  sine 

and  cosine,  as  is  the  case  in  the  theory  of  the  celestial  motions,*  this 
arc  will  not  be  produced  by  the  successive  differences  of  y ;  therefore 

d'y 

by  substituting  the  preceding  value  of  y,  in  the  function  —~  +  P  + 

a.Q  the  function  K  +  K't-\-  &c.,  into  which  it  is  transformed,  will  not 
contain  the  arc  t,  without  the  sines  sin.,  and  cos.,  but  as  far  as  it  is 

already  contained  in  y  ;  thus,  by  changing  in  the  expression  of  y,  the 

arc  ̂ ,  without  the  periodic  signs;  into  t — fl,  6  being  a  constant 

quantity,  the  function  k  +  k't-^  &c.,  will  be  changed  into  k-\-k'.(t — 9) 
+  &c. ;  and  because  this  last  function  is  identically  equal  to  nothing, 

in  consequence  of  the  identical  equations  'k  zz  0,  k'  zz  0,  &c.  j  it 
follows  that  the  expressiont 

j/  =  X  +  (^  — 9).   F+(^  — 0)*.  Z+  &c., 

*  If  a  term  of  the  form  sia.(af")  occurred  in  the  value  of  ̂ ,  then  in  the  successive  dif- 
ferences of  y,  powers  of  the  arc  t  will  be  produced. 

f  The  values  of  Y,  Z,  &c.  in  this  second  value  of  1/  are  different  from  the  quantities  re- 
presented by  Y,  Z,  &c.  in  the  first  value  of  y. 
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satisfies  also  the  differential  equation 

Although  this  second  value  of  y  seems  to  involve  i  -\-  \  arbitrary 

quantities,  namely  the  i  arbitrary  quantities  c,  c',  c\  &c.,  and  the 
arbitrary  6 ;  however,  it  can  only  contain  the  number  i  of  arbitrary 

quantities  which  are  really  distinct.  It  is  therefore  necessary,  that 

by  suitable  transformation  in  the  constant  quantities  c,  d ,  d',  &c.,  the 
arbitrary  quantity  fi  should  disappear  from  this  second  expression  of  y, 

and  that,  consequently,  it  should  coincide  with  the  first.  This  consi- 
deration furnishes  us  with  means  of  making  the  arcs  of  circle  which 

exist  without  the  periodic  signs  to  disappear. 

The  second  expression  of  y,  may  be  made  to  assume  the  following 
form: 

y  =  A' +  (^—6).  R. 

As  we  have  supposed  that  S  disappears  from  y,  we  will  have    (  -^  ) 

=  0,  and  consequently 

dX     .    ,.     ..  fdR 

R- 

+  ('-•)•  (f)-- 
This  equation  being  differenced  successively,  will  give 

If  ̂ .{*,  i,t  —  6)  be  expanded  by  the  formula  of  No.  21,  it  will  becume  ̂ .(t,  9) 

^^'   ' .  (t—i)  ̂    \    ̂   .  (t  —  ef  +  &c.  =  (as  <(>.(t,  e,)=zX)  the  expression 
in  the  text. 

See  an  example  of  this  method  m  Chapter  7,  Article  53. 
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&c. 

hence  it  is  easy  to  infer  by  eliminating  R,  and  its  differentials,    from 

the  preceding  expression  of  J/,  that 

X  is  a  function  of  t,  and  of  the  constant  quantities  c,  d,  d',  &c. ;  and 
as  these  constants  are  functions  of  9,'X  is  a  function  of  t  and  of  9,  which 

we  can  represent  by  (p.{t,  S).  The  expression  of  y  is,  by  the  formula 

(0  of  N°.  21,  the  expansion  of  the  function  (f.{t,  Q  +  t—d),  according 
to  the  powers  of  t — d  ;  therefore  we  have  J/  zz  (p.(t,  t)  ;  it  follows  from 

this  that  the  value  of  ̂   will  be  had  by  changing  9  into  t,  in  A'.  The 
proposed  problem  is  by  this  means  reduced  to  the  determination  of  X,  in 

a  function  of  /,  and  of  9,  and  consequently  to  the  determination  of  c,  d, 

d',  &c.,  in  functions  of  9. 
For  this  purpose,  let  the  equation 

^  +  X+(^— 9).  F+(f— 9)*.  Z+(/— 9)'-  8+  &c. 

be  resumed.  The  constant  quantity  9  being  supposed  to  disappear  from 

this  value  of  y,  we  have  the  identical  equation 

By  applying  to  this  equation  the  same  reasoning  as  in  the  case  of  the 

equation  0=A.  +  A''^+  ¥t''  +  &c.,  it  will  appear  that  the  coefficients  of 
the  successive  powers  of  {t — 9),  must  of  themselves  be  equal  to  zero. 

The  functions  X,  Y,  Z,  &c.,  do  not  involve  9,  except  as  far  as  it  is 

PART  I.  BOOK  II.  K  K 
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contained  in  c,  d,  &c. ;  so  that  in  order  to  constitute  the  partial  dif- 

ferences I  -37-  )  >  (  —j^  j  ,  I  —jT-  j  ,  &c.,  it  is  sufficient  merely  to  make 

c,  d,  &c.,  vary  in  these  functions,  which  gives 

(dX\_(dX\    ^,(dX\dd_      (dX\     dd' 
\d^ )~  \dc )' d^^Kddj' M  "^  \dd')'~dr'^ ^^' ' 

\d^  )~  \dc  )'d^^  \dd  )'  d^^  \  dd'J  '    d^    "^  ̂̂ ' ' &c. 

Now  it  may  happen  that  some  of  the  arbitrary  quantities  c,  d,  d', 
&c.,  multiply  the  arc  t  in  the  periodic  functions  X,  Y,  Z,  &c. ;  the  dif- 

ferentiation of  these  functions  relatively  to  0,  or  which  comes  to  the  same 

thing,  relatively  to  these  arbitrary  quantities,  will  develope  this  arc,  and 
make  it  issue  from  without  the  signs  of  the  periodic  functions ;  the 

diflFerences  (jfl-j'f-^j'f"^)'  '^^•■>  '^'^  ̂'^^'^  ̂ ^  °^  ̂^  following 
form : 

i: 

in  which  X\  X",  F',  Y\  Z,  Z",  &c.,  are  periodic  functions  of  U 

and  moreover  involve  the  arbitrary  quantities  c,  d,  d',  &c.,  and  their 
first  differences  divided  by  d^,  which  differences  do  not  occur  in  these 

functions,  except  under  a  linear  form  ;  we  shall  therefore,  have 
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&c. 

This  value  being  substituted  in  the  equation  (a),  will  give  ^ 

+  (i^9).  (  F  +  6  Y'  +  X"—<2Z) 
+  (t—^)\  {Z'  +  ̂ Z'+Y"—SS)+  &c. 

hence  we  deduce,  by  putting  the  coefficients  of  the  powers  of  / — 9, 
separately  equal  to  nothing, 

0  =  X'+  6.  X"—Y-y 
0  =  r'+  0.  Y"+x"—^z-y 
O  =  Z'  +  0.Z''-{-Y"—3S; &c. 

The  first  of  these  equations,  being  differenced  i — 1  times  in  succession, 

with  respect  to  t,  will  give  a  corresponding  number  of  equations  be- 

tween the  arbitrary  quantities  c,  c,  d',  &c.,  and  their  first  differences 
divided  by  dt ;  the  resulting  equations  being  afterwards  integrated,  with 
respect  to  0,  will  give  these  constant  quantities  in  functions  of  0.  The 

sole  inspection  of  the  first  of  the  preceding  equations  will  almost  always 

suffice  to  determine  the  differential  equations  in  c,  c',  d'.  Sec,  by 
comparing  separately  the  coefficients  of  the  sines  and  of  the  cosines 
which  it  contains  ;  because  it  is  manifest  that  the  values  of  c,  d ,  8cc. 

being  independent  of  ̂,  the  differential  equations  which  determine  them 

ought  to  be  equally  independent  of  this  quantity.  The  simplicity  which 

this  consideration  produces  in  the  computation,  is  one  of  the  principal  ad- 
vantages of  this  method.  Most  frequently  these  equations  can  only 

be  integrated  by  successive  approximation,  which  may  introduce  the 
arc  9,  without  the  periodic  signs,  in  the  values  of  c,  d,  &c.,  even  when 
this  arc  does  not  occur  in  the  rigorous  integrals  ;  but  we  can  make  it 

to  disappear  by  the  method  which  we  have  laid  down. 
KK  2 
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It  may  happen  that  the  first  of  the  preceding  equations,  and  its  i — 1 
diflPerentials  in  /,  do  not  give  a  number  i  of  distinct  equations,  between 

the  quantities  c,  c',  c",  &c.,  and  their  differences.  In  this  case,  we 
should  recur  to  the  second  and  subsequent  equations. 

When  the  values  of  c,  d,  d',  &c.,  shall  have  been  determined  in 

functions  of  9 ;  we  can  substitute  them  in  X,  and  by  changing  after- 
wards 9  into  t,  we  will  have  the  value  of  y,  in  which  no  function  of 

the  arcs  of  a  circle  occur,  which  are  not  affected  by  periodic  signs, 

when  this  is  possible.  If  this  value  still  preserves  them,  it  will  be  a 

proof  that  they  existed  in  the  exact  integrals. 

44.  Let  us  now  consider  any  number  n  of  differential  equations 

P,  Q,  F,  Q',  &c.,  being  functions  of  y,  y',  &c.,  and  of  their  dif- 

ferentials, continued  to  the  order  i — 1,  and  of  the  sines  and  cosines  of 

angles  increasing  proportionably  to  the  variable  t,  of  which  the  dif- 

ference is  supposed  to  be  constant.  Let  us  suppose  that  the  approxi- 
mate integrals  of  these  equations  are 

y-X-\-t.Y-\-  t\Z  +  t'S  +  &c. ; 

y'=X,-\- 1.  Y,+  t\Z,-\-  t'S,  +  &c. ; 

X,  Y,  Z,  &c.,  X,,  Y,,  Z,,  &c.,  being  periodic  functions  of  t,  and 

containing  the  in  arbitrary  quantities  c,  d,  d',  &c.,  we  will  have,  as  in 

the  preceding  number, 

0  =  X'+^.X"—  Y; 

0  =  Y'  +  e.  Y"  +  X'^^Z; 

0  =  Z'+t  Z"  -h  Y"  —  35 ; 
&c. 

The  value  of  y  will  in  like  manner  give  equations  of  the  following 
form  : 
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0  =  X:  +  0.  X/+   Y,', 
0  =  y;+  9.  17+  X/— 2Z,; 

&c. 

The  values  oi y",  y''',  &c.,  will  furnish  similar  equations.  By  means 
of  these  different  equations  we  can  determine  the  values  of  c,  c\  d',  &c., 
in  functions  of  9,  those  equations  being  selected,  which  are  the  sim- 

plest and  most  approximative  :  by  substituting  these  values  in  X,  X,, 

&c,,  and  afterwards  changing  9  into  t,  we  will  have  the  values  of  3/,  y, 

&c.,  not  containing  the  arcs  of  a  circle  without  the  periodic  signs, 

when  this  is  possible. 

45.  Let  us  resume  the  method  which  has  been  explained  in  N".  40. 

It  follows  from  it,  that  if  in  place  of  supposing  the  parameters  c,  d ,  d', 
&c.,  constant,  we  make  them  to  vary,  so  that  we  may  have 

dc  =  ̂   cidt.  (FQ  +  FQa-  &c.)  ; 

dc  =  —  aclt.  {HO.  +  H'Q  +  &c.) , 
&c. 

we  will  have  always  the  in  integrals  of  the  order  { — 1,  namely 

c  =  V;  d  =  V'j  d'z=V'';  kc. 

as  in  the  case  of  a  equal  to  zero  ;  hence  it  follows,  that  not  only  the 

finite  integrals,  but  also  all  the  equations  in  which  only  differences  of  an 

order  inferior  to  i,  enter,  preserve  the  same  form  in  the  case  of  «  equal 

to  nothing,  and  of  a  being  any  finite  value  whatever ;  because  these  equa- 

tions can  result  solely  from  a  comparison  of  the  preceding  integrals  of  the 

order  i — 1.  Consequently,  we  can  equally,  in  these  two  cases,  difference 

i — 1  times  in  succession  the  finite  integrals,  without  making  c,  c,  &c., 

to  vary ;  and  as  we  are  at  liberty  to  make  all,  vary  at  once,  there 

results  an  equation  of  condition  between  the  parameters  c,  d,  &c.,  and 
their  differences. 

In  the  two  cases  namely,  of  «  equal  to  nothing,  and  of*  being  any  quan- 

tity whatever,  the  values  o^y,y',  r/' ,  &c.,  and  of  their  differences  to  the 
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order  i — 1  inclusively,  are  the  same  functions  of  t,  and  of  the  para- 

meters c',  d',  &c.  J  let,  therefore,  Y  be  any  function  of  the  variables, 

Vi  y't  y"y  &c.,  and  of  their  differentials  inferior  to  the  order  i — 1, 
and  let  us  name  T,  the  function  of  t,  into  which  it  is  changed,  when 

we  substitute  in  place  of  those  variables  and  of  their  differences, 

their  values  in  t.  We  can  difference  the  equation  Y-=.T,  by  con- 
sidering the  parameters  c,  d,  d\  he,  as  constant ;  we  can  even 

assume  the  partial  difference  of  F,  relatively  to  one  only,  or  to 

several  of  the  variables  y,  y,  &c.,  provided  that  we  only  make  to  vary 

that  part  of  T,  which  varies  with  them.  In  all  these  differentiations 

the  parameters  c,  d,  d',  &c.,  may  be  always  regarded  as  constant ; 

because,  by  substituting  for  y,  y',  &c.,  and  their  differences,  their  va- 
lues in  /,  we  will  have  equations  identically  nothing,  in  the  two  cases 

of  «  equal  to  nothing,  of  a,  having  any  finite  value  whatever. 

When  the  differential  equations  are  of  the  order  i — ],  it  is  no  longer 

permitted,  in  differentiating  them,  to  treat  the  parameters  c,  c',  d\  &c., 
as  if  they  were  constant.  In  order  to  difference  those  equations,  let 

us  consider  the  equation  <p=0,  <p  being  a  differential  function  of  the 

order  i — 1,  and  which  contains  the  parameters  c,  c',  d',  &c. :  let  Si^  be 

the  difference  of  this  function  taken  on  the  supposition  that  c,  c',  &c., 

as  well  as  the  differences  dy*~^,  d'~^y',  &c.,  are  constant.     Let  aS"  be  the d'li 

coefficient  of      ̂ _^   in  the  entire  difference  of  9  ;  let  iS"  be  the  coeffi- 

d'xi' 
cient  of-^^i,

  
in  this  same  differenc

e,  
and  so  of  the  rest.     The  equa- 

tion ?i=0,  being  differenc
ed,  

will  give 

by  substituting  in  place  of  -^^ ,   its  value  — rf/.(P  +  a.Q) ;  in  place 
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of  -T-^,  its  value  —dt.(F+»Q),  &c. ;  we  shall  have 

0=  .,+  (§).*+  (^).*'+&c. 
—dt.(SP+S'F+  &c.)^oc.dt.(SQ+S'Q'+  kc.)  ;  (0 

The  parameters  c,  d,  c",  &c.,  are  constant  on  the  hypothesis  that  x 
vanishes ;  thus  we  have 

Oz=  h  —  dt.  (^SPJrS'F-^  kc.) 

If  we  substitute  in  this  equation,  in  place  of  c,  c',  c',  &c.,  their  values 
V,  V,  V",  &c.,  we  will  have  a  differential  equation  of  the  order  i — 1, 
without  arbitraries,  which  is  impossible  unless  the  terms  of  this  equa- 

tion are  identically  equal  to  cypher.     Therefore  the  function 

Sg>  —  dt.(SP  +  S'F-i-  &c.) 

becomes  identically  equal  to  nothing,  in  consequence  of  the  equations 

c  ■=  V,  c'z=.  V,  &c. ;  and  as  the  same  equations  also  obtain  when  the 
parameters  c,  c',  c\  &c.,  are  variable,  it  is  manifest,  that  in  this  case 
also,  the  preceding  function  is  identically  equal  to  nothing,  the  equation 

(f)  will  consequently  become 

"  =  (§)•* -(^) •*'+*«• 
—  ».dt.CSQ  +  S'Q-\-  &c.)  :  (^) 

It  appears  from  this,  that  in  order  to  difference  the  equation  ̂   =  0, 

it  is  sufficient  to  make  the  parameters  c,  c',  </',  &c.,  and  the  differences 
d'~^y,  d'~^y',  &c.,  to  vary  in  <p,  and  after  the  differentiations  to  substitute 

d'y        d'y' — «Q,  — oiQ,  &c.,  in  place  of  the  quantities  — ^  ,    —nr*  ̂ c. 

Let  \)/  ̂=-0,  be  a  finite  equation  between  y,  y\  &c.,  and  the  variable 

t;  if  we  denote  by  S^,  ̂ ij/,  &c.,  the  successive  differences  of  ̂ ,  taken 
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on  the  supposition  that  c,  c',  &c.,  are  constant ;  by  what  goes  before 
we  shall  have,  even  in  the  case  in  which  c,  c',  &c.,  are  variable,  the 
following  equations : 

^=0;  S4>  —  0;  d^=:0   rf^'4.  =  0; 

therefore,  by  changing  successively  in  the  equation  (x),  the  function 

ip  into  4-,  i^,  </*vJ/,  Sec,  we  shall  have 

Thus  the  equations  »|/rr  0,  ̂ '  =:  0,  &c.,  being  supposed  to  be  the  n 
finite  integrals  of  the  differential  equations, 

we  will  have  the  in  equations  by  means  of  which  the  parameters  c,  c,  d', 
&c.,  may  be  determined  without  the  necessity  of  forming  for  this  pur- 

pose the  equations  c  —  V,  dzzV,  &c.,  but  when  the  integrals  will  be 

under  this  last  form,  the  determination  of  c,  c',  &c.,  will  be  more  simple- 
45.  This  method  of  making  the  parameters  to  vary  is  of  the  greatest 

use  in  analysis,  and  in  its  applications.  In  order  to  shew  a  new  ap- 
plication of  it,  let  us  consider  the  differential  equation 
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P  being  a  function  of  t,  y,  of  its  differences  to  the  order  i — 1, 

and  of  the  quantities  q,  q'.  Sec,  which  are  functions  of  t.  Let  us 
suppose  that  we  have  the  finite  integral  of  this  equation  on  the  hy- 

pothesis that  q,  q,  &c.,  are  constant,  and  let  (p-=.0  represent  this 
integral,  which  will  contain  the  i  arbitrary  quantities  c,  d,  &c.,  let 

ip,  ̂ (p,  S^(p,  he,  denote  the  successive  differences  of  (p,  taken  on  the 

supposition  that  q,  q' ,  &c.,  and  also  the  parameters  c,  d ,  &c.,  are 
constant.  If  all  these  quantities  are  supposed  to  vaiy,  the  differ- 

ence of  (p  will  be 

therefore,  by  making 

(^(p  will  be  yet  the  first  difference  of  <p  when  c,  c'  &c.,  q,  q',  &c.,  are 
variable.     If  in  like  manner  we  make, 

0  =]      ,  ̂  f.  dc+  ] — -JLLdd+  &c. L     etc     )  i     dd     S 

i^(p,  S^(p   S*(p,  will  be  also  the  second,  third,   ?'"th  differences 
of  ip,  when  c,  d,  &c.,  q,  q,  &c.  are  supposed  to  be  variable. 

Now,  in  the  case  of  c,  d,  &c.,  q,  q,  &c.,  being  constant,  the  dif- 
ferential equation 

dP     ̂   ̂
' 

PART  I.   BOOK  ir.  L  L 
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is  the  result  of  the  elimination  of  the  parameters,  c,  c',  &c.,  by  means  of 
the  equations 

(p  =  0;  S(i>  =0;  S'' ip  z=0;    S'lp  =  0; 

thus,  as  these  last  equations  obtain  even  when  q,  g',  &c.,  are  supposed  to 
be  variable,  the  equation  <pr:0,  satisfies  also,  in  this  case  the  proposed 

differential  equation,  provided  that  the  parameters  c,  c',  &c.,  are  de- 
termined by  means  of  the  preceding  i  differential  equations ;  and  as 

their  integration  gives  i  constant  arbitrary  quantities,  the  function  <p  will 
contain  these  arbitrary  quantities,  and  the  equation  (?  =z  0,  will  be  the 

complete  integral  of  the  proposed. 
This  method  of  making  the  constant  arbitrary  quantities  to  vary  can 

be  employed  with  advantage,  when  the  quantities  q,  q',  &c.  vary  with 
wreat  slowness,  because  this  consideration  generally  renders  the  inte- 

gration by  approximation,  of  the  differential  equations  which  determine 

the  parameters  c,  c/,  d'^  &c.,  much  easier. 
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CHAPTER  VL 

The  second  approximation  of  the  celestial  motions,  or   the  theory  of 

their  perturbations. 

46.  Let  us  now  apply  the  preceding  methods  to  the  perturbations  of 

the  motions  of  the  heavenly  bodies,  in  order  to  infer  from  them  the 

simplest  expressions  of  tlieir  periodic  and  secular  inequalities.  For 

this  purpose,  let  the  differential  equations  (1),  (2)  and  (S),  of  No.  9, 
be  resumed,  which  determine  the  relative  motion  of  m  about  M.     Let 

,    {xa/  +  yy'+zz')      .     ,,     (xx"-k-yy"  +  zz')  .  x 

X  being  by  the  number  cited,  equal  to 

mm'  mrri' 

if^^-xy  ̂ [y'—yy  ̂ {^—zyy  ̂   ̂ {^'^xf^iy-'-yy  ^{_:i'^zr) 

+&C. ; 

Moreover,  if  vpe  suppose  M+mzz/j. ;  and  r  =  \/x''  +  y*  +  z''  ;  r'  ~ 
v/a/*+y»-f-2r'*  ;  &c.,  we  will  have 

dPz  ̂       j<A.s      5  dR  j 

L  L  2 
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The  sum  of  these  three  equations  multiplied  respectively  by  dx,  dy,  dz, 
gives  by  their  integration, 

0=^^^i^±^-^  +  -f-  +  2/d«;      (Q) 

the  differential  d72  being  solely  relative  to  the  coordinates  x,  y,  z,-  of 
the  body  m,  and  a  being  a  constant  arbitrary  quantity,  which  when 

R  vanishes,  becomes  by  N°'.  18  and  19,  the  semiaxis  major  of  the  el- 
lipse described  by  jn  about  M. 

The  equations    (P)  multiplied  respectively  by  s,  y,  z,  and  added  to 

the  integral  (Q),  will  give* 

Now,  we  may  conceive  that  the  disturbing  masses  m',  mf',  &c.,  are 
multiplied  by  a  coefficient  a, ;  and  then  the  value  of  r  will  be  a  function 

of  the  time  t  and  of  a.  If  this  function  be  expanded  with  respect  to 

the  powers  of  a  ;  and  if  «  be  made  =:  1,  after  this  expansion,  it  will 

be  ranged  according  to  the  powers  and  products  of  the  disturbing 

masses.  Let  the  characteristic  S,  placed  before  a  quantity,  de- 
note the  differential  of  this  quantity,  taken  with  respect  to  a., 

and  divided  by  da.  When  the  value  of  Sr  shall  have  been  de- 

termined in  a  series  arranged  according  to  the  powers  of  a,  we  will 

have  the  radius  r,  by  multiplying  this  series  by  da.,  then  integrat- 

ing it  with  respect  to  a,  and  adding  to  this  integral  a  function  of  t, 

independent  of  a,  which  function  is  evidently  the  value  of  r  when  the 

perturbating  forces  vanish,  and  when  consequently  the  curve  described 
is  a  conic  section.  The  determination  of  r  is  therefore  reduced  to  the 

forming  and  integrating  the  differential  equation  which  determines  <Jr. 

(Pr^   _         rf^(j'  +  y'  +  r')   _        d^x  (Py  d'z       dx^  +  di/'  +  dz- 
*  ̂  dP  -  ̂   dt'  -'■  df  +  ̂'  "5<^  +  ''•"^+        iiF 
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For  this  purpose,   let  us  resume  the  differential  equation  (R),  and 

let  us  make  for  greater  simplicity, 

idRf         idR}         ̂ clR) 

differentiating  it  with  respect  to  a.,  we  will  have 

0=^+J^+'2f^AR  +  lrR';     (S) 

naming  dv  the  indefinitely  small  arc  intercepted  between  the  two  radii 

vectores  r  and  r+dr  ;  the  element  of  the  curve  described  by  m  about 

M,  will  be  »/dr*  +r^dv'^  ;  therefore  we  will  have  c?^*  +  d^*  -f  dz''  = 

df" ^r^dv^  ;  and  the  equation  (Q)  will  become 

0=  l!^-^  _ -^  +  ̂  +  2./di?. 
di*  r     ̂   a    ̂      -^ 

eliminating  — ,  from  this  equation,  by  means  of  the  equation  (R), 

we  shall  have* 

dt^     ~      dt'      '    r 

hence  we  deduce  by  differentiating  with  respect  to  «, 

  —   =z   _   ^-r   \-r.SR' —  R'.Sr. 
df  df  r^       ̂  

By  substituting  in  this  equation,  in  place  of -^^^^-3 —  its  value  deduced 

♦  Substituting  for  —  its  value  giren  by  the  equation  (R),  we  obtain 

+  ■£—^-■^+7- -2'^'^^-'^'-^  +2/diE  =  0;  which  by  obli- 
terating  quantities  which  destroy  each  other  becomes  the  expression  in  the  text ;  and  it* 

differential  with  respect  to  a  is  obtained  by  dividing  by  ■fi,  and  then  differentiating. 
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from  the  equation  (S),  we  will  have 

d.^  =   ^^:^^   ;      (T) 

We  can  obtain,  by  means  of  the  equations  (S)  and  (T),  the  values  of 

Sr  and  of  iv  as  accurately  as  we  please  ;  but  it  ought  to  be  observed, 

that  dv  being  the  angle  intercepted  between  the  radii  r  and  r-\-dr,  the 

integral  v  of  these  angles  does  not  exist  in  one  and  the  same  plane.  In 

order  to  deduce  from  it  value  of  the  angle  described  about  M,  by  the  pro- 

jection of  the  radius  vector  R  on  the  fixed  plane,  let  v,  represent  this  last 

angle,  and  let  s  denote  the  tangent  of  the  latitude  of  ?w  above  this  plane  ; 

r.(H-s*)"^  will  be  the  expression  of  the  projected  radius  vector,  and 
the  square  of  the  element  of  the  curve  described  by  m,  will  be 

r^dv*         ,  ,         r'ds*       . 

1+5*    ̂   '    (1+5*)* 

but  the  square  of  this  element  is  r^dv^  ■\-dr'' ;  therefore  we  will  obtain, 
by  putting  these  two  expressions  equal  to  each  other. 

dv" 

dv—   .   

yi+5* 

Thus   dv^  can  be  determined  by  means  of  dv  when  s  will  be  known. 

d.r'ir  _  dr.h-    ̂     rMr       d'.r.'ir  _  d°r.'Sr        2drJir        r.d'Sr         ,  3/i.rh- 
~ir~~dt       '       IT"    ~df-~~~a?      '         df'        **      dt-     '  T^~ 

Sd-r.^r    ,  6dr.dh-      3r  d'dr  ,»,„.    »     „,         .^r.dv.d.h 

r.d^.'ir-ir.d'r        Sd^'r.Sr        6  d.rMr       Sr.d^^r  ,,  ,„  .„,      „  „, » 

-Ti   +  -d^+  —dF-  +  -IT-  +6/S.d/2  +  3r.SiJ'+  3R'.^r  +  r.m 

_R'S   •    .  r-dv.dh<_2r.d^.Sr       dKr.Sr      Sd.rJir 

_   d.(drXr+2r.d^r]-^-dt'.(3  Q.dR  +  ̂r.^R'  +  R'.dr) ~  df 
ds 

f  s  being  equal  to  the  tangent  of  latitude,    is  equal  to  the  differential  of  the  la- 1  +j 

titude,   and  ■    .    ,  «  T-r^+  "r;— J  •  dv,*+dr^=  r'.rfv'+rfr'. 1+1        1+*  1+* 
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If  the  fixed  plane  is  assumed  to  be  the  plane  of  the  ordit  of  ?w  at  a 

ds 
given  epoch,  s  and  —j—  will  be  manifestly  of  the  order  of  the  perturbat- 

ing  forces  ;  therefore,  by  neglecting  the  square  and  the  products  of  these 

forces,  we  shall  have  v  ■=  v,.  In  the  theory  of  the  planets  and  comets, 
these  squares  and  products  may  be  neglected,  with  the  exception  of 

certain  terms  of  this  order,  which  particular  circumstances  render  sen- 
sible, and  which  can  be  easily  determined  by  means  of  the  equations 

(S)  and  (T).  These  last  equations  assume  a  simpler  form  when  we 

only  take  into  account  the  first  power  of  the  perturbating  forces.  In 

fact,  we  can  then  consider  Sv  and  Sr  as  the  parts  of  r  and  v  arising 

fi:om  these  forces ;  and  SR,  S.rR',  are  what  R  and  rR',  become, 
when  we  substitute  in  place  of  the  coordinates  of  these  bodies  their 

values  relative  to  the  elliptic  motion  :*  they  can  be  denoted  by  these 
last  quantities,  subject  to  this  condition.  Consequently,  the  equation 
S  becomes, 

0  =  ̂ +i^+2./di?+rE'. 

The  fixed  plane  of  x  and  of  1/  being  supposed  to  be  that  of  the 

orbit  of  m,  at  a  given  epoch,  z  will  be  of  the  order  of  perturbating 

forces,  and  because  the  square  of  these  forces  is  neglected,  the  quan- 

tity ^'  )  -77  (   may  likewise  be  neglected.     Moreover,  the  radius  r  only 

•  In  the  equation  ( R)  when  coordinates  relative  to  the  elliptic  motion  are  substituted 

in  place  of  the  coordinates  of  the  body,  the  three  first  terms  vanish ;  consequently  if  in 

place  of  r  in  the  equation  (R)  be  substituted,  a  radius  /  (which  is  relative  to  the  elliptic 

motion)  plus  au  indefinitely  small  quantity  Sr*  which  i^  the  effect  of  the  disturbing  forces, 

then  the  equation  (R)  becomes  ̂ ^.^^^^^   ~r^+i?   +  "T  +  ̂ /d^  +  rR'  = 

J..  JllL  —JL  J.  JL4.  ̂'--^K  ,    1"-^'"'     .    2/d7I  +  rR',  in  this  case  the  three  first 

tenns  are  =.  to  cypher,  and  the  three  last  are  what  (S)  is  reduced  to ;  when  dR  and 

rR'  are  substituted  for  J.dfl  and  'i.rR'. 
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differs  from  its  projected  value  by  quantities  of  the  order  z* .  The 
angle  which  this  radius  makes  with  the  axis  of  x,  differs  only  from 

its  projection  by  quantities  of  the  same  order  ;  therefore  this  angle 

may  be  supposed  equal  to  v,  and  we  have,  excepting  quantities  of  the 
same  order, 

X  zz  r.  COS.  v;  y  ■=.  r.  sin.  v  \ 

hence  we  deduce* 

\tv^-m--\ 

dR] 

dr\ 

and  consequently,  r.R'zzr.  );t7  (  •  It  is  easy  to  be  assured  by  differ- 

entiation, that  if  we  neglect  the  square  of  the  perturbating  force,  the 

preceding  differential  equation  will  give,  in  consequence  of  the  two 
first  equations  (P) 

^  x.fydt.  1 2./di2+r.  ̂ ^  j  ^  -  y-f^dt.  ̂ 'i./diJ+r.  ̂ ^|  ̂  t 
\x(ly — ydxi I        di       S 

^     dR        dR      dx        dR     dr  dR        .         dR         ,.,.,... 
*    —r—~r''~j~-\   T— •  — 7— =  COS.  u.  — ; — Usin. «. -T —  multiplying  both  sides 

dr         dx       dr   '      dy      dy  dx  ̂   dy  fJS 
by  r,  and  substit  itinj;  x  for  r.  cos.  v,  and  y  for  r  sin.  v,  we  shall  have  the  value  oCrR'. 

■f  Add  to  the  first  of  the  equations  (P)  multiplied  into  r.h,  the  equation  (S)  multiplied 
into  — X,  and  we  shall  have 

5     f'^^'   .    f^'    ,  /^^\\       x.d'^.rlr         uxr-ir         .      ̂ .^ 
°  =  '--'''-(^+7^+te))   5P   ^   ^:^-fdR-x.rR', 

in  like  manner  if  the  second  of  the  equations  (P)  be  multiplied  by  r-dr,  and  then  added  to 

the  equation  (S)  multiplied' into  —y  we  shall  have 

now  if  these  equations  be  respectively  integrated,  and  then  the  integral  of  the  first  multi- 
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In  the  second  member  of  this  equation  the  coordinates  may  refer  to 

the  elliptic  motion,  which  gives  j     ''  ̂       f    constant,  and  equal  by 

N°.  19,  to  >/p,.rt(l — e'' ),  ae  being  the  excentricity  of  the  orbit  of  »i- 
If  we  substitute  in  the  expression  of  rir,  in  place  of  a:  and  of  i/,   their 

values  r.  cos.  v,  and  r.  sin.  v,  and  instead  of  —  ,    ,  the  quanti- 

ty v/|W«.(l — e*)  ;  and  if  finally  we  observe  that  by  N°.  20,  we  have 
p.  =  w*.a' ;   we  will  obtain 

Sr  = 

{'dR-i 

i — a.  sin.  v.fndt. r.  cos.  v.\'2,.  fdR-{-r.  ) ;t7  ( 

i  «.  cos.  v.fndt.  r.  sin.  v.  \'2-  j  dR-\-r.\'—j-,  ̂  

the  equation  (T)  gives  by  integrating  and  neglecting  the  square  of  the 

perturbating  forces  ; 
PART.  I.   BOOK  II.  M  M 

plied  into  y.  be  added  to  the  second  multiplied  into  — x,  we  shall  obtain  obliterating  the 
quantities  which  destroy  each  other 

rl>r.y.^  +  yfrlr.  (^)_^  -2yfdt..AR-yf..rR 

_  r^r...  4  -  xfr.lr.  ('^)  +  f^t^  ̂ix  fdt.yd.R^xf  y.r.R, at  -^  \dx/  at 

.',  neglecting  quantities  of  the  same  order  as  the  square  of  the  disturbing  force,  we  have 

r.Jr.  X±ZfJL  =  X.  /ydt.(2dR  +  rR')—  y.fx.dt.{2dR  -f  rR'),  which   becomes  the 

expression  in  the  text,  when  r.  (-r)  is  substituted  for  r.R' ;  and  by  substituting  for  x 

xdy — ydx a.nAy  their  respective  values  r.  cos.  v,  r  sin.  v,  this  equation  is  divisible  by  r;  now   ^^   

.    3  an  1-   

=V(«.a.(l_e;)  ;     and  Vfc  =  n.a'  :  consequently      y^^'  -'na'Vr^^  ~ 

1   

Vf<,a.(\—e'- 



266  CELESTIAL  MECHANICS, 

or.dJr+drJr        3a     ̂ ^    ,,  ,„    ,     2a     „      .,      URl 

,v=-^   .   -^7l^F~   '      (Y)* 

By  means  of  this  equation  the  perturbations  of  the  motions  of  w  in  lon- 

gitude can  be  easily  determined,  when  those  of  the  radius  vector  shall 
have  been  determined. 

It  now  remains  to  determine  the  perturbations  of  the  motion  in  la- 

titude. For  this  purpose,  we  shall  resume  the  third  of  the  equations 

(P),  and  by  integrating  it  as  we  have  integrated  the  equation  (S),  and 

making  z  zz  ris,  we  shall  have 

„    .         .        ̂ dRl  .  „    .  cdRn 
a.  cos.  V.  fndt.  r.  sm.  vA-^-  X —  a.  sm.  v.  J  nat.  r.  cos.  i'.  J-r-  C 

Sszz   7   —   ?  K^J 

jtA.V  i  — e' 
Ss  is  the  latitude  of  m  above  the  plane  of  the  primitive  orbit :  if  we 

dr.'Sr +2rd.^r    ,     /./.  ,,o  „  ,  >d  ,  „     /(^^\ *  3i)= —  +ffdt-.^dR  +  2r.  (-p)  = 

V'^.a.(l— r)  V'^'-/ 

the  expression  in  the  text ;  iZ'Sr  is  omitted  as  being'  of  the  order  of  the  squares  of  the 
disturbing  forces. 

+  Multiplying  the  third  of  the  equations  (P)  by  x,  and  subtracting  it  from  the  first 

multiplied  by  z,  and  then  integrating,  we  shall  obtain  neglecting  quantities  of  the  order  of 

the  square  of  the  distiu-bing  forces 

dx  dz  ,     ,     /dR\ 
z.  —   X.  — r-    =r  —  I  xAt.  \—T-]t 
dt  dt  V  ''2' 

in  like  manner  subtracting  the  second  of  the  equations  (P)  multiplied  into  z  from  the 

third  multiplied  into  y,  we  shall  obtain  by  integrating. 

dz  dy  .     ,,  fdR\ 

and  multiplying  the  first  of  these  equations  by  y,  and  the  second  by  x,  we  obtain  by 

adding  them  together 
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would  wish  to  refer  the  motion  of  m,  on  a  plane  a  Httle  incHned  to  this 

orbit ;  by  naming  s  its  latitude,  when  it  is  supposed  to  exist  on  this 

plane,  s-\-  Ss  will  be  very  nearly  the  latitude  of  m  above  the  proposed 

plane. 
47.  The  formula  (X),  (Y)  and  (Z),  have  the  advantage  of  exhibit- 

ing the  perturbations  under  a  finite  form  ;  which  is  very  useful  in  the 

theory  of  the  comets,  in  which  these  perturbations  can  only  be  deter- 

mined by  quadratures.  But  in  consequence  of  the  little  excentricity 

and  inclination  of  the  respective  orbits  of  the  planets,  we  are  permitted 

to  expand  their  perturbations,  in  converging  series  of  the  sines  and 

cosines  of  angles  increasing  proportionably  to  the  time,  and  to  form  ta- 

bles of  them  which  may  serve  for  an  indefinite  time.  Then,  instead 

of  the  preceding  expressions  of  Sr  and  Ss,  it  is  more  convenient  to 

make  use  of  differential  equations  which  determine  these  variables.  By 

arranging  these  equations  with  respect  to  the  powers  and  to  the 

products  of  the  excentricities  and  inclinations  of  the  orbits,  we  can 

always  reduce  the  determination  of  the  values  of  Sr  and  Ss,  to  tiie  inte- 

gration of  equations  of  the  form 

the  integration  of  this  species  of  differential  equation  has  been  given  in 

N".  42.  But  we  can  immediately  give  this  very  simple  form,  to  the 
preceding  differential  equations,  by  the  following  method. 

Resuming  the  equation  (R)  of  the  preceding  number,  and  in  order 

to  abridge  making, 

M  M  2 

-(-^-'•l)=V..*(f)-./-.(f). 
and  by  substituting  for  — — - — —  its  value  V^f«.a.(l — e-),  and  for  x  and  y  their  values 

r,  COS.  V,  r.  sin.  v,  we  obtain  the  expression  which  is  given  in  the  text. 
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it  thus  becomes, 

In  the  case  of  elliptic  motion,  in  which  Q  =  0,  r*  is  by  the  N°.  22, 
a  function  of  e.  cos.  (?it+c — zr},  ae  being  the  excentricity  of  the  orbit, 

and  nt  +  i  —  sr  being  the  mean  anomaly  of  the  planet  m.  Let  e.  cos. 

(nt  -\-  £  —  ■s!-')  =  u;  and  let  us  suppose  that  ?'*=  <p{u)  ;   we  shall  have 

r,         ̂ *"      I       X     » 0=  —rr-  +  n  tl.* 

dt    ̂  In  the  case  of  the  disturbed  motion  we  can  also  suppose  r*  =  <i)(u)  ; 
,  but  7(  will  be  no  longer  equal  to  e.  cos.  (nt+i — sr) ;  it  will  therefore  be 

given  by  the  preceding  differential  equation  increased  by  a  term  de- 
pending on  the  disturbing  forces.  In  order  to  determine  this  term, 

it  ought  to  be  observed,  that  if  we  make  u=^(r^),  we  shall  have 

^  +  "'■"  =  ̂-  +'•('')  +  ̂ -  +'.('-)+»-4.(r-).t 

4/'.(r*)  being  the  differential  of  4/.(?-')  divided  by  d.^r'')  and  V-{r^) 

being  the  differential  of  ■^'.(r^),  divided  by  d.r''.     The  equation  (R') 

gives  -  '  ̂    equal  to  a  function  of  r,  plus  a  function  depending  on  the 

disturbing  force.     If  we  multiply  this  equation  by  2rc?r,  and  then  in- 

*     —J—  =  —  e.n.  sin.  (nt  +  t  —  ar) ;  — — -  =  —  en',  cos.  [nt-^i — ar),  therefore 

— -p  +  n^u^  —  en-,  cos.  [nt  -j-  s  —  w)-]-  e.n^.  cos.  {nt + 1 — tt)  =  0  ; 

ing  for  dr^  its  value  'Zrdr,  we  obtain  the  expression  for  —p-  +  ti'.w,  which  is  given  m 

the  text. 
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r^dr* 
tegrate  it ;  we  shall  have  —        •  equal  to  a  function  of  r,  plus  a  func- 

tion depending  on  the  disturbing  force.   By  substituting  these  values  of 

d''r        ,     «  r^dr*     .       .  ..  ■        r  d''u    .     .         , 
,      and  01  -    ,    - ,  in  the  preceding  expression  ot      ,     -j-  «*mj  the 

function  of  r  independent  of  the  disturbing  force  will  disappear  of  itself, 

because  the  terms  are  identically  equal  to  nothing,  when  this  force  va- '  d^ti 

nishes,  therefore  we  shall  obtain  the  value  of  —jpr  +  w*m,  by  substitut- 

d^v  T^  dy^ 
ing  in  its  expression,  in  place  of  —ttt  ̂ "<i  of  — -7-; — ,    the  parts   of 

their  expressions  which  depend  on  the  disturbing  force.     But,   if  we 

only  consider  these  parts,  the  equation  (i?')  and  its  integral,  give 

df    -        ̂ ^' 

-^'   =-S.r<irar; 
therefore, 

d^u 
■  n*u  —  ~20.tL' Cr^^  —  8.  ̂ ''(1 

Now,  from  the  equation  uzz  xJ/.(0  we  deduce  du=2rdr.  <i/'.(r-) ;  the 

equation  r*  =:  <p.{u),  gives  2rdr  zn  du.  <p'.(m),  and  consequently 

By  differentiating  this  last  equation,  and  by  substituting  ?'.(w)  instead 

of — -J — ,  we  shall  have du 
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(l>''\(u)  being  equal  to      '^^  ■  ̂  ,   in  like  manner  as  ?'.(w)  is  equal  to 

'  '  ^ —  .     This  being  premised,  if  we  make 

7(  ZZ  e.  COS.  (?lt-\-i — ■sr)-^iu, 

the  differential  equation  in  u  will  become 

0  =  ̂   +  "'•'"-  ̂ ^-  fQ-^u.  ,'.(„)  +  ̂   .t 

and  if  we  neglect  the  square  of  the  disturbing  force,  u  may  be  supposed 

to  be  equal  to  e.  cos.  («/+ 1 — zb-),  in  the  terms  depending  on  Q. 

The  value  of  —  found  in  N°.  22,  gives,  by  carrying  the  precision  to 

quantities  of  the  order  e*  inclusively, 

r  ■=■  a,  (1+e*— M.(l — |e«)  — a* — |w^)  j 

hence  we  deduce 

r^  =z  a*.(I  +  2e*— 2m.(J— le*)— M*— M^)  =  ?..(z0.t 

If  this  value  of  <^{u)  be  substituted  in  the  differential  equation  in  hi, 

f  Substituting  in  place  of  u  its  value,  the  part  which  involves  the  cosine  will  be  equal 

to  notliing,  as  is  evident  from  the  preceding  page ;  the  other  part  is  what  is  given  in 
the  text. 

X     —  =  (as  powers  of  e  higher  than  the  third  are  rejected)  1  +^e^ — (e— -|s').  cos.  (?i/+ 

2m- 

s — in)  — \^. 
 
COS. 

 
2(nt

^t 
— sr)  — ^e'. 

 
COS. 

 
3(wi

+s 
— w); 

 
cos. 

 
2{«f

+£ 
— <a)=

—^ 
  1,  cos. 

3(nf-f-c — a-)  =  COS.  2{nt-\-i — a),  cos.  (nt+i — to)  —  sin.  2(nf+E — a-),  sin.  (nt+i — jj-)  = 
2k'         u        2m^       2«  ^ti'         3m  r         .  e^ u 

--+—-7'  =  — -7-=    .•.-=l  +  -^-(e-ie')--4e> 
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and  if  we  then  restore  in  place  of  Q,  its  value  Q.J'd.R  +  r.j  -j-  >  ,  and 

e.  COS.  (nt-\-i — ra-),  instead  of  tc,  we  shll  have,   as  far  as  quantities  of 
the  order  e', 

0  =  — z   H  n.Su 

dt    ̂    g-.  (1  +  \^ — e.  cos.  {nt-\-  i — Ts) — \  e^  cos.  (2?j^+2£ — 2w)). 

|(2./di?+r.g]^-  (X') 

.  J ndt.\_^vs\.  {nt-\-i — ■ss').  [1  +  e.  cos.  (wf  +  t — w)]. 

a* 

2./die+r.)f(]. 

When  Jm  shall  have  been  determinined,  by  means  of  this  differential 

equation  ;  <Jr  will  be  obtained  by  differentiating  the  expression  of  r, 

with  respect  to  the  characteristic  <5^,  which  gives 

Sr  —  —  aJ'M.(l+|e*+2e.  cos.  («^+£-  3r)+|e^  cos.  (2wH- Si— 2w)). 

This  value  of  Sr  will  give  the  value  of  Sv  by  means  of  the  formula  (Y) 

of  the  preceding  number. 

(?^_,)_|..(!^_i;)=,+,.«._(,_^.).„_.._-..), 
■^  =  (1  +6^  —  (l_|e^);f)2+2(l  +e'— m(1— |e2).  («-+i«')+(«'+i«')'.  as  m  involves 

e,  powers  of  m  higher  than  the  third  may  be  neglected,  .',  —^  =  1  +26*  — 2(a(l — \^') 

—2u^+ u'—^u^ + 2.m'— f  2.m'. 
Qrdr  1  1 

=  —  —J- .  (1  +  }e^ — u — |u' -(-«''),  because  powers  of  u  higher  than  the  second  are  re- 

jected, masmuch  as  they   would  involve  powers  of  e  higher  than  the  third,  when  their 
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It  now  remains  to  determine  Ss  ;  but  if  the  formuliE  (X)  and  (Z)  of 

the  preceding  number  be  compared  together,  it  will  appear  that  ir  is 

changed  into  Ss,  by  changing  in  its  expression  2.J^dR  +  r.  j-j-  >     into 

1  -J-  >  ;  hence  it  follows,  that  in  order  to  obtain  Ss,  it  is  sufficient  to 

effect  this  change  in  the  differential  equation  of  Su,  and  afterwards  to 

substitute  the  value  of  Su  given  by  this  equation,  and  which  we  will 

denote  by  Su',  in  the  expression  of  Sr.     Thus,  we  shall  have, 

0  =  -^  +n^M 

— J-.  (l+^e* — e.  cos.  (nt-\-( — w) — |e*.  cos.  (J2.nt-{-2i — So-)).  [  ̂  \ 

■dR\ 

dz) 

2e       .    ,    ....  ,    ..  ..  fdR\ 'e  f<iK\  \ 

'-^.  Jndt.  (sin.  {nt-\-i — Tij-).(l-fe.  cos,  {nt-\-i — ^))'(  j~)  )  '■>     (Z) 

values  are  substituted  in  place  of  u,  hence  substituting  for  u  and  i^  their  values,  namely, 

..cos.(»^+^.),-f..cos.2(„^+.-w)+  i-.    ̂ =(2/diJ+r.(f)).(-^ 

A  +  -i-^  — -^  —e.cos.  (n<+£— sr)  — -^.  COS.  (2«<+2£— 2w));  <?".(«)=£?.  ̂ ^  = 

—  2a'(l  +  3u);  and  —,   r=  — tt  •  (1  +  Je^ — 3«))  the  other  terms  are  omitted   be- 

cause  powers  of  e  higher  than  the  third  would  occur  when  we  substitute  for  du  and  ?'.{a) 

,..i>),=  ̂ .(l+3„).(l_3.) 

■=.  (omitting   terms  which  would  by   their   multiplication  produce  powers   of  e   higher 

than  the   third)  -— j-;  du  ■=.  —  e.  ndl.  sin.  (nl  +  £—•=>•)■,  <p'.(u)  =  —  2a^(l  +  e,  cos. 

(nt+i — w)),  hence  substituting  for  ?/'.(«),——— ,  and  du.  <f>'-(u),  their  values  just  given 

we  obtain  the  last  term  of  the  equation  (X'). 

Jr  =  — a.(Ml— |e'  +  2"+f.  u%  §"'  =  f-  cos.  2(n<  +  t— r7)  +  f  r,  .•.  dr=z—  ahi.(l+^. 
e^+2e.  cos.  (ni-f  e4-c7)+|.  cos.  (iiw/+2{— 2w). 
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is  =  —  «<yM'.(l+|e*+2e.cos.  (nt+i—w)+^e^.  cos.  (■2nt-{-2i—^7ir)). 

The  system  of  equations  (X'),  (Y'),  (Z'),  will  give,  in  a  very  simple 
manner,  the  troubled  motion  of  m,  if  we  only  consider  the  first  power 
of  the  perturbating  force.  The  consideration  of  the  terms  due  to  this 

power  being  very  nearly  sufficient  in  the  theory  of  the  planet ;  we  now 

proceed  to  deduce  from  them  formulfe  which  may  be  conveniently  ap- 
plied in  determining  the  motion  of  these  bodies. 

48.  For  this  purpose,  it  is  necesssary  to  expand  the  function  R  into  a 

series.     If  we  only  consider  the  action  o£m  on  m,  we  have,  by  N°.  46, 

m 

-I. 

This  function  is  entirely  independent  of  the  position  of  the  plane  of 

X  and  of  i/,  for  as  the  radical  \/(a/ — ■^^-{-(y' — yy  +  (^z' — s)*,  ex- 
presses the  distance  of  m  from  vi\  it  is  independent  of  it,  consequently 

the  function  ̂ *+z/*+i*-f-*'*+i/'*+-2'* — ^■^■^' — %/ — '^zz'  is  equally  in- 
dependent of  it  j  but  the  squares  ;i*-t- J/* -1-2*,  and  a/^-j-i/'^  +z"',  of  the 

radii  vectores  do  not  all  depend  on  this  position,  therefore  the  quantity 

xx'-i-t/t/'-\-zz',  does  not  depend  on  it,  and  consequently  the  function  R 
is  independent  of  it.     Let  us  suppose  that  in  this  function 

X  =  r.  cos.  V  ; y=.r.  sm.  v ; 

y±:  r'.  cos.  ̂ '; 
y  =  r.  sin.  v'\ 

shall  have 

_   ,  {rr'.  cos,  (t/ — v)-\-zz'')   rd R-=.m 

As  the  orbits  of  the  planets  are  very  nearly  circular,  and  inclined  at 

small  angles  to  each  other,  the  plane  of  x  and  of  y  may  be  so  selected, 

that  z  and  %'  shall  be  very  small.  In  this  case,  r  and  r'  differ  very 

little  from  the  greater  semiaxes  a  and  o'  of  the  elliptic  orbits ;  there- 
PART  I.  BOOK  II.  *  N  N 
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fore  we  can  suppose  that 

II,  and  m/  being  small  quantities.     As  the  angles  v  and  -d  differ  little  from 

the  mean  longitudes  n/+£,  and  nV+t';  we  may  suppose  that 

V,  and  y/  being  very  small  quantities.     Hence  it  appears  that  if  R  be 

arranged  into  a  series  proceeding  according  to  the  powers  and  products 

of  M ,  f,,  z,  u,',  v',  and  z' ;  this  series  will  be  very  converging. 
Let 

-75-.  cos.  (n't—nt+  I — 0 — (a' — 2ad .  cos.  (n7— «/+  i—C)  +  a'*)  ' 

:^i.^;o)_|_^(i)^  COS.  («'/—«/+£'— 0+^'^'-  COS.  2.(n'/— //?+/-^t) 
+^'''.  COS.  3.(?j7— «/+£'— 0+  &c. ; 

this  series  may  be  made  to  assume  the  following  form,  namely,  \.  E.^'". 
COS.  t.{vlt — nt-\-^ — {).  the  characteristic  2  of  finite  integrals  being  rela- 

tive to  the  number  i,  which  ought  to  extend  to  all  entire  numbers 

from  1-=.  — X  to  ?  =:  00  ;  the  value  i  ■=.  0,  being  also  comprised  in  this 
infinite  number  of  values  ;  but  then  it  ought  to  be  observed,  that  in  this 

case  A-~'^-=.A-^.  This  form  has  not  only  the  advantage  of  enabling  us 
to  express,  in  a  very  simple  manner,  the  preceding  series,  but  also  the 

product  of  this  series,  by  the  sine  or  the  cosine  of  any  angle  ft-\--w\ 
for  it  is  easy  to  see  that  this  product  is  equal  to 

4.S.  4«.  ̂J^";_  {i.  {i^—nH  f'-  0 + M^y 

*  Let  !o  =  n' — tit  -\-  t' — I,  andy/  -\-  ■a  =  p,  we  shall  have  cos.  i.{n' — ni+i' — i).  cos. 

{J^  +  ̂))  —  *^°*'  ""•  ̂ •'s-  P'  ""^  •^"S-  ( —  '«')=  COS.  I'tu) ;  sin.  — ju)=r  —  sin.  itu) ;  ( — i.  sin. 
( —  iw)=t.  sin.  iw,  ',•  if  i  denote  the  positive  values  of  i,  we  shall  have  cos.  iw.  cos.  p  z: 

2  COS.  i'w.  cos.p  •=.  COS.  (p+i'tii)  +  cos.  {j> —  iw)  ;  cos.  iixi.  sin.  p  1=  2  cos.  i'w.  sin.p  =  sin. 

(p+»'w)+sin.  (p — i'to) ;  i.  sin.  iw,  cos.  p=2t'.  sin.  i'ui.cos.  /)=j'.  sin.  (^+»'i«)— «*.  sin.  (p — 
i'vi) ;  i.  sin.  (fj«.  sln.p=2i.  sin.  i'tu.  sin.  p= —  V .  cos.  (p+i'iu)  .(-i.  cos.  {p — iixi) ;  in  the  se- 

cond member  of  these  equations,  the  first  term  is  changed  into  the  second  when  i  has  a 

negative  value,  •.*  if  i  is  indifferently  positive  or  negative,  the  second  member  is  con- 
tained in  the  first ;  hence  we  have  cos.  jw.  cos.  />=i.  cos.  (iio+p).  &c.  See  note  page  290. 
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This  property  will  also  enable  us  to  express  in  a  very  commodious  manner 

the  perturbations  of  the  motions  of  the  planets.     Let,  in  like  manner 

(a*  —  lad.  COS.  {rJt—nt-\- i—C)  +0'*)"* 
—\.  E.  B^.  COS.  t.{ril-^t->r  t'—t)  ; 

B^~''  being  equal  to  JB<'\     This  being  premised,  we  shall  have  by  the 
theorems  of  N°.  21, 

Tnf 
i?  =  — .  2.  A^'\  COS.  i.(n't—nt+ 1 — t)* 

,    m'         ̂       fdA^'^  \  .,  ,  ,      , +  — .  «,.  S.flr.  (  — T —  1 .  cos.i.(n7 — nt-\-i—t) 

,   m'     .  ̂   ,  (  dA-'^  \  . ,  ,  ,      ̂ +  — .  w,.E.a .  (  —y-f  \ .  COS.  t.(nt — 7tt+  i — t) 

  —.  (vl — U/).S.?.  A^'\  sin.  t.(n't-~^t+t — t) 

m'  fd''.A^'^\ 
+  — -.  M,*.S.a*.  I  —fT~  )  •  cos,  i.(n't — 7it-\-c' — t) 

nn2 

*  Substituting  for  r,  r',  v,  v',  their  values,   the  constant  part  of  the  value  o    K  w 

,  m'.aa'.  COS.  (n't — nt-i-t' — t)+zz^  m' become   ^   I   '—   

(o'^+2')l  (a2_2(za',  COS.  (nV— «!!+£' — i) -j- n" -i- (z'_s)2)i 

which  becomes  (by  reducing,  and  observing  that  terms  higher  than  of  the  order  of  the  square 

of  the  disturbing  forces  are  neglected)  =:m'.(aa'.  cos.((jj'< — nt-\-i'   8)+«2'.  (a'— ̂   5a'— V) 

i+   
"^■^'-^^' 

(a* — 2aa'.  cos.  [n't — nt  4.  i'_e )  +  a'*)^  t^  („= — 2aa'.  cos.  {n't — nt  + 1' — i)  -J-  a"  )  2  ' 

-  Hi.  2.^W.  cos,  i.{n't-nt  +  ̂'-^)  4.  i^i^fl  -  i'"'-"'"-  <^oti!l'^"^ +  ''-'
) 

+  —-.  (a'— s)^2.  i5W.  cos.  i.(n7— H«+i'— s) ; 

now  if  a,  a',  n/-f  s,  ?i'/4-«'>  be  supposed  to  be  increased  by  u',  «/,  v^,  vj  respectively,  the 
value  of  R  will  be  given  by  (he  formula  of  N".  21,  in  the  manner  expressed  in  the  text. 
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+  -g-'  («'/<•  2««'-  [^  ^f^'J  •  COS.  j.(n7— «/+.'— .; 

+  — .  u:\-Z.al\   {  -^^  j  .  COS.  i.{rJt—nt-\-i'—{) 

  ^.  (t'/— O'  "/•  S««'«"  ( -J~  )  •  (sin.  ?.  («'/—«/+ f' — t) 

  —.    {v' — t/).  u/.  "ZAa'.  I  -j-j-  J  .  sin.«.(n7— «?+t'— 0 

  .  {yl—vy-.  Y..i\A^'\  COS.  ».(m7— «f  +  £'—0 

rri.zz        Sm'.az"  ,  .        , ,   ,      . 

+  -^3   5^^f— •  COS.  («/— «f+£'— 0 

+  m'.-fc^.  X.B'".  COS.  i.(n't—nt+t—0 

+  &c. 

If  in  this  expression  of  i?,  the  values  relative  to  the  elliptic  motion, 

are  substituted  in  place  of  u^,  u',  v^,  w ',  z  and  z',  which  values  are 

functions  of  the  sines  and  cosines  of  the  angles  tit+i,  n't-{-i',  and  of 
their  multiples  ;  k  will  be  expressed  by  an  infinite  series  of  cosines  of 

the  form  vi'k.  cos.  (i'n't — int+A),*  i  and  i'  being  entire  numbers. 
It  is  evident  that  the  action  of  the  bodies  m",  m"',  &c.,  on  m,  will 

produce  in  R,  terms  analogous  to  those  which  result  from  the  action 

of  m',  and  that  we  shall  obtain  them,  by  changing  in  the  preceding 

expression  of  R,  all  that  which  is  relative  to  m',  into  the  same  quanti- 
ties relative  to  m",  m'",  &c. 

Let  any  term  m'k.  cos,  {iln'l  —  int  +  A")  of  the  expression  for  i?, 
be  considered.     If  the  orbits  were  circular,  and  existed  in  the  same 

*  The  form  of  this  function  is  always  that  of  a  cosine,  for  the  values  of  ii',  u[,  are  ex- 

pressed by  series  of  the  cosines  of  nf+i,  n'Z+t',  and  of  their  multiples,  which  are  multi- 

plied into  a  function  of  the  form  2.  cos.  u{n't — nt-\-i' — i),  the  value  of  v— r/  is  expressed 

by  a  series  involving  sin.  (ntJfi)  ;  sin.  (»'<-{- 1') ;  and  their  multiples,  and  this  is  multiplied 

into  a  function  of  the  form  S.  sin.  >.(»'t — nt-f-i'— •). 



PART  I.— BOOK  II.  277 

plane,  we  would  have  i—  i,  therefore  i'  cannot  surpass  i,  or  be  sur- 
passed by  it,  but  by  means  of  the  sines  and  cosines  of  the  expressions 

ofu^,  v^,  z,  uf,  vf,  z  which  by  combining  with  the  sines  and  cosines 

of  the  angle  n't— fit +i' — i,  and  of  its  multiples,  would  produce  sines 

and  cosines  of  angles  in  which  i'  is  different  from  i. 
If  we  consider  the  excentricities  and  inclinations  of  the  orbits,  as 

very  small  quantities  of  the  first  order,  it  results  from  the  formulas  of 

N"-  22,  that  in  the  expressions  of  u^,  r ,  z  or  rs,  s  being  the  tangent 
of  the  latitude  of  7?i,  the  coefficient  of  the  sine  or  of  the  cosine  of  an 

angle,  such  as  J.(nt-\  e),  is  expressed  by  a  series,  of  which  the  first 

term  is  of  the  order  /,  the  second  term  of  the  order  J'+  2,  the  third 
of  the  order*  /  +  4 ;  and  so  of  the  rest.  The  same  obtains  for  the 

coefficient  of  the  sine  and  cosine  of  the  angle  ̂ '(nV+Z),  in  the  ex- 

pressions of  w/,  u/.  z'.  It  follows  from  this,  that  «and  j' being  supposed 
positive,  and  i'  greater  than  i :  the  coefficient  k  in  the  term  of  m'k.  cos. 

(i'vlt — int+A),  is  of  the  order  if — i,  and  that  in  the  series  which  ex- 

presses it,  the  first  term  is  of  the  order  i' — i,  the  second  term  is  of  the 

order  i' — «+2,  and  so  of  the  rest,  so  that  this  series  is  very  converging. 

If  i  be  greater  than  i',  the  terms  of  the  series  will  be  successively  of  the 
orders  i — i',  i — i'  +  2,  &c. 

♦  It  is  evident  from  inspection  of  the  series  in  pages  150, 152,  that  when  all  the  coeffici- 

ents of  the  function  cos./(n<-|-i)  are  collected  together,  they  will  constitute  a  series  of  the 

form  e/±e/+*  ±e-f+*±eJ'-*-^,  &c.,  hence  multiplying  cos- y:(nt-|-i)  into  cos.  i.{n't — 7ii-\-^ — i) 
the  product  will  be  of  the  form  of 

cos.  i.(n't—nt  +  t'—s)  +f.(n't  + 1)) 
.   ^  , 

t=  by  making  y  -J-  i  =  i' 

cos.  {i'n't — ini  -}-  A) 

_  ; 

which  is  to  be  multiplied  into  the  series  e^,  f^+^,  tf+*,&c.,  =(asy=i' — «'=  ),  <""', «"-'+«,  &c. 
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Let  zr  denote  the  longitude  of  the  perihelion  of  the  orbit  of  m,  and  6 

the  longitude  ofits  node  ;  and  in  like  manner  let  zr'  denote  the  longi- 

tude  of  the  perihelion  of  the  orbit  of  m,  and  9'  that  of  its  node  ;  these 
longitudes  being  reckoned  on  a  plane  very  little  inclined  to  that  of  its 

orbit.  It  follows  from  the  formulge  of  N°.  22,  that  in  the  expressions 
of  u„  v„  and  z,  the  angle  iit-\-B  is  always  accompanied  by  — w,  or  by  — 9 ; 

and  that  in  the  expressions  of  u',  t\,  and  z',  the  angle  n't+ 1  is  always 

accompanied  by  — w',  or  by  — 9',  hence  it  follows  that  the  term  vnlk. 

cos.  {i'lit — int+A)  is  of  the  following  form 

7nfk.  cos.  (i'7i't—mt+i'e'—u—gur^g'u'—g''^—f^'), 

g,  g',  g',  ̂ ",  being  entire  numbers,  positive  or  negative,  and   such 
that  we  have 

O^i'-i^g—g'-g'^^g". 

This  also  follows  from  considering,  that  the  value  of  i?,  and  its  dif- 

ferent  terms  are  independent  of  the  position  of  the  right  line,  from 

which  we  reckon  the  longitudes.  Moreover,  in  the  formula;  of  N".  22, 
the  coefficient  of  the  sine  and  cosine  of  the  angle  w,  has  always  for 

factor  the  excentricity  e  of  the  orbit  of  m,  the  coefficient  of  the  sine 

and  cosine  of  the  angle  Sur,  has  for  factor  the  square  of  this  excen- 

tricity, and  so  of  the  rest.  In  like  manner,  the  coefficient  of  the  sine 

and  cosine  of  the  angle  9,  has  for  factor  tang.  \ip,  <p  being  the  inclina- 
tion of  the  orbit  of  in  on  a  fixed  plane.  The  coefficient  of  the  sine  and 

cosine  of  the  angle  29,  has  for  factor  tang.  *^ip,  and  so  of  the  rest ; 

from  this  it  follows,  that  the  coefficient  k  has  for  factor,  e«.  e*'.  tang. 

«"('i^).  tang.  ̂ "0,<p)  the  numbers  g,  g',  g',  g'",  being  taken  positively 
in  the  exponents  of  these  factors.  If  all  these  numbers  are  positive  in 

themselves,  this  factor  will  be  of  the  order  t—i,  in  consequence  of  the 

equation 

> 
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but  if  one  of  them,  such  as  g,  be  negative  and  equal  to  — g,  this  factor 

will  be  of  the  order  i'  —  i  +  ̂ 2g.*  Therefore,  if  we  only  preserve, 

among  the  terms  of  k,  those  which  depending  on  the  angle  i'n't — int, 
are  of  the  order  « — i,  and  neglect  all  those  which  depending  on  the 

same  angle,  are  of  the  orders  i' — i  +  '2,  i'—i  +  4,  &c. ;  the  expression 
of  k  will  be  constituted  in  the  following  manner  : 

H.e^.e'^.  tang.  ̂ ".(4?).  tang.  ̂ '".(4?0-  cos.  (i'n't— int 

-^i'/-h-g.  ̂ -g'.  ̂ '-^'.  ̂ -g".  r) 

H  being  a  coefficient  independent  of  the  excentricities  and  of  the 

inclinations  of  the  orbits,  and  the  numbers  g,  g,  g",  g",  being  all 
positive,  and  such  that  their  sum  is  equal  to  i — u 

If  we  substitute  in  R,  a.(l  +m,,),  in  place  of  r,  we  shall  have 

fdR\  (dR\ 

If  in  this  same  function,  we  substitute  in  place  of  «,,  v,  and  c,  their 

values  given  by  the  formulae  of  N".  22,  we  shall  have 

fdR\_  fdR\ 

\dv)-[dj' 
provided  we  suppose  that  t  —  xs-,  and  e  —  6  are  constant,  in  the 
differential  of  R,  taken  relatively  to  i ;  for  then  u,,  v^,  and  z  are 
constant  in  this  differential,  and  as  we  have  v  :::  nt  +  t  +  v^,  it  is 

evident   that  the   preceding  equation  has  place.     We  can    therefore 

easily  obtain  the  values  of  r.  (  -^  j  and  of  |  -7-  J ,    which occur   m 

*  For  in  this  case  i' — i+^g=g-{-g'-\-g"  +g"'- 

/dR\ 
.      rfr  dR        dR     dr  dr     ,,  ̂     .  /dR\ 

dR\ 

Q 
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the  differential  equations  of  the  preceding  numbers,  when  we  shall 

have  obtained  the  value  of  R  expanded  into  a  series  of  the  cosines 

of  angles  increasing  proportionally  to  the  time.  It  will  also  be  very 

easy  to  determine  the  differential  d/?,  by  taking  care  that  the  angle 

nt,  solely  varies  in  the  expression  of  R,  the  angle  n't  being  supposed 
to  be  constant ;  because  d22  is  the  difference  of  R,  taking  on  the 

supposition,  that  the  coordinates  of  m',  which  are  functions  of  n't,  are 
constant. 

49.  The  difficulty  of  the  expansion  of  R  into  a  series,  is  reduced  to 

the  determination  of  the  quantities  J'*',  i?''\  and  their  differences,  taken 

relatively  to  a  and  a'.  For  this  purpose,  let  us  consider  generally  the 
function  (a' — 2aa'.  cos.  6  + a'*)"',  and  let  us  expand  it  according  to  the 

cosines  of  the  angle  6,  and  of  its  multiples.     By  making  —  =  «,  it  will 

become  a'~^.(l— a.  cos.  6  +  a)~'.     Let 

fl— 2«.  cos.  e-|-«*)-'  =^.  bi'^+bi'K  cos,  O+^f .  cos.  26. 
+3f.  C0S.39+&C. 

bf',  U}\  bf\  &c.,  being  functions  of  a,  and  s.  If  we  take  the  loga- 
rithmic differences  of  the  two  members  of  this  equation,  with  respect 

to  the  variable  0,  we  shall  have 

—25.  a.  sin.  9  —bi'\  sin.  9— 26f .  sin.  29—  &c. 

1— 2«.  cos.  e-|-«*  ~  i.6f'+6i".  cos.9-i-*i->.  COS.  29  +  &C.   ' 

by    multiplying    transversely,   and  comparing   together  like   cosines, 

we  find  generally 

m  _  0-1  ).(i+.-).z>r"-(i  +  s-ou.br''     ,. 

by  this  means  the  values  of  bf\  bf\  &c.,  will  be  given,  when  bf\  6^'^, 
are  known. 
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s  being  changed  into  5-f  1   in  the  preceding  expression  of  (1 — 2a. 

COS.  ̂ )+«^)~'~\  we  shall  have 

(1— 2«.  COS.  9+«^)-'-'zr  }2'l^fli.  +  b%i  COS.  6  +  bfl^.  cos.  29. 

+  6fj,.  C0S.39+&C. 

By  multiplying  the  two  members  of  this  equation,  by  1 — 2a;.  cos.  9  +  a*, 

and  by  substituting  in  place  of  (1 — 2a.  cos.  94-a*)~',  its  value  in  a  se- 
ries, we  shall  have 

i.  6('»+^,w.  cos.  9-(-if .  COS.  29+  &c. 

=(1— 2«.  COS.  9+a*).(4.i.fj,+Z.^'].i.  cos.9-t-6fj,.  COS.  29+6fji.  cos.  39+&c.)  ; 

from  which  may  be  obtained,  by  a  comparison  of  similar  cosines 

i«  =  (l  +  «^).  b^Ji,-  cc.  b^-l^  —  «.  iii+/).* 

The  formula  (a)  gives 

the  preceding  expression  of  bi'\  will  therefore  become 

'  i — s 

PART.  I,   BOOK  II.  O  O 

When  this  transverse  multiplication  is  performed  we  must  substitute  for  cos.  t.  sm.'(l), 

sm.  6.  COS.  (•'«,  their  values  m  terms  of   ^— ̂  — ■   1   >    ;    hence  we  obtain '2  2 

_  f«e('-2J.  sin.  (i— 1).  «— ««e«.  sin.  (f— 1).  6— (I  +  ««).(i_l).  €j-i,  sin.  (j— 1).  e  +  «?£('). 

sin.  (i— 1).  *.  +«.(j— 2).  €('-2).  sin.  (i— 1).  «=0.     .".  Sj.  «.(»—«)  =  (1  +  «=).(?—!).  Ij>-i)  _ 

a.{i— 2+ji).  gj-2. 
*  To  obtain  this  value  of  S<'',  it  is  to  be  remarked  that  cos.  t.  cos,  it 

cos.  (i'+l).  9+cos.  (j — 1).  «      ,  ,.  ,  •       , 
=    '   2   '  "6"ce  multiplying  the  two  factors  of  the  second  member 

of  this  equation,  the  coefficient  of  cos.  id  is  (!+«')  £'"' ,   ab^'+^^   «4(*-\'. 
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By  changing  i  into  i+1,  in  this  equation,  we  shall  have 

and  If  we  substitute  in  place  of  ̂il^i',  its  preceding  value,  we  will  have 

''•      ~  {i—s).{i—s+\).o<. 

These  two  expressions  o?  b'l\  and  of  ̂i'"*"",  give 

to    -_L___   ,   f   ;      (b) 

(1-.^) by  substituting  for  6^'+^',  its  value  deduced  from  the  equation  (a),  we 
shall  have 

e:=-i   TT—^   '      (^)* (1— a  ; 

which  expression  might  have  been  inferred  from  the  preceding  by 

changing  ?  into — ?",  and  by  remarking  that  i,''=  Ur'^.  We  shall  con- 
sequently obtain  by  means  of  this  formula,  the  values  of  5f+i,  6f|.,,  bfl^i, 

&c.,  when  the  values  of  bf\  b[^\  bi'\  &c.,  will  have  been  known. 

In  order  to  abridge,  let  x  denote  the  function  1 — 2a.  cos.  6  +  a',  by 
differentiating  with  respect  to  «,  the  equation 

X-'  =  1.  bm.  +  6i'>  cos.  0  i-bi'K  cos.  29  +  &c. ; 

we  will  obtain 

-2s.(«-cos.  0).  A-'-^=i.  -^  +  ̂ ^  .  COS.  e  +  -^.  cos.  29+  &c.; ^  "^  ^      da,  dtt.  da. 

*  Hence  if  we  know  the  coefficients  of  the  multiple  cosines  in  the  series  which  is  equi- 

valent to(l — 2«.  COS.  S+a^)-*,  we  know  the  coefficients  of  the  multiple  cosine's  in  the 

series  which  is  equivalent  to  (1 — 2«.  cos.  i-\-a-)-^~'^. 
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but  we  have 

1  —  a* — X — X  -\-  COS.  9  zz   ; 

therefore  we  shall  have 

— i   ^  .  A  '-'   =  J .  ̂ -j-^  -|   ^.  COS.  9  +  &c.  ; 

lience  we  deduce  generally 

db<P  _  s.(i-x^)  sM;>  , •—J     •    t's-t-l   • M«  a  a 

By  substituting  in  place  of  bi'li  its  value  given  by  the  formula  (i),  we 
will  obtain 

dblf_ _  ( i+(i+^s).x'  I  _  2.(i—s  +  l) 
dx  ~  I    «.(i— «^)    S  '    '  1— «*       '   '     ■ 

This  equation  being  differentiated,  will  give 

dx*    ~\    «.(1— a*)      V    dx     '^\        (1—*')*  «* 

-    1-a*  •  dx  "*•  (1— «*r    '   ' oo  2 

*  Substituting  for  a-»-i,  a-«,  their  values  given  in  the  preceding  page,  the  coefficient 

of  COS.  U,  in  the  value  of  x-'-^  is  Cj^, ,  and  the  coefficient  of  the  same  quantity  in  the 
value  of  A—*  is  £'''. 

\  Differencing  the  coefficient  of  €^''  with  respect  to  a  it  becomes 

—  2.(1— g^H-a^^z         (i+25).(l— <»')-f2«"-.(i+2^)  _ 

«^(1— »')"-        ■*■  (!—«')'  ~ 

_  J£— 3£)_        (z  +  25).  «M1— g^)        2«''.(i+2i)  _  _  f£— 2«_l+£i 
a°-.(i— «')«+      *^(l_«7       +   (1— «^)^  ~       ««.(i— ««)2 

+       (1— «*)2         '  . 
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By  differentiating  again,  we  will  obtain 

-t-  I         {l—a'Y         "^  «^  V    '  1— a*       •      dx' 

_^.{i-S+\).x    dU:^''         4.0— ̂ +l).(l+3a^)      ,^„ 

{\—x^y    '    dx  (1—**)'     •    *  '    • 

It  appears  from  this  that  in  order  to  determine  the  values  of  b['\  and  of 

its  successive  differentials, '  it  is  sufficient  to  know  those  of  Up,  and  of 
up.  These  two  quantities  may  be  determined  in  the  following 
manner : 

Let  c  represent  the  number  of  which  the  hyperbolical  logarithm  is 

unity ;  the  expression  of  >r%  may  be  made  to  assume  the  following 
form : 

By  expanding  the  second  member  of  this  equation,  with  respect  to  the 

powers  of  c^V^,  and  of  c—''v=ij  it  is  evident  that  the  two  exponen- 

tial quantities  eW^,  and  c— '"V-i  will  have  the  same  coefficients 

■which  we  will  denote  by  k.  The  sum  of  the  two  terms  /cc'V^T,  and 

k.c-^W=i  is  2A-.  cos,  i6 ;  this  will  be  the  value  of  b['K  cos.  ?6  j  there- 

fore we  will  obtain  Up  ■=.  2A-.  Now  tiie  expression  of  a~'  is  equal  to 
the  product  of  the  two  series 

1  +  sx.c-W-^  +  !A!±^ .  ̂ \c-'"^-^  +  &c. 1 .2 

these  two  series  being  multiplied,  the  one  by  the  other,  will  give,  in 
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the  case  of  i  =  0,* 

and  in  the  case  of  «  zr  1 , 

/,  _  «.  ̂   *+«•  -TTi-- "  +—7:2   r.2.3        •  *  +  &c. , ^ 

consequently, 

I 

In  order  that  this  series  may  converge,  it  is  necessary  that  a  should 

be  less  than  unity  ;  this  may  be  always  effected  by  assuming  «  equal  to 

the  ratio  of  the  smaller  of  the  distances  a  and  d  to  the  greater,  and  as 

we  have  already  supposed  a=  —r,  we  will  assume  that  a  is  less  than  a! . 

In  the  theory  of  the  motions  of  the  bodies  m,  m',  m",  &c.,  it  is  ne- 

cessary to  know  the  values  of  U^\  and  of  h[^\  when  sittV,  and  inf.  In 
these  two  cases  these  values  do  not  converge  rapidly  unless  a  is  a 

very  small  fraction.  These  series  converge  with  greater  rapidity  when 

5ZZ  — \,  and  we  have 

4.-4  =  '+  «)■■«■  +  (^:)*-  «'+(a^)'-  ''  +  (^)'  -'+  ̂^- 
,1,  _  C         1.1      ,         1     1.1.3       ̂        1^    1.1.3.5       g        1.3.5 
6_i_— a.^1  — — .  a-— -.g^^^y.a    —  ̂ •2_4_6,8-'^    ~ 4.6.8  • 

1.1.3.5.7  o  0       ? 
  ,.  „  .    a^  —  &C.  \  • 2.4.6.8.10  3 

*  i  =  0  when  equal  powers  of  4  ̂~',  and  c"~         ',  are  multiplied  together  and,  ;=I, 

when  powers  of  J)'^~^,  are  multiplied  into  powers  of  c"""^""',  which  are  less  by  unit  than 
these.     This  is  evident  from  the  value  of/-. 
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In  the  theory  of  the  planets  and  of  the  satellites,  it  will  be  sufficient 

to  assume  the  sum  of  the  first  eleven  or  twelve  terms,  the  subsequent 

being  neglected,  or  more  accurately,  by  summing*  them  as  a  geometric 
progression  of  which  the  ratio  is  1 — a*.  When  ̂ >"'J,  i<'i,  shall  have  been 

thus  determined  we  will  obtain  6'^i  by  making  ?=0,  and  s—  — \,  in  the 
formula  (6),  and  we  will  find 

h'V 
_(l+^')-^L°l+6-«.6"l 

If  in  the  formula  (c),  we  suppose  ?  =  1,  and  s  —  — \,  we  will  have 

J^V= 

2.«5f5+3.(l+«*).  6l!i 

By  means  of  these  values  of  h^V,  and  of  j}t\  we  will  obtain  by   the 

preceding  formula,   the  values   of  U'l,  and  of  its   partial    differences, 
whatever  may  be  the  number  i,  from  which  we  may  we  may  conclude 

the  values  of  lip,  and  of  its  differences.     The  values  of  Vl\  and  of  Vl'' 2  'It 

may  be  determined  very  simply,  by  the  following  formulae; 

(0)  ^(1) 

I    -(1—*?)^  '     1      -  ̂-    (1— «*)*  -^ 
•  For  if  (1 — «2)— 1  be  expanded  to  a  series,  the  sum  of  the  remaining  terms  will  be  very 

nearly  equal  to  this  series  multiplied  into  the  eleventh  term. 

(l+«^).i(0)— 2«ii^ 
f  By  formula  (6)  6^  =   ^w   ''5  substituting  for  IP  ,  i'D ,  their  values  we 

(1  +«2)2.60  1  +6«.(1  +«2).  hi\  _4,Z.4W  _6«.(1  ̂ .«2).  m  (1— «2)2i«») 
obtain  h\  = 

(I  — « 
a\2 

rf'^C) 
1 

rfa^    ~ 

a"'
 

;  in  a  similar  manner  we  obtain  the  value  of  6<'). 
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Now,  in  order  to  obtain  the  quantities  A^°',  A^^\  &c.,  and   their  dif- 
ferences, it  may  be  remarked  that  by  the  preceding  number,  the  series 

l.A^"'  +  J<'\  COS.  6  +  ̂(2'.  COS.  29+  &c. 

results  from  the  expansion  of  the  function 

a.  COS.  fl         .  ,  ,  .      /,v_i 

  -,i   («"■ — 2aa'.  COS.  fl-fa*)-*, 

in  a  series  ranged  according  to  the  cosines  of  the  angle  9  and  of  its  multi- 

ples ;  by  making  —j-  zz  a.,  this  same  function  is  reduced  to 

a' 

rr-  b?^  +  (-^  — V-  *"'  )  '  cos.  6—4-.  bf\  cos.  29— &c. la 

which  gives  generally 

^"^  =  -V-   *»'- 

when  i  is  zero,  or  greater  than  unity,  abstracting  from  the  sign.     In 
the  case  of  ?  =  1,  we  have 

^(1
) 

we  have  then 
  1_    dhl"     fdo.  \ ~       ~d*    da.  •  \da  J  ' 

d\"> 

da     ■ 
=  — 

1      db[" 
a!'     da.   ' 

[da  J  ' 
but we  have 

[jaj- 

1 

a'  ' 

therefore 

rfA^'^j             1 

db^ 
doc 

~ 
•    d.   ' 

and in  the  case  of  i=  i, Wtt have 

(  dA'^\  _ 

--    '     ( 

'         dbf 
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Finally,  even  in  the  case  of  i=:l,  we  have, 

\  da"    )~       a'^'   dx^    ' 

\   da'    J  -      a'*'   dx'  ' 
&c. 

In  order  to  obtaia  the  differences  of  A'-'''  relative  to  a'  it  may  be  ob- 
served, that  A^'^  being  an  homogeneous  function  of  a  and  a',  of  the 

dimension  — I,  we  have  by  the  nature  of  this  kind  of  functions, 

hence  we  deduce 

,   (  dA'^\  .,,         (  dA^'>\ 

**•  \da.da')-       "^-y  da  )         '  \   da"  )   ' 

&c. 

J5'''  and  its  differences  will  be  obtained  by  observing  that  by  the  preced- 

ing number,  the  series 

1.  B^''>  -|-5<".  cos.  9-f  i?'=>.  COS.  6+  &c. 

is  the  expansion  of  the  function  a'^.  (1 — 2a.  cosJ-l-a'')"^  according  to 
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the  cosines  of  the  angle  6  and  of  its  multiples  ;  but  this  function  thus 

expanded,  is  equal  to 

a'-',  a.  ¥i'-¥¥i\  COS.  0  +  bT-  cos.  29+  &c.)  ; 

therefore  we  have  generally 

hence  we  obtain 

(dB''\  _J_    dVr       (<£B^\  _J_     d'bl' 
\-d^ )  - a'^- -ir  '    \da^  )-a-'-d^'    ""'' 

Moreover,  B''^  being  an  homogeneous  function  of  a  and  of  a,  of  the 
dimension  — 3,  we  have 

C  dB^"  •)  C  dB"  •> 

from  which  it  is  easy  to  infer  the  partial  differences  of  B'^'>  teken  re- 

latively to  a',  by  means  of  its  partial  differences  relatively  to  «. 

In  the  theory  of  the  perturbations  of  m'  by  the  action  of  m,  the 
values  of  A^'^  and  of  fi' '  are  the  same  as  above,  with  the  exception  of 

/i<",  which  in  this  theory  becomes  -^   r.  ̂i"-     Thus  the  compu- •^  a  a 

tation  of  the  values  of  ̂ <'',  B'^'\  and  of  their  differences,  serves  at  once 

for  the  theories  of  the  two  bodies  m  and  m'. 

50.  After  this  digression  on  the  expansion  of  R  into  a  series,  let  us 

resume  the  differential  equations  (A''),  (F')  and  [Z')  ofN"'.  46  and 
47  ;  and  let  us  determine  by  their  means,  the  values  of  Sr,  Sv,  and  Ss, 

the  approximation  being  extended  to  quantities  of  the  order  of  the  ex- 
centricities  and  of  the  inclinations  of  the  orbits. 

If  in  the  elliptic  orbits,  we  suppose 

r  =:  a.(l  +  u^  ;  r  =  a'.{i  +  <)  ; 

vzznt  +  t-^v,;  1/  =.  n't-{-i'-\-'^l ; 
PART  1.  BOOK  II.  P  P 



!^90  CELESTIAL  MECHANICS, 

by  N".  22  we  shall  have 

Ui  =  — e,  COS.  {ni-\-i — 73-) ;    «/  =  —  d .  cos.  (n7+e'— z/) 

f,  =  2e.  sin.  (w?+f"~^)  >    ""' ,  —  2e'.  sin.  (nV+i' — v)  ; 

n^+£,  n7+«'  being  the  mean  longitudes  of  m  and  m' ;  a  and  a'  being 

the  greater  semiaxes  of  their  orbits ;  e  and  e'  being  the  ratios  of  the 

excentricities  to  the  gueater  semiaxes ;  finally,  ■s-  and  ■nr'  being  the  lon- 
gitudes of  then-  perihelions.  All  these  longitudes,  may  be  referred  in- 

differently to  the  planes  themselves  of  the  orbits,  or  to  a  plane  which  is 

very  little  inclined  to  them  ;  because  quantities  of  the  order  of  the 

squares  and  products  of  the  excentricities  and  of  the  inclinations  are  ne- 

glected. The  preceding  values  being  substituted,  in  the  expression  of 

R  of  N".  48,   will  give 

R  =  -^-  2.  ̂ '".(cos.  i.  (n't^nt-\-i'—i)* 

*  As  the  approximation  is  carried  only  as  far  as  terms  involving  the  first  power  of  the 

excentricity,  the  only  terms  in  the  general  expression  for  R  which  are  to  be  considered,  are 

,      .       ̂          VT  .,-,        .,   :      ,  /rfA('')\       /c?A(-')\        ,         .  ,     ■    ̂ 
the  four  first.     Now  as  A(')  =  A(-')  and  I— — j  =  I  —- —  I,  and  cos.  i.ui  =:  cos.  ( — im) 

to  representing  {n't — nt-\-i' — i),  and  sin.  ( — i.ui)  = —  sin,  iw,  we  shall  have  generally  (i' 
representing  the  positive  values  of  i,  and  n  representing  (nt  +  s  —  w)),  cos.  i.w.  cos.  n  := 

2  COS.  Hm.  cos.  n=  cos.  (i'.w-\-n)-{-cos.  (i'M—n),  and  i.  sin.  i.tu.  sin.  n  =  2t'.  sin.  i'uj.  sin. 

?i  =  +  i.  cos.  {{i'M  -\-  n)  —  i'.  cos.  {n — i'.iv)  See  page  274,  Notes).  Hence  substituting 

for  n,  its  value,  (nt  +  s  —  ar),  and  observing  that  cos.  i,  (n't  —  nt  +  t'  —  t.)  cos. 

(nt+i — w) 

=  cos.i'.(7i't—vt  +  i'—i)+vt-^t—-iir)+cos.i'.(n't — H<  +  e'— <) — (nt+t—ia)), 

and  also  that  when  2e.  sin.  (nt  +  t — a-)  is  substituted  for  v/,  sin.  i.(n't — nt  +  t' — s). 

&m.(nt-^i — ot)  =   COS.  i.(n't — nt+i' — i)J{.nt+i—a) —  cos. 

i'.(n't — nt  +  i'~i)—nt—i—rv),  we  obtain  the  second  term  in  the  expression  ;  in  like  manner 

the  third  term  is  obtained,  by  taking  the  index  i — 1 ;  in  the  third  term  the  circular  part  is 
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  — -.  'ZAa.  \  — —  V  +  2i.^<''f .  e.  cos.(«.(«7 — nt-\-i-i)-^nt  + 1 — n-) 

the  sign  S  of  finite  integrals,  extending  to  all  integral  values  positive 

and  negative  of  i,  the  value  izzO  being  comprehended  among  them. 
From  which  we  obtain 

°       2        i   da    S       ̂        c       (aa^       w — 7i  5 

cos.  j.(n7 — nt-{-B — i) 

m 

~2 

e'.  cos.  (nt  +  £— w') 

^      i..in — n) — n  c       (  da   ) 

c.  COS.  (?.(n7 — nt+ 1 — i)  4-  w^+  * — bt)  ; 

pp  2 

made  to  assume  a  more  symmetrical  form,  for  it  becomes  by  performing  the  prescribed 

operations,     cos.  (j — \).{v!t—nt  ■\- i — e)4.n'<+i' — <«/),  which  is  evidently  identical  with 

the  expression  cos.c.(n't — ntA^i — ej+n^  +  t — t?'),  besides  the  values  when  j=0,  are  com- 
prized in  this  expression. 
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2 
i  da.da'  )        '^  L    da    S 

t.(n — «) — n    L       i    da     S 

e'.  COS.  (J,.[n't — nt-\-i' — i)  +  nt  +  i — w')  ; 

The  sign  S  extending  in  this  and  the  following  formulas  to  all  the  inte- 

gral values  of  i,  positive  and  negative,  the  sole  value  ?'  —  0  being 

*  When  the  value  of  i  =  0,  is  excepted  out  of  the  positive  and  negative  values  of  i, 

we  shall  have 

dR       m'    dA'S»        m     rf.2AW  .,  ,      m'        d^A<-'» 
—  =   , — ;   \-  — — • — ;   .  COS.  t.in't — nt+^ — 0   r--.  a.     ,  „    .  e.  cos.  (nt+f— ar) 
dr        2       da    ̂     2        da  ^  ^        '       2  da"  v    t         / 

m'        I       d"A<-')  dAf.')  \ 
—  — .  2.(  a.  — r-^  +  2?.  — ; —  }e.  cos.  ?.(n'f — nt4-i' — e)  +  nt — s— ar) 

2        \        da^    ̂   da    f  ^  -r       /  ■ 

  7r'\a'-^-r-i —   J — je'-  cos.(ni+s— ar')— 77-  ̂ 'O-     ,     ,  ,  —  2(t— 1  . 2    V      da'.da   ̂        da    '  *■    ̂   '2  rfa.t/a'         ̂  

  J  d.  COS.  t.(n'i — wi-j-s' — e)  +  ni  +  s — ■cr'),  .'.  substituting  for  r  its  value,  a.(l — e.), 

COS.  («<  +  .-«),  we  shall  have  r.  (— j  =  -.  a.  ̂ -   .  ̂   • 

m'  rfsAW  .,  ,  ,   ,      ,       Hi'         a!2A''' 
c.  COS.  (n/  +  t — 11)  +  -^ .    a.  — -5 — .  cos.  t.(n't — nt-f-i — 0   — -.  a.  —z —  e.  cos. «. ^  da  ^  ct(z 

(n't — nt  4.  ̂ — i)  +  nt-\r  i — -a) 

  (Sa-.    ,  „  Ajiia.  -t- J.  e.  cos.  Urit — n<'  +  e' — f)+n<  +  ' — w) 
2  \         aa-  ̂          da  I 

m'     „    d^AO) 

.0-. 

e.  cos.  (ni+' — '°) 
2  ofa^ 

w'  /d'^AW  2dAm\ 
  -.    a'.a.  {  -y-r-,   k  O.    ;    1.    C'.  COS.  (««+  £   1:/) 
2  \da'.da  ̂   da     J  ^  ' 

m'         I  rfAt'~''  Af>~)\ 
—  —.  2.{a^a'     2(i— 1)  d.f~-  )e'.  cos.  ((»'<_«<+«'— .)+nt+i—sr> 2        V  da  da   I 

(the  remaining  terms  are  omitted  because  e*  occurs) 
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excepted,  because  the  terms  in  which  i  —  0,  are  extricated  from  this 
sign :  mg  is  a,  constant  quantity  added  to  the  integral  fdR.  There- 

fore by  making 

^    ,   3  Cc?*AW7  ,   ̂   ,  C</A«"7    .  ̂ 

2.(z.(w — ?i') — w)  (      L  da  S      n — «  ) 

?.(n — vf) — n  L      (  da  )  ) 

^        \  da.da'  )      ̂        ' \    da    \ 

diJ  =  +  _.  indt.  2  AW.  sin.  i.(n7— «<+6'— 0  +  -^.  «fi?to.  -^  .  c  sin.  (n<  +  «— w) 

+  :^  {n—in).dt.^.  f  «-(^')+  2JAw)e.sin.i.(n'<— «<+t'-0+n«+i— ^) 

+  ~.  ndt.  h-o.'-^^  +  2AW  v.  sin.  («<+e— ̂ )  +  ̂.  (1  —  ̂ ),  «)rf<.(2a'. 

rfAC-') — 2.(j— l).A('-i))  e'.  sin.  «.(«'<—«<+£'— 0-|-ni+t—K^)>  .'.  2/cliJ 

=2»»'ff   •   2.  AW.  COS.  i.(n't—nt-^i' — i\-  —  .  2a.   -j—.  e.  cos.  (nt+s — w)   — °       2    n' — n  2  aa  2 ' 

^•^"~'"^  .  f 2a.-^  +2iA(').)e. cos. i.(n't—nt+e—i)  +  nf  +«-,=)  —  -J  .  2a'. »n' — 2re+«    \         da       .  /  a 

dR 

el.  cos.i.(n't — nt-\-i — i)+nt-J[-i — v'),  •.•  by  reducing  we  obtain  2yd/?  +  r.  -j-=  the 

expression  which  is  given  in  the  text. 
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t.(7i — ?7) — n  C        (da)  3 

the  sum  of  the  masses  M-\-m  being  assumed  equal  to  unity,  and 

— ^y —  being  supposed  equal  to  «* ;  the  equation  (X')  will  become 

6?/*    '  ^2  C  da  ) 

*  The  equation  (X')  becomes  by  neglecting  the  square  of  the  excentricity,  —^   ^- 

n'^u—n-a.{l — t.  cos.  (nt+i-''sr).(2/dR  +  r.  -j— j  —  2ean^.fndU  (sin.  {nt  +  t  —  w). 

l^/dR  +  ''•  — 7- )  ;  ("''^  being  substituted  for  -^  and  M+fl»  bemg  by  hypothesis  =1). 

By  substituting  for  2/diJ+ 7- -^,  its  value,  this  equation  becomes  = 

t.(n't—nt + 1*— e)  +    "2-  •  I  <*  •  -Jl-  +  3a  --^ — )  •  «•  COS.  (n(-f !—  -a)  + 

({n^a).(2m'g+Y)  -"'-^   H2an^{2mV-j-^.  a.-j—Xj.  e.  cos.(wf+i— or);  (=7:V.Cc. 

cos.(««+i-:x))+.i=a.— (  aa'.  .^-^+2a.  -^+2a'.— -^+4.A0);«'.  (cos.  7,t  + 

,_B^)  =:  (n*m'.  Def.  cos.  (si+t— a/). 

^  +  (2^1,..^ 

+  ̂-'«^-^   2.r Jn.n   ,       .AC.)      [   \e.cos.ii^n't-nt+^-,)  +  nt+^) 

J,  ̂.  jjifl.  (sa. — T—  A   ^.  AC'-*. )  c.cos.  ».(«'<— 71/ +t— «)+««+« — o) ^2  \         da        n — n'  I 

_2an«.e./«(f«.(sin.  i.(n'/~«/ +t'-f)  +  «<  +  i-<r)  (-2-.2«-^^+-;;z:7AW;  =^-. 
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-^'.  1.  U(^)  +  -^.aA<4,  COS.  i.(n't-ntH-0 2  c       \   da  y       n — n  3 

+M*m'.  Ce.  COS.  (nt+i—u)-\-n'm'.  De'.  cos.  (??/+£— t^-') 

+n''m'.I..O'Ke.cos.(i.(n't~^t-\-t'—e)-\-nt+e—t!r) 

+}i'^m'X  /)'■■*. e'  COS.  (i.{n't—nt+e—i)  +  nt+^—zy') ; 

and  by  integrating 

jm'      j       (       \    da    /   '   n — n'  ) 
— -.  »  .  ̂.   ^-7   ^:t   7     .  COS.  i.{n't—nt+i—i) 

■j-m'J).e  COS.  (nt-\-i—vs)-\-m'fl,  d,  cos.  («#+£ — w') 

  — .  Cn^.  e.  sin.(n^+£ — ss)   —.  D.nt.  e'.  sin.  {iit-\-f- — w-') 

-}-  jm'.S.  7^77   rr- — Ni   1  •  e.  COS.  («.(w'^— ?2^+e'— 0+«^+«— ^) 

1an\  (.     ,  "-   ).2a..^^+  /-^V  AW.)e.  cos.«.(n'<— n<+i'— f)+«<+i— «)) V.(?»' — n).\.n'  da         \n — ri  /  '  ' 

which  added  to  the  preceding  term  becomes,  by  changing  the  signs   of  the  numerator 

and  denominator  of  -; — ■   r   
t.{n — n)-\-n 

— (.  nK-^^   '-^   .  2a^  —   U   -.  AW),  e.  cos.(».  «'<— n^  +  i-— 0+«<+«— jt) 2  \  i.{n — «') — n  da  n — n'  I 

and  by  adding  this  quantity  to  -— .  n^a.  (  2.a°.  „ —  +  (22+  l)-a. — -^ — J,  it  will  ap- 

pear that  he  coefficient  of  nW.  e*.  cos.  (i.(n't — nt-\-^ — %)-{-nt-\-( — ro)  is  equal  to  C'-" ;  it  is 

evident  from  an  inspection  of  the  coefficients  of  e".  cos.  (k^+s — th'),  d,  cos.  j.(n't— «<-)-b' — «) 

+ni4-t — w')  that  they  are  respectively  equal  to  D,  and  Z)W. 
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,/■,  and  //,   being  two  arbitrary  quantities. 
The  expression  for  Sr  in  Su  which  has  been  found  in  N".  47,  will 

ir  ^   ,  m'      ̂    /^^A^N 
a  ^  2  \   da   J 

'^'Ida')      n—n'  [■.  cos.».(«7— nf+f'— 0 
i\[n—7i'y—n''  ) 

—  ni.fe.  cos.  {nt  +  £ — -3-) — m'fe'.  cos.  («^-|-£ — -u) 

+  ̂.  m'C.nt.  e.  sin.  (n^+  £ — •!!!-)+4.  m'.D.nte'.  sin.  (w^+  £ — s/). 

+  W.n*S. 
!«-1^5+^=^-^^"'  c^' 

i*.(w — n'y — ?z*  (j.{n-n') — ny — n*) 

(e.  COS.  (i.(n't — ntAr  e'—e)  +  nt+  i — -ar) 

— ?n'.w*.S.  :-:   77   r.  e'.cos.(i.(w7— nf  + 1' — e)  +  ?J^+£-5r'); 
t.(ji — 71) — nj — n  ^  ̂ 

/and  y  being  two  arbitrary  quantities  depending  on^  and  J'J. 
This  value  of  Sr,  substituted  in  the  formula  (Y)  of  N°.  46,  will  give 

h',  or  the  perturbations  of  the  motion  of  the  planet  in  longitude ; 
but  it  may  be  observed,  that  7it  expressing  the  mean  motion  of  m,  the 

term  proportional  to  the  time  must  disappear  from  the  expression  of 
Sv.     This  condition  determines  the  constant  quantity  g,  and  we  find 

f  —  —  Xn 

to    —  3" 
\    da  y 

The  introduction  of  the   arbitrary  quantities  f  and  J',  might  have 
dR 

*  As  nt  must  vanish  from  this  expression,  by  substituting  for  dR  andyr.  — —     their 

vdues  in  the  expression  for  iv  given  in  page  263,  and  then  integrating,  the  terms  involv- 

n^  /dAf'>^\  2m'        dA^^ 
ing  vt  are  Sam'gnt  and  2  — .  a'nt.  i  — ; —  i,  hence  we  will  have  3m'g=   -— .  a.  — j —  . 2  \    da   '  J  aa 
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been  di!«pensed  with,  by  supposing  them  to  be  comprised  in  the  elements 

e  and  s-  of  elliptic  motion  ;  but  then  the  expression  for  h\  would  have 
involved  terms  depending  on  the  mean  anomaly,  which  would  not 

have  been  included  in  those  which  are  given  by  the  elliptic  motion  : 

now  it  is  more  convenient  to  make  those  terms  to  disappear  from  the 

expression  for  the  longitude,  in  order  to  introduce  them  into  the  ex- 

pression for  the  radius  vector  ;  J]  and  J]  will  be  so  determined  as  to 

satisfy  this  condition.     This  being  premised,  by  substituting  in  place  of 

a' .  \  — -r-r  t  Its  value  — A'     ' —  a.  \  — -, —  f ,  we  sljaii  obtaui i     da    )  I     da     S 

11 — f.(« — n)  n — t.{ii — n)  \     da     J 

moreover  let  JE'*'  =r 

3^       „  A  (0^  i\{n—n').{n^i.{n^n'))—3rn 
n — n  t  .{n — n) — n 

PART.  I. — BOOK  ir.  Q  Q 
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i^«zzi^=l2^.  «A«+|-.  (n+i(n-n'))-3n^) n — n 

S   ,    /c?AW\         2n  \   2w^Jgw 

r'\    da  J'^  71— n''  S      n^— (71—1.(71—71'))"  ' 

(i—^).{Qi—l).7ia.A'-'>  +  (i—l).7ia\  {  ̂̂ ^  ) 0    \     da    J ,     G«=   
2.(n — t.(7i — 71')) 

  2n\D'''^   
n'' — [71 — i.(7i — 7i')y  ' 

we  shall  have 

-a'=^-''\-^)'r-^'^i--\^rLl}^n'' ^  ^         i\(n—7i'y—n' 

a  A'''-'] .  COS.  i.(n't—nt-\-i'—i) 

—  7n'.fe.  COS.  (7it-\-t — w)  —  m'.f'e'.  cos.  (tiI-^-i — w') 

i-^m'.  C.nt  e.  sin.  («/+£ — iir)+iwi'.  Z).  w/.  e'.  sin.  («?+£ — w') 

r — 7   7z   T^xir-e.  cos.(i.{n't-nt+B~()-i-nt+  t-sr) 
,       ,  jTl    (71   1(71—71))  ^     ̂   '  J  ' 

-f  -T—}   —,   KTi-  e''  COS.  (i.(7it-7lt-\-i-i)-]r7lt  +  i — -a-') 

7f -(71-1.(71 — ?z))*  ^    ̂   -^ 

2n5.5a*.3-7— f  H   r-  «A"'S  / 
^      I  da  i      n — 71  )  > . 

7«'       „     f  71  ,,., 

2  li.[n—7i'y  ^      t, 

sin.  ?.(n'^ — ??/+£' — i), 

+jn'.  C.w/.  e.  cos.  (n/+£ — ■sy)  +  rn'D.7it.  d.  cos.  (w^+t — w') 

— ^!^  ).   -.  aA('\.± 

/     n — n' 
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-rr.  e.  sin.  (iJn't — nt+  i' — t)  +  nt+i — ■n-)  , 
n— 1.(71 — n')  ^   ̂   '  ^' 

H   7-7   77.  e'.  sin.  (i.{n't — nt+i — t)  +  n-{-i — u) ' 
n — t.{n — 71)  ^  '  \ 

in  these  expressions  the  integral  sign  X  extends  to  tlie  whole 

values  of  i  both  positive  and  negative,  the  sole  value  'f=.0  being 
excepted. 

It  may  be  observed  here,  that  in  the  very  case  in  which  the  series 

represented  by  S.A'''.  cos.  i.(nt — nt-\-^ — i)  converges  slowly,  the  ex- 

pressions of — ,  and  of  Sv,  may  be  rendered  converging  by  means  of  the 

divisors  which  they  acquire.     This  observation  is  extremely  important, 

QQ2 

r-r   — •   7-  aA(')  It  will  become  =zi.^rT, —   ?-  (a-.  — ;— 
t.(n — n') — n     n — n'  ^     da-      '        2      \  da 

2n  „r\       /2«+I\     2n         ̂ .,      i.in—n')~3n 

U  {^  +  J^.  „ A..)  +  -p}^^ . (aK ̂   +  _i!L, .  axA-  £:l!=i>' V      \d»f^n — n'  /^  i-(n—n')—n'\        d*      '    n—n'  I  n—n' 

nA('' ;  now  by  reducing  the  two  terms  which  constitute  the  factor  off.  cos.  i.{n't — /i/  +  f 

— i)J^nt-\-i — w)  in  page  296,  to  a  common  denominator,  it  will  become  =  to 

{1^.{n—n'f—iin.(n—ri)—2i.(p.[n—n'f  +  2i.n-—iK(n—n'f  +  n'—v.(n—n'f-\-2in.(n—n') 

(rfA'*'           '■In  
\ a"-—!   f-   7.«A(''»  (divided   by 

(a-. — ;   1   ^.  a  A"  A.  divided  by  2j'.(7i— «')*—«')+ -:;   — r-  aM*\  ;   which  is 
\  da  n — n!  I  2.(?i — n') 

evidently  equal  to  jE'*'. 
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because  without  it  it  would  be  impossible  to  express  analytically  the 

reciprocal  perturbations  of  the  planets,  the  ratio  of  whose  distances 

from  the  sun,  differ  little  from  unity. 

These  expressions  may  be  made  to  assume  the  following  form,  which 

will  be  extremely  useful  in  the  sequel ;  let 

h=:  e.  sin.  w  ;  li  z=.  ef  sin.  •ar' ; 

/  :^e.  cos.  73- ;     I'zz:  e.  cos.  -a/  ; 
we  shall  have 

a   -  6''''{   da  J+    2    '  ""■  (.   K(JiII^fr^-^'  ̂  

cos.  i.(n't — nt-\-i' — t) 

—m'.{hf-^}if).  cos.7?/+£)-m'.(//+/'/0-  sin.  («H0 

^^JL,  (l.C  +  l'D').nt.{sm.(nt+s)  —  ̂.\ih.C+h'D).nt.cos.  («/+0 

-T. — -r-^,   ;ttt  .  sm.  (i.(rLt—nt+  t'— 0+«^+  0 

?« — {ii — .(n — zi;) 

m        \         ?r 

>'  iXn—7i'\.(i\[n—ny—n^)     ) 

sin.  e.(?z7 — nt+i — O* 

-\-nL{h.C+h'.D).  tit.  sin.  (nt+e)  +  m'.(l.C+l'.£>).  nt.  cos.  (n/+0 

^ — .;'    ..  .  sin.  (i.(n't—nt  +  t'— 0  +  «/  +  0 
n — t.{n- — n)  ^   ̂ 

n — t,{n — n)  ^ 
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these  expressions  of  ir  and  h>  being  added  to  the  values  of  r  and  of  v, 

relative  to  the  elliptic  motion,  will  give  the  entire  values  of  the  radius 

vector  ofm,  and  of  its  motion  in  longitude. 

51.  Let  us  at  present,  consider  the  motion  of  m,  in  latitude.  For 

this  purpose  let  the  formula  (Z')  of  N°.  47,  be  resumed ;  and  if  the 
product  of  the  inclinations,  by  the  excentricities  of  the  orbits,  be  ne- 

glected it  becomes 

the  expression  for  i?  of  N°.  48,  gives,  by  assuming  for  the  fixed  plane, 
the  plane  of  the  primitive  orbit  of  m, 

I  ̂ -  )  =  —7^   .  E.  Jjw.  cos.  t.(nt-r-nt+£ — i); 

the  value  of  i  comprehending  all  whole  numbers  both  positive  and 

negative,  including  i  ■=.  0.  Let  y  represent  the  tangent  of  the  in- 

clination of  the  orbit  of  ?«',  to  the  primitive  orbit  of  m,  and  n  the 
longitude  of  the  ascending  node  of  the  first  of  these  orbits,  on  the 

second  ;  we  shall  have  very  nearly. 

z'  =  a'.y.  sin.  {7i't+i'—n)  ;t 

which  gives 

•  When  the  primitive  orbit  of  m  is  assumed  as  the  fixed  plane,  the  differential  of  the 

two  last  terms  in  the  value  of  R  (which  is  given  in  page  276)  with  respect  to  z,  becomes 

(when  quantities  of  the  order  m''-  are  neglected)  the  expression  which  is  given  in  the  text. 

f  When  quantities  of  the  higher  orders  of  the  inclinations  are  neglected,  we  may  sub- 

stitute for  sin.  {n't-\-i' — n),  the  longitude  on  the  fixed  plane,  and  we  can  also  assume  the 

distance  of  the  planet  from  the  centre  of  its  orbit,  equal  to  the  mean  distance  a', ;  under 

these  restrictions  it  will  readily  appear  that  the  tangent  of  latitude  of  m'  above  the  fixed  plane 

=  y.  sin.  (n't+i — n),  and  v  s'  =  a'.y.  sin.  (n't  +  i' — n). 
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  —.  a'.S.i5(*-".y.  sin.  (i.(7i't—nt+t'—i)  +  nt+i—n), 

the  value  of  i,  in  this  and  the  following  expressions  extending  to  all 

whole  numbers,  as  well  positive  as  negative,  the  sole  value  /  =  0* 

being  excepted.     The  differential  equation  in  $u',   will  consequently 

become,  by  multiplying  the  value  of  (  -r^  j  ,  by   n*a^.  which  is  equal 
to  unity, 

0  =  — ^-; —  +  ifJu' — m'.n.—Tz.  y.  sin.  (n't+i' — n) ar  a 

,    m'n''  ,_,,,         .      , H   -— .  aa'.  B'-'K  y.  sin.  (nt+i—n) 

^   g— .  ad.  Y..B'-''\y.  sin.(J.(nV— n/+  /— £)+n^+£-n); 

from  which  we  obtain,  by  integrating,  and  by  remarking  that  by  N". 
47,  ̂ 5=  —  a.hi, 

^'=  —  ̂ f—;f-'  -^'  y-  «'"•  (n'^+f '— n) 

*  When  this  value  of  s'  is  multiplied  into  2.  Sl*>.  cos.  i.^n't — nt  4-'t'— t),  it  becomes, 

when»=l,  equal  to  Bd).  sin.  («'«  — ?!<+ s'— O+w'^  +  f"— n)  +  5('>.  sin.  (n<+i— n),  and 

whenj  =  0  it  becomes  =5^"'.  sin.  (/('Z  +  t' — n) ;  now  had  this  product  been  expressed 

generally   .a'.S.BW.y.  sin.  (j.(w'i — nt-\-i' — e)+n<-|.j — 11),  it  would  not  answer  to  the 

two  cases  in  which  jrz:l,  and  in  which  i=0;  hence  we  see  the  reason  why  this  product 

is  resolved  into  parts  in  the  expression  for  \—rj^  and  also  why  the  value  »=0,  is   ex- 

cepted out  of  the  values  of  /. 

■f  This  difiFerential  equation  is  integrated  in  the  manner  prescribed  in  N°.  il. 
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2  w — (7i — i.{ii-n  )) 

In  order  to  obtain  the  latitude  of  m,  above  a  fixed  plane,  a  little 

inclined  to  the  plane  of  its  primitive  orbit,  naming  <p  the  inclination 

of  this  orbit  on  the  fixed  plane,  and  9  the  longitude  of  its  ascending 

node  on  the  same  plane,  it  will  be  sufficient  to  add  to  Ss,  the  quantity 

tan.  p.  sin.  {y — 9),  or  tan.  9.  sin.  (/jf+i — 9),  the  excentricity  of  the 

orbit  being  neglected.*  Let  <p'  and  0'  represent  what  ip  and  6  become 

relatively  to  /»'.  If  m  moved  in  the  primitive  orbit  of  m',  the  tangent 

of  latitude  will  be  tan.  ̂ '.  sin.  {nt -\-  i  —  9')  ;  it  will  be  tan.  ip.  sin. 
(«f+£ — 9),  if  m  continued  to  move  on  its  primitive  orbit.  The 

difference  of  these  two  tangents  is  very  nearly  the  tangent  of  the 

latitude  of  m,  above  the  plane  of  the  primitive  orbit,  it  being  sup- 

posed to  move  on  the  plane  of  the  primitive  orbit  of  vi  j  therefore 
we  have 

tan.  (p'.  sin.  {nt-\-i — S') —  tan.  (p.  sin.  (ni+£ — 9)  ■=■  y.  sin.  (nf+f — n). 
Let 

tan.  (p.  sin.  9  =  p  ;         tan.  (p'.  sin.  6'  =  p' ; 

tan.  9.  cos.  9  =  9  J         tan.  9'.  cos.  9'  zz  ̂ ' ; 
we  shall  obtain 

■y.  sin.  n  ■=.  p' —  p  ;  y.  COS.  FI  —  /  —  q  ; 

and  consequently,  if  s  denote  the  latitude  of  m  above  the  fixed  plane, 

we  shall  have  very  nearly, 

s  ■=.  q.  sin.  (nt  -\-  i)  —  p.  cos.  (?z^  +  e) 

-.  (p'—  p).  B^^\  nt.  sin.  (w^+O m'.a'a' 

*  This  expression  for  the  latitude  of  m  above  the  fixed  plane,  which  is  a  little  inclined 

to  the  plane  of  its  primitive  orbit,  is  true  when  quantities  of  the  higher  orders  are  ne- 

glected. 
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{(j'—q).B''\nt.  COS.  («^+0 

-TT-  (;?' — q)-  sin.  (w'/+0 — [p'—p).  COS.  (??'/+£')) 

-^-^?^;^""'!,,. .  sin.  (:i.(«7— «/+/— o+n^+o) 
+   ^;   -^   (d'   n\   B^'-"  ( 

52.  Let  us  now  sum  up  the  formul;e  which  we  have  investigated.  If 

(r)  and  (xi)  represent  the  parts  of  the  radius  vector  and  of  the  longitude 

V  of  the  orbit,  which  depend  on  the  elliptic  motion  ;  we  will  have 

?•  —  (r)-\-Sr ;  v  =  {v)  +  Sv; 

The  preceding  value  of  5  will  be  the  latitude  of  rn  above  the  fixed 

plane ;  but  it  will  be  more  exact  to  employ  instead  of  its  two  first 

terms  which  are  independent  of  wj',  the  value  of  the  latitude  which 
would  obtain  in  case  that  m  did  not  depart  from  the  plane  of 

ts  primitive  orbit.  These  expressions  contain  the  entire  theory  of 

the  planets,  when  the  squares  and  products  of  the  excentricities 

and  of  the  inclinations  of  the  orbits  are  neglected,  which  we  are  in 

most  cases  permitted  to  do.  They  have  besides  the  advantage  of 

appearing  under  a  very  simple  form,  which  enables  easily  to  perceive 

the  law  of  their  different  terms. 

Sometimes  it  will  be  necessary  to  recur  to  terms  depending  on  the 

squares  and  the  products  of  the  excentricities  and  of  the  inclinations, 

and  even  on  higher  powers  and  products.  These  terms  may  be  de- 

termined by  means  of  the  preceding  analysis :  the  consideration  which 

renders  them  necessary  will  always  facilitate  their  determination.  The 

approximations  in  which  we  will  have  occasion  to  take  them  into 

account,  will  introduce  new  terms  depending  on  new  arguments. 

These  will  again  reproduce  the  arguments  which  the  preceding 

approximations  give,  but  with  coefficients  which  are  smaller  and  smaller 
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according  to  the  following  law,  which  it  is  easy  to  infer  from  the 

expansion  of  R  into  a  series,  and  which  has  been  given  in  N".  48  ;  an 
argument  which  in  the  successive  approximations  is  found  for  the 

first  time  among  quantities  of  any  order  r,  is  only  produced  again  by 

quantities  of  the  orders  r-f  2,  r4-4,  &c. 
It  follows   from   this   that    the    coefficients   of  the   terms    of  the 

form  t.  ̂'"'  [nt  +  {)>  which  occur  in  the  expressions  of  r,   r,  and  s, 

are  approximate  as  far  as  quantities  of  the  third  order,  that  is 

to  say,  the  approximation  in  which  we  only  consider  the  squares 

and  products  of  the  excentricities  and  of  the  inclinations  of  their 

orbits,  will  add  nothing  to  their  values;  therefore  they  have  all 

the  required  accuracy ;  this  observation  is  the  more  important, 

in  as  much  as  the  secular  variations  of  the  orbits  depend  on  these 
coefficients. 

The  different  terms  of  the  perturbations  of  r,  v,  s,  are  comprised 
in  the  form 

k.  ̂^^^'ii.(nt—nt+B—i)  +  r7it+ri)  I, 

r  being  either  a  positive  integral  number,  or  equal  to  cypher,  and  k 

being  a  function  of  the  excentricities  and  of  the  inclinations  of 

the  orbits,  of  the  order  r,  or  of  a  superior  order :  we  are  enabled 

by  means  of  this,  to  determine  of  what  order  a  term  depending  on  a 

given  angle  is. 

It  is  manifest  that  the  action  of  tiie  bodies  nf,  m"',  &c.,  only 

cause  to  be  added  to  the  preceding  values  of  r,  v  and  s,  terms 

analogous  to  those  which  result  from  the  action  of  iri,  and  that  if 

we  neglect  the  square  of  the  perturbating  force,  the  sum  of  all 

these  terms  will  give  the  complete  values  of  r,  v  and  *•.     This  fol- 

PART  I.  BOOK  II.  U  R 
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lows  from  the  nature  of  the  formula;  (X'),  (Y')  and  (Z'),*  which 
are  linear  with  respect  to  quantities  which  depend  on  the  perturbat- 

ing  force. 

Finally,  we  shall  obtain  the  perturbation  of  m',  produced  by  the 

action  of  m',  by  changing  in  the  preceding  formulae,  a,  n,  h,  I,  i, 

nr,  p,  q,  and  m',  into  a',  n',  h',  I',  i',  txt',  p,  q,  and  m,  and  vice  versa. 

*  When  quantities  of  the  order  of  the  square  of  the  perturbating  forces  are  neglected, 

the  formulae  X',  Y',  Z,  are  linear  with  respect  to  the  perturbating  force,  from  which  it 
follows,  that  the  variation  of  the  sura  is  equal  to  the  sum  of  the  variations. 
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CHAPTER  VII. 

Of  the  secular  inequalities  of  the  celestial  motions. 

53.    The    perturbating    forces   which   disturb   the    elliptic   motion 

introduce  into  the  expressions  of  r,  —t—  and  of  s,  which  are  given  in  the 

preceding  chapter,  the  time  without  the  signs  of  the  sine  and  cosine, 

or  under  the  form  of  arcs  of  circles,  which  increasing  indefinitely, 

must  at  length  render  these  expressions  erroneous  ;  it  is  therefore  es- 

sentially necessary  to  make  these  arcs  to  disappear,  and  to  obtain  the 

functions  which  produce  them  by  their  expansion  into  a  series.  There 

has  been  given  for  this  object,  in  the  fifth  chapter,  a  general  method, 
from  which  it  follows,  that  these  arcs  arise  from  the  variations  of  the 

elliptic  motion,  which  are  then  functions  of  the  time.  These  varia- 

tions being  performed  with  extreme  slowness,  have  been  termed 

secular  inequalities.  Their  theory  is  one  of  the  most  interesting 

points  in  the  system  of  the  world  :  we  proceed  to  present  it  here,  in 

all  the  detail  which  its  importance  requires. 

By  the  preceding  chapter  we  have 

1  — h.  sin.  (nt+i)  —  /.  cos  (nt-\-i)  — &c." 

r  -^z  a. 
7H 

+  -y-.  (/.  C-\-l.D).nt.  sin.  {nt-\-i) 
f 

771 

——.  Qu  C-\-h'.D).nt.  cos.  (7it+e)i-m'S. 

-^  =  n+2n/?.  sin.  {nt-\-i')-\-2nL  cos.  (nZ-j-O+^c- 

R  R  2 



308  CELESTIAL  MECHANICS, 

—  7n'.  (LC-\-t'D).n*t.  sin.  (nt+i) 

+  m'.(;?.C+A'Z)).n*/.  COS.  (nt+i)+m'.T; 

s  •=.  q.  sin.  {nt-^i)  — p.  cos.  {nt-\-i)-\-  &c. 

——.  a*,fl'.(/— _p).JB'".  nt.  sin.  (w^+  i) 

m'
 

_I
!L
  

,  a\
a'
.{
q'
—q
-)
.B
^^
\n
L 
 

cos
.  

(n
t-
\-
t)
+m
'.
x 
 

; 

'V,  T,  %,  being  periodic  functions  of  the  time  t.  Let  us  at  first 

consider  the  expression  of  —rr,  and  compare  it  with  the  expres- 

sion of  y  of  No.  43.  As  the  arbitrary  quantity  n  multiplies  the 

arc  tt  under  the  periodic  signs,  in  the  expression  for  —y-  ;  we  must  em- 

ploy the  following  equations,  which  have  been  found  in  N°.  43, 

0=X'  +  9.  X^-'— F; 

0  =  F  +  9.  Y"-irX"  —  2Z  ; 

let    us    consider   what  X,  X',  X",  Y,  &c.  become   in    this  case ;    the 
fit) 

expression  of  — j— ,  being  compared  with  that  of  ij  of  the  above  cited 

N".  gives 

X  zz  n-\-^nh.  sin.  (nt  +  0  +  2^^-  cos.  (nt+i)  +  m'.  T ; 

Y  =  m'.n\(h.  C+h'D).  cos.  (nt+s')—m'?i\(l.C+l'.D).  sin.  (nt+i). 

The  product  of  the  partial  differences  of  the  constant  quantities, 

into  the  disturbing  masses  being  neglected,*  which  we  are  permitted 

*  Since  the  product  of  the  partial  differences  of  the  constants  into  the  disturbing 

masses  are  neglected,  it  will  not  be  necessary  to  take  into  account  the  periodic  function 

m'.T;  the  second  and  third  terms  of  the  value  of  A' involve  7if  under  the  periodic  signs, 

.'.  differencing  the  arbitraries  contained  under  the  signs  with  respect  to  n,  we  obtain  the 

value  of  X",  which  is  given  in  the  text. 
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to  do,  because  these  differences  are  of  the  order  of  the  masses,  we  shall 

have  bv  N°.  43, 

X'=  (^y  (l+2A.sin.(«^+0  +  2/.  cos.(«/+i)) 

+2w.  {-k)'(h.  cos.  {nt-\-t)  —  /.  sin.  {nt-\-t)) 

->r^n.(~y  sin.  (72/+0  +  "^n-l^jA  .  cos.  (n/+0; 

X'^'in.  (^).  (A. cos.  {nt+i)  —  l.sm.{nt+i)). 

The  equation  O  =  X'  +  0.  X''  —  F,  will  consequently  become 

0  -  (  ^^)  .  (1  +  2^.  sin.  (w^+0+2Z.  cos.  (jit+t)) 

4-2W.  [  —  j  .  sin.  (wf+f)  +  2n.   (  ;jq  )  •  cos.  (n/+0 

+^''-^-  {%)'^  ̂^)|.(/^cos.(«^+0-/.sin.N+0) 

—m'.n\{h.  C+h'.D).  cos.  (?z^+  0  H-  m'.w*.(/.  C+/'.Z)).  sin.  w/+  f), . 

The  coefficients  of  the  corresponding  sines  and  cosines,  being  put  se- 

parately equal  to  nothing,  we  shall  have 

If  these   equations  be  integrated,   and  if  in  their  integrals,   6    be 

changed  into  t,  we  shall   have  by  N°.  4o,  the  value  of  the   arbitrary 
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quantities,   in  functions  of  t,  and  we  can  efface  the  arcs  of  the  circic 

from  the  expressions  for  -5—  and  for  r,  but  instead  of  this  change  we 

can  all  at  once  change  6  into  t,  in  these  differential  equations.  Tlie 

first  of  these  equations  indicates  that  n  is  constant,  and  as  the  arbitrary- 
quantity  a  of  the  expressions  for  r  depends  upon  it,  in  consequence  of 

the  equations  ?z^  rz  -y  ;  a  is  likewise  constant.  The  two  other  equa- 

tions are  not  sufficient  to  determine  h,  /,  i.  We  shall  have  a  new 

equation  by  observing,  that  the  expression  for  -j— ,  gives  by  integrat- 

ing, fndt,  for  the  value  of  the  mean  longitude  of  m  ;  but  we  have 

supposed  that  this  longitude  is  equal  to  nt-\-i ;  therefore  we  have  nt+i 
=.fndt,  which  gives 

dn    ,    dt       ̂  

and  as  — ^  =  0  ;  we  shall  have  also  -^  =  O.     Thus  the  two  arbitrary dt  dt 

quantities  n  and  i  are  constant ;  the   arbitrary  quantities  h  and  /  will 

be  consequently  determined  by  means  of  the  differential  equations, 

^^'  "^'-^     il  C+l'.D);       (1) dt  2 

dl       m'.n 
dt~     "1 

(Ji.C+h'.D);     (2) 

dxi 

The  conside
ration 

 
of  the  expres

sion  
of —7—  being

  
suffici

ent  
to  deter- 

mine the  values 
 
of  n,  a,  h,  /and  i;  we  may  percei
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the  differe
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Let  us  now  consider  the  expression  of  s.     By  comparing  it  with  the 

expression  of  1/  in  the  N°.  already  cited  ;  we  shall  have 

X  —  q.  sin.  (nt+i)  — p.  cos.  (nt+  e)+W.  x 

Y  =  -^  .  a\a'.B^^\{p—p').  sin.  (nf  +  0 «2    71 

+  — f-.  a^.a'.B^'KCq—q').  COS.  (nt+t). 4 

n  and  i  being  constant,  as  is  evident  from  what  precedes  ;  by  N".  43, 
we  have 

X^'  =  O. 

The  equation  0  =  X'+  6.  X'^ —  Y  consequently  becomes, 

"*'"-.  a*a'.  £'''.  (p—p').  sin.  (wM- 0 

^    .  a\a'.B^'\  (?—?')•  cos.  (wf+t) ; 4 

from  this  we  deduce,  by  comparing  the  coefficients  of  corresponding 
sines  and  cosines,  and  by  changing  fi  into  /,  in  order  to  obtain  p  and  q 
directly  in  functions  of  t, 

±.^-.I!^.a^.a'.B^Kiq^qr,       (3) 

^  =_^.  a^a'.  JS<'>  (;,-/);        (4) 

After  that  p  and  q  shall  have  been  determined  by  these  equations,  if 

we  substitute  them  in  the  preceding  expression  of  s,  by  obliterating 
the  terms  which  contain  the  arcs  of  a  circle,  we  will  have 

4 
m'.n 
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s  :=  q.  sin.  (w^+O — 'i'-cos.  {nl-\-i)+m'.  ̂ . 

dn 

54.  The  equation  —rr  "=■  0,  to  which  we  have  arrived,   is  of  great 

importance  in  the  theory  of  the  system  of  the  world,  in  that  it  indi- 

cates that  tlie  mean  motions  of  the  heavenly  bodies,  and  the  greater 

axes  of  their  orbits  are  invariable ;  but  this  equation  is  only  accurate 

as  far  as  quantities  of  the  order  in  .li,  inclusively.  If  quantities  of 

the   order  m! Jf ,    or    of    the    superior    orders,     would    produce    in 

dv 
--TT,   ii  term  of  the  form*  ̂ kt,   k  being  a  function  of  the  elements  of 

the  orbits  of  m  and  of  rn' ;  a  term  of  the  order  kf  would  be  produced 
in  the  expression  of  v,  which  by  changing  the  longitudes  of  m,  pro- 

portionably  to  the  square  of  the  time,  would   at  length  become  ex- 

tremely  sensible.     The  equation  —7—  zz  0,    would  no   longer   obtain, 

but  in  place  of  this  equation  there  would  be  obtained  by  the  preceding 

dn 
number  —j-  zz  9,k  ;  it  is  therefore  of  importance  to  ascertain  whether 

there  exists  in  the  expressions  for  v  terms  of  the  form  A/*.  We  proceed 
to  demonstrate  that  if  we  only  consider  the  first  power  of  the  disturbing 

masses,  however  far  we  extend  the  approximations  relative  to  the 

powers  of  the  excentricities  and  the  inclinations  ot  the  orbits ;  the  ex- 

pression of  w  will  not  involve  terms  of  this  kind. 

For  this  purpose  let  the  formula  (X)  of  No.  4-6  be  resumed. 

Sr= 

a.  cos.  v.fndt.  r.  sin.  v.  j2jdli-^  r.  );t^(  f 

f* 

Vi- 
*  If  the  value  of  n  contained  a  term  of  the  order  kt°,  there  would  exist  in  the  exjn''esfion 
dv 

~dt 

of  --3-,  the  term  2kt,  and  consequently  this  term  would  exist  in  A',  so  that  in  comparing 

coefficients  of  corresponding  terms,  we  would  have  -7-  =  2i. 
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—  a.  sin.  v.fndt.  r.  cos.  v.  \9,fAR-\-r.  \ --r-\\ 

Let  us  consider  the  part  of  Sr  which  involves  terms  multiplied  by  t*, 
or  for  greater  generality,  let  us  consider  the  terms,  which  being  mul- 

tiplied by  the  sine  or  cosine*  of  the  angle  a,t+  €,  in  which  «  is  very 

small,  have  at  the  same  time  a*  for  a  divisor.  It  is  evident  that  n 

being  supposed  =0,  there  will  result  a  term  multiplied  by  f*,  so  that 
the  first  case  is  contained  in  the  second.  The  terms  which  have  a* 

for  a  divisor  can  only  be  produced  by  a  double  integration  j  therefore 

they  must  be  produced  by  the  part  of  Sr,  which  involves  the  double 

integral  signy^     Let  us  first  examine  the  term 

2a,  cos.  v.Jndt.{r.  sin.  vfAK) 

The  origin  of  the  angle  i  being  fixed  at  the  perihelion,  we  have  in  the 

elliptic  orbit,  by  No.  20, 

a.n—e*) rzz   ^^   ^—. 1  -\-e.  cos.  V 

and  consequently 

COS.  V=.  — ^   —   : 

er 

hence  we  deduce  by  differencing 

r''.dv.  Sin.  v  ■=.  — i:   —  dr  ;t 

PART  I. — BOOK  II.  S  S 

•  K  must  be  very  small,  because  the  sine  is  supposed  to  increase  with  great  slowness  ; 
it  is  evident  that  if  a  be  supposed  equal  to  nothing,  the  double  integrations  would  produce 
a  term  proportional  to  the  square  of  the  time. 

,      .               —  enrfr— e.a.((l— «')+r).  </r             a.(l— e')     _, 
f  —  dv.  sin.  i>  =    j-^   i-i— i   =   -■     — '  .  dr. 
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but  by  No.  19,  we  have 

y-^.dv  =  dt's/iJ^a.(l — e*)  =  a* .ndt.^ \—e*  ; 

consequently, 

andt.  r.  sin.  v       rdr 

■  x/l— e'  e 

„,     ̂          2a.  COS.  v.fndUr.  sin.  v.fdR)       ...  ,,       -      , 
The  term   =^ — .  ̂         ^^- — -,  will  therefore  become 

2.  COS.  ̂   ̂y(^^^,y^^)^  or  -^^^^.  (rS/d«— /r*.d/J). 

It  is  evident  that  as  this  last  function  does  not  contain  any  double 

integrals,  there  cannot  arise  any  term  which  h^s  as*  for  a  divisor. 
Let  us  now  consider  the  term 

gfl.  sin,  vfndt.  (r.  cos.  v/diR) 
w.v/l 

of  the  expression  of  Sr.     By  substituting  for  cos.  u,  its  preceding  value 
in  r,  this  terra  becomes 

g.  sin.  v.fndt.{r — a.(l — g*))./'dj? 

By  N°.  22,  we  have 

;^'  being  an  infinite  series  of  the  cosines  of  the  angle  nt  +  t,  and  its 
multiples  j  therefore  we  shall  have 

Jj^.  (r—a.(-e')).fdR=  a.fndt.Qe-i-x:).fdR.* 
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Denoting  by  x  '^^  integral  fxndtt  we  will  have 

a.  ffidt.Qe  +  x')f^R=  h^'fndt.  f  d/^+ax^'/d^  —  «•  /  x"-  dh. 

As  these  two  last  terms  do  not  involve  the  double  sign  of  integration, 

no  term  which  has  a*  for  a  denominator  can  arise  from  it ;  therefore  if 

we  only  consider  terras  of  this  kind,  we  will  have 

2a.  sin.  v./ndt.{r.  cos.  v.fdR  _  3rt^.e.  sin.  v.fndt.fdR 

=  -^.—'fndt./dRi     - nai      f* 

and  the  radius  r  will  become 

dr 

w+(i^)-v-^"*-^'"'^ 
(dr  \  

dr 
—f-  )  being  the  values  of  r  and  —-rr  in  the  case  of  elliptic 

motion.  Thus,  in  order  to  consider  in  the  expression  of  the  radius 

vector,  the  part  of  the  perturbations,  which  is  divided  by  a*,  it  will 
be  sufficient  to  increase  the  mean  longitude  7it  -\-  t,  by  the  quantity 

— ./ndt.fdR,  in  the  expression  for  the  mean  longitude  in  the  case  of 

the  elliptic  motion. 

Let  us  now  examine  whether  this  part  of  the  perturbations  should  be 

taken  into  account  in  the  expression  for  the  longitude  v.     The  formula 

(  F)  of  N°.46,  gives  by  substituting  — .  — ^.  J  ndt.fdR  in  place  of  ir, 

when  the  terms  divided  by  a*  are  only  considered 

( 2rd'r-\-ar'         ^ 

LZE^LA.^.  /ndt./dK; 

ss2 
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but  by  what  goes  before,  we  have 

ae.ndt.  sin.  v $r 
=   /  —  :  r*dv  —  a^ndU  s/ \ — e*  ; 

hence  it  is  easy  to  conclude,  by  substituting  for  cos.  v^  its  value,   which 

has  been  already  given*  in  terms  of  r 

rd'r-{-dr*  i 
^rd'r+dr'' 

—1-15. 

dv 

v/l— e*  ~  ndt  ' 

therefore  if  we  only  consider  the  part  of  the  perturbations,   of  which 

the  divisor  is  a*,  the  longitude  v  will  become 

(y)  and  (  -^  j  being  the  parts  of  v  and  of  —-r-  which  are  relative  to 

-  r.ae.n.dt.  COS.  v.dv  ,,         ,     .      .       -  (a.(o.(l — (r) — r).ndt.dv 
r,a^,r  =   .  — —  equal  by  substituting  for  cos.  v ;    ■y==   , vl — e-  VI — er 

2rd"r  ^a'.ndtVl—e".  dv  2ar.ndt.dv  ,  „         a"e'n^dt' 

aVdtWl—e'-  a"n'dtWT^~  (\—e').ahi'dt-  '  1- 

(aVn-'rft'. {a'.{l-eY—2ar^ l~^)  +  r-)      .  dr^    _f_  aWT- 

  2a   1  ,    2rd°r+dr^  _  2dv  2rdv    e' 

"^  rVuI?       (1— e')i  '  * '  ~~^iW~-  l[dt  ~  {\—r)andt  "^  (1— e*)! 

aWT^   .2a  1  1  2rdv  la now--— -^j-— J-  + 

_      2r^dv+2a^ndt.Vu^     «        ,      «'         .         ̂                 1  „  . —  —   =0,  and  _=r  s  +  — r=^=-     s  =0.    ••since 

o«Vl — er              dv  dv 
  -J   =   -J-,  the  preceding  expression  becomes  equal  to  — -j- . 



PART  I— BOOK  II.  317 

the  elliptic  motion.  Therefore  in  order  to  consider  this  part  of  the 

perturbations  in  the  expression  for  the  longitude  of  m,  we  should  follow 

the  same  rule  as  we  have  given,  when  considering  the  expression  of  the 

radius  vector,  that  is  to  say,  it  is  necessary  to  increase  in  the  elliptic 

expression  of  the  true  longitude,  the  mean  longitude  w^+  £  by  the  quan- 

tity   .fndt.fdiR. 

The  constant  part  of  the  expression  for  (  —j-  j ,  being  expanded  into 

a  series  of  the  cosines  of  the  angle  nt-\-i  and  of  its  multiples,  is  reduced 
3fl 

to  unity,  as  we  have  seen  in  N".  22  ;  hence  arises  the  term  — .  fndU 

/d-R  in  the  expression  for  the  longitude.  If  d/?  contains  the  con- 

stant term  km'.ndt,  this  term  would  produce  f.   .  k.v^fy  in  the 

expression  for  the  longitude  v.  Therefore  in  order  to  ascertain  whe- 

ther such  terms  exist  in  this  expression,  we  must  consider  whether  &.R 
contains  a  constant  term. 

When  the  excentricities  of  the  orbits  and  their  mutual  inclinations 

to  each  other  are  small,  R  can  be  reduced  always  into  an  infinite  series 

of  the  sines  and  cosines  of  angles  proportional  to  the  time  /.  They 

can  be  generally  represented  by  the  term  km,  cos.  {int-\-  int  -f  A), 

i  and  i'  being  integral  numbers,  either  positive  or  negative,  or  equal  to 
cypher.  The  differential  of  this  term  taken  solely  with  respect  to  the 

mean  motion  of  m,  is  -^ikni.ndL  sin.  [i' >i' t  +  i7it  +  A) ;  this  is  the  part 
of  dR,  which  is  relative  to  this  term  :  it  cannot  be  constant  unless  we 

have  O  =1  i'nf  +  in;  but  this  supposes  that  the  mean  motions  of  the 

bodies  m  and  m'  are  commensurable  with  each  other  ;  and  as  this  is  not 
the  case  in  the  solar  system,  we  ought  to  infer  from  it,  that  the  value 

of  dR  does  not  contain  constant  terms ;  and  that  consequently  if  we 

only  consider  the  first  power  of  the  perturbating  masses,  the  mean 

motions  of  the  celestial   bodies  are   uniform,  or  what  comes  to  the 
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same  thing,  -j-  =  0.     The  value  of  a  being  connected  with  that  of  n, 

by  means  of  the  equation  w*  =  — ;  it  follows  that  if  we  do  not  take 

into  account  periodic  quantities,  the  greater  axes  of  the  orbits  are 
constant. 

If  the  mean  motions  of  the  bodies  m  and  m',  though  not  exactly 
commensurable  are  very  nearly  so  ;  there  will  exist  in  the  theory  of 

their  motions,  inequalities  of  a  very  long  period,  and  which  may  be- 

come very  sensible,  on  account  of  the  smallness  of  the  divisor  a*.  We 
will  see  in  the  sequel  that  this  obtains  in  the  case  of  Jupiter  and 

Saturn.  The  preceding  analysis  will  give  in  a  very  simple  manner, 

the  part  of  the  perturbations  which  depend  on  this  divisor.  It  follows 
from  it,  that  then  it  is  sufficient  to  make  the  mean  longitude  nt+i  or 

fndt  vary  by  the  quantity    .  fndtAR ;  which  comes  to  make  n, 

in  the  integral  fndt,  increase  by  the  quantity   .  J'dB  ;    the  orbit 

/* 

of  m  being  considered  as  a  variable  ellipse,  we  have  n*  zr  -^;  therefore 
the  preceding  variation  of  n  must  introduce  in  the  semiaxis  major  of 

the  orbit,  the  variation*   —   . 

If  in  the  value  of --^—  we  carry  the  approximation  as  far  as  quantities 

of  the  order  of  the  squares  of  the  perturbating  masses,  terms  proportional 

to  the  times  will  arise ;  but  by  attentively  considering  the  differ- 

ential equations  of  the  motion  of  the  bodies  m,  m',  m!',  &c.  j  it 
will  readily  appear  that  these  terms  are  at  the  same  time  of  the 

order  of  the  squares  and  of  the  products  of  the  excentricities  and   of 

_  .  .        o        A*  ,  .  2nn*dn      ,     .     .       San       , ,  r>  r 
•  From  the  equation  «'  =  -V  we  have  da  =   substituting    .  Jan  for 

a^  -V  ft 

dn,  and  we  have  da  =   =   /<!-"• 
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the  inclinations  of  the  orbits.  However,  as  every  thing  which  affects 

the  mean  motion,  may  at  length  become  very  sensible,  we  will  con- 
sider in  the  sequel  those  terms,  and  we  shall  see  that  they  produce 

the  secular  equations  which  have  been  observed  in  the  motion  of 
the  moon. 

55.  Let  us  now  resume  the  equations  (1)  and  (2)  of  No.  55,  and 
let 

V  Tn'7iC    ,   I        tn'.n.D 
(0,1)  =   —;  12l1}  =  —^   ; 

they  will  become 

^  =  (0,1)./-[o:T]./'; 

The  expressions  of  (0,  i )  and  of  [oTI]  ̂ ^Y  ̂ ^  determined  very  simply 
in  the  following  manner.  By  substituting  in  place  of  C,  and  of  D, 

their  values,  which  have  been  determined  in  N°.  50,  there  will  be 
obtained 

(o,l)=-_.).^(-^j^-i«^  (^^j(j 
__-      m'.n    C     .,„       ,  /dA('>\       ,    ,    /d'A^'^\  ) 

By  N°.  49,  we  have 

we  will  readily  obtain  by  the  same  N".  — r^>  -  ,  ̂   ,  in  functions  of  bf\ d(x,        da, 

and  of  6^";  and  these  quantities  are  given  in  linear  functions  of  b'^^,  and 

of  62', ;  this  being  premised  we  shall  find 
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therefore 

(0,1)= 

S,m' .n.oi.\h%^ 

4.( !_«»)»   ' 
let 

(a*~2aaf.  cos  fl  f  flf'*)*  =  (o,  a')  +  (a,  a  )'.  cos.  e+(a.  a'")*,  cos.  2fi+&c. 

by  No.  49,  vve  shall  have 

(aa')  =  ifl'.  Z.l!i ; »     (a,ay  =  {a'.b%),  &c. 

therefore  we  shall  have 

consequently  by  N".  49,  we  obtain 

by  substituting  in  place  of  b'^^  and  of  its  differences,  their  values  in  b'^, 
and  b!^,  the  preceding  function  will  be  found  equal  to 

((l+c.^).b<2lH-'b^V. 

(1— a  ) therefore 

L2LJ.J-—  2.(1'^— «^)* 
or 

we  shall  obtain  by  this  means  very  simple  expressions  for  (0, 1)  and  for 

[0.  '1,  and  it  is  easy  to  conclude  by  the  values  in  a  series  for  b'l\,  and 

for  b''2\,  which  are  given  in  N°.  49,  that  these  expressions  are  positive, 
if  w  be  positive,  and  negative,  if «  be  negative. 

Naming  (0,  2)  and  [oTi]  what  (O,  1)  and  [±J]  become,  when  a'  and 

m'  are  changed  into  a'"  and  w",  and  in  like  manner  let  (0,  3}  and  [oTs"] 
represent  what  these  same  quantities  become  when  a'  and  m'  are  changed 

into  of"  and  mf^' ;  and  so  on.     Moreover  let  A'-',  f,  h'',  I",  denote  what 



PART  I.— BOOK  11.  321 

h  and  /  become  relative  to  the  bodies  m'',  m"',  &c. ;  we  shall  obtain 

in  consequence  of  the  combined  actions  of  the  different  bodies  m',  m", 
vr\!",  &c.  on  m, 

^  =  ((0, 1)  +  (0,  2)  +  (0.  3)  +  &c.)).  ̂ -[orr].r-  [aj]./'"-  &c.  J 

^=—((0,  l)  +  (0,  2)+(0,  3)+&c.).  A+[orT].A'+[al].;/''+&c.. 

.^       ̂       dK     dl'      dM    dl'     ,  -u  u    i  .       •     au It  IS  manifest  that  — j-,  — j-;  —rr>-7r>  &C'>  ̂ "^  be  determined  by G^      dt        dt     dt 

expressions  similar  to  those  of -^  and  of -5-,  and  that   it  is  easy  to 

infer  them  from  the  preceding  by  changing  successively,  that  which 

is  relative  to  m,  into  that  which  refers  to  rnf,  m'',  &c.,  and  vice  versa. 
Let  therefore 

(1,0),  [O];       (1,2),  [O];  &c. 
be  what 

(0. 1),  [O]  ;       (0,  2),  [o;j]  ;  &c. 

become  when  we  change  in  them  that  which  is  relative  to  m,  into  that 

which  is  relative  to  m',  and  conversely  ;  let  also 

(2, 0),  [ro] ;     (2, 0,  CEI] ;  &c. 
be  what 

(0,2),  [oTT];       (0,1),  [2:1] 

become  when  that  which  is  relative  to  m,  is  changed  into  that  which  is 

relative  to  m',  and  conversely,  and  so  of  the  rest.     The  preceding 
PART  I.  BOOK  II.  XT 

•  In  this  case  (1— 2a.  cos.  l+a^)—  =  (1— 2a.  cos.  e+a^)K  •.•  s  =  —i;  see  page  278; 

•.•  the  first  terra  in  the  expansion  of  a'-^.(l — 2a.  cos.  S+o*)-'  becomes  (when  4  =  —  ̂ .) 
a'.i'^l,  and  the  coe£Scient  of  cos.  i  =  o'.Jt".. 



322  CELESTIAL  MECHANICS, 

diflPerential  equations  referred  successively  to  the  bodies  m,  m',  n^', 

&c.  will  give  for  the  determination  of  h,  I,  h,  I',  h'\  I' ,  &c.  the  follow- 
ing system  of  equations, 

-^=((0, 1  )+(0, 2)+(0, 3)+&c.).^[0]./'-[ai].f-[0].r-&c.  ^ 

-^=-((0, 1  )+(o,2)+(o,s)+&cO.A+[§3]A'+[^l.r+[or|].r'+&c. 

-^=((l,0)+(l,2)+(l,S)+&c.)/'-[k£].KiII].^HlII].^"'-&c. 
M'  —  /;(A) 

^=-{(i,o)+(i,2)+(i,3)+&c.)A'+[iZo].H[i^].A'''+[r3]-^i"+&c.  r CIS 

f-=((2,0)+(2,l)+(2,3)+&c.)^H!;i]-K!li]-KIi]-^"-&c. 

— =-((2,0)+(2,l)+(2, 2)-^kc.)¥-{{J^'\  .H[5rT].A'+[2r|].A''"+&c. 

The  quantities  (0,1)  and  (1,0),  foTT]  and  [ITo]  have  remarkable 

relations,  which  will  very  much  facilitate  the  computation,  and  which 

will  be  useful  in  the  sequel.     By  what  precedes  we  have, 

-  _       Srn! .na^ .a' .{a,  a')' 

If  in  this  expression  for  (0,  l),  m'  be  changed  intonj,  n  into  n,  a  into 

a',  and  vice  versa;  we  shall  have  the  expression  of  (1,0)  which  will 

be  consequently 

3'm.n'a"'.a.{a'.  a)' 

4(a'*— a*)* 
but  we  have  (d,  a)'  =  (a|  a')',  because  each  of  these  quantities  results 

from  the  expansion  of  the  function  (a*— 2aa'.  cos.  fl+a'*)*  into  a  series 

arranged  according  to  the  cosines  of  the  angle  6  and  of  its  multiples  j 

therefore  we  will  have 

(0, 1)  m.n'a'  =  (1,0).  m\na ; 

(1,0)  =  ~       ,,...,.       , 
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but,  when  the  masses  m,  and  m',  &c.,  are  neglected  with  respect  to  M, 

therefore 

(0,  \).m.^a  =(1,0).  m'.\/^j 

by  means  of  this  equation  we  can  easily  obtain  (1,0)  when  (0,  1)  will 
be  determined.     In  like  manner  we  have 

[oTTl  m.s/a  =  [iTo]  m'.k/a!. 

These  two  equations  will  also  subsist  when  n  and  «'  have  contrary 

signs ;  that  is  to  say,  when  tlie  two  bodies  m  and  m'  revolve  in  contrary 
directions  ;  but  then  we  must  give  the  sign  of  n  to  the  radical  \/a, 

and  the  sign  of  n'  to  the  radical  i/«'. 
The  following  equations  result  evidently  from  the  two  preceding : 

(0,2)  m.\/a  —  (2,0)  m'.y/a!'  \  [oTa"]  OT.\/a  —  [JTo"].  m".\/a" ;  &c. 

(l,2)TO'.\/a  =  (2,  \)m".K/a!';  \TJ]m'.s/a'  z=\TT].  m\s/7^' ;  &c. 

56.  Now  in  order  to  integrate  the  equations  (A)  of  the  preceding 

number,  let 

h  =  N.  sin.  (gt-i-^)  i  I  z=N.  cos.  (gt+Q) ; 

h'  =  N'.  sin.  (gt+S)  ;  /'  =  N\  cos.  (gt+S) ; 
these  values  being  substituted  in  the  equation  (A),  will  give 

Ng  =  ((0,  l)+(0, 2)-h&c.).A^  —  [oTT].  iV'_[or^]  N''^  &c.\ 

N'g=  ((1, 0)+(l,  2)+&c.).A^'— [ITo].  N'—lT7r\.  A''"— &c.  V;    (B)* 

A^'g-=((2,o)+(2,  i)+&c.).N'—iro].  N—\jrr]'  A'— &c.) &c. 

T  T  2 

*  In  general,  the  number  of  these  algebraic  equations  is  equal  to  that  of  the  coefficient! 
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The  number  of  bodies  m,  m',  fvi',  &c.,  being  equal  to  t,  the 
number  of  these  equations  will  be  also  i,  and  by  eliminating  the 

constant  quantities  N,  N'  &c.,  we  will  have  a  final  equation  in 
g,  of  the  degree  i,  which  can  easily  be  obtained  in  the  following 
manner : 

Naming  p  the  function 

N\  m.\/a.(g—(0,  l)-.(0, 2)— &c.) 

-[.N"m'.\/^'.(g—{l,  0)— (1,  2)~&c.) 
-f-&c. 

■J-2N.  »J.v/a.([orT].  iV'+[on;].  N^'^kc.) 

+  &C.  
* 

In  consequence  of  the  relations  which  are  given  in  the  preceding 

number,  the  equations  (B)  are  reduced  to  the  following  f  -r^  j  =r  0  ; 

(^,)=0j  (^^A  =0,  &c,;  therefore  N,  N',  N\  &c.  be
ing 

considered  as  so  many  variables,  (p  will  be  a  maximum.  Moreover,  (p 

being  an  homogeneous  function  of  these  variables  of  the  second  di- 
mension ;  we  have 

therefore  in  consequence  of  the  preceding  equations,  <p  zzO. 
Now,  we  can  determine  in  the  following  manner  the  maximum  of  the 

function  <p.  First,  let  this  function  be  differenced  relatively  to  N,  and 

then  substitute  in  q>,  in  place  of  N  its  value  deduced  from  the  equation 

N,  N',  &c. ;  by  means  of  the  operations  performed  on  the  function  gi,  the  ratio  of  these 
coefficients  is  obtained ;  one  of  them  remains  undetermined. 
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(  -TTv  1=0;  this  value  will  be  a  linear  function  of  the  quantities  N', 

N'\  &c. ;  in  this  manner  we  shall  obtain  a  rational  function^  which  is 

both  integral  and  homogeneous,  of  the  second  dimension  in  A^',  N", 
&c.,  let  ?i'''  be  this  function.  By  differencing  <p'"  relatively  to  N',  and 

by  substituting  in  p''^  in  place  of  N^^^  its  value  deduced  from  the  equa- 

tion (  -rx^,  j  =0  ;  we  shall  obtain  an  homogeneous  function,  which  will 

be  likewise  of  the  secon J  dimension  in  N",  N"',  &c.  let  ?>®  be  this  func- 

tion. By  continuing  this  operation,  we  will  arrive  at  a  function  (p*'~"  of 

the  second  dimension,  in  iV~",  and  which  will  consequently  be  of  the 

form  (A'^ ""'')*. /i  ;  A- being  a  function  of  ̂ ,  and  of  constant  quantities. 
If  the  diiferential  of  ip''~'^  taken  with  respect  to  A''~",  be  put  equal  to 
cypher,  we  shall  have  A:  =  0 ;  this  will  give  an  equation  in  g  of  the 

degree  ?',  of  which  the  different  roots  will  give  so  many  different 
systems  for  the  indeterminate  quantities  N,  N',  N",  &c. ;  the  inde- 

terminate N^'~\  will  be  the  arbitrary  quantity  of  each  system,  we  shall 
obtain  immediately,  the  ratio  of  the  other  indeterminate  quantities 

N,  N',  &c,  of  the  same  system  to  this,  by  means  of  the  preceding 
equations  taken  in  an  reverse  order,  namely 

Let^,  g^,  gi,  be  the  i  roots  of  the  equation  in  g\  let  N,  N',  N\ 
&c.  be  the  system  of  indeterminate  quantities  relative  to  the  root  g ; 

let  N,  N,',  Nl',  &c.  be  the  system  of  indeterminate  quantities  relative 
to  the  root  g,,  and  so  on  of  the  rest :  by  the  known  theory  of  differ- 
ential  linear  equations  we  will  have 

hzzN.  sin.  {gt-\-^)+Ni.  sin.  (^z+ej+iVj.  sin.  {git-\-^d  +  &c-  ; 

h'=zN'.  sin.  {gt-\-V}+N^.  sin.C^-^+ej-hiV^s'.  sin.  {g^t-ir^i)  +  &c.  ; 

;/''=iV'''.sin.(^?-fe)4-iV/.sin.(^/-fe,)+A7.sin. (^2^+60)+  &c. ; &c. 
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?,  Si,  ̂ 2,  being  constant  arbitrary  quantities.  The  values  of  /,  t,  I", 

&c.  will  be  obtained  by  changing  in  the  expressions  for  h,  h!,  h",  &c. 
the  sines  into  the  cosines.  These  different  values  contain  twice  as 

many  arbitrary  quantities,  as  there  are  roots  g,  gi,  gi,  &c. ;  for  each 

sj'stem  of  indeterminate  quantities  contains  one  arbitrary  quantity,  and 

besides,  there  are  i  arbitrary  quantities  S,  Si,  62,  &c. ;  these  values 

are  consequently  the  complete  integrals  of  the  equations  (A)  of  the 

preceding  number. 
It  is  only  now  required  to  determine  the  constant  quantities  N,  iV, 

&c.  N',  Nf.  &c.  €,  C',,  &c.  These  constant  quantities  are  not  given 
immediately  by  observation  ;  but  they  make  known  at  a  given  epoch, 

the  excentricities  e,  e.  &c.  of  the  orbits,  and  the  longitudes  -sr,  ts',  &c. 
of  their  perihelions,  and  consequently  the  values  of  A,  h\  &c.  /,  /,  &c  ; 

thus  we  shall  derive  from  them  the  values  of  the  preceding  constant 

quantities.  For  this  purpose  it  may  be  observed,  that  if  we  multiply 

the  first,  third,  and  fifth,  &c.  of  the  differential  equations  (A)  of  the 

preceding  number,  by  Nm.\/a,  N'rd,\^ d,  &c.  respectively,  we  will 
have  in  consequence  of  the  equations  (B),  and  of  the  relations  found  in 

the  preceding  number,  between  (0,  l)and  (1,  0),  (0,  2)  and  (2,  0),  &c. 

^^    dh  ,.       ̂      dh'  ,-  d¥  ,- 
N.  -^.  mVa  +N'.  -^.  rd.^d  +N".  -g^.  id'.^/a!'  +  &c.)* 

—  g.  (N.l.  mVa  +  N'J.77i.\/7+N''J'.m"V7'  +  &c.) 

*  Multiplying  the  first  of  the  equations  (A)  by  N.m.Va,  and  the  third  by  N'.m'.'t/a', 
we  shall  obtain  by  adding  them  together, 

_,   dh  ,_  dh'  _  - 
~dt-  "'■'^'^  '^^'•'dT-  "''•'V^«'  =  (0-  1)  +  (0,  2)  +  (0,  3)    +   &c.)  l.N.m.Va  — 

[ori].Z'.Mj«.Va  —  &c.  +{(l,0)  +  (l,2)+(l,3)  +  &c.)  I'.N'M'Wd  —  [iTo]. /.JV'.m'. 

Vl'  —  &c.  =  (as  [i5n].m.v/5  =  [M]  m'.Va',)  UiW^'a.  ((0,  1)  +  (0,  2)  +  (0,  3) 
-f-    &c.)   iV_  [oTT].    iV'  _  &c.)  +   V.rri-  VI'.  ((1,  0)  +   (1,2)    +    (1,  3)  +  &c.    M 
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By  substituting  in  this  equation,  in  place  of  //,  fi,  K',  &c.  /,  t,  I",  &c. 
their  preceding  values  ;  we  will  have  by  comparing  the  coefficients  of 
the  same  cosines, 

0=JV.2V,.mVa+iV^'.iV;.m'.v/7+iV",iV;'.w"Va^'+  &c. ; 

0=N.N^.m-y'~a  +  N'.  No'.m'V^  +  N".NJ'.m"Vd'  +  &c. 
&c. 

This  being  premised,  if  the  preceding  values  of  h,  h',  &c.,  be  multiplied 

by  N.m.^/a,  N'.m'.^/a',  Scd,  respectively,  we  will  have  in  consequence 
of  these  last  equations, 

N.mh.^/a  +  N'.m'h'.s/'^  +  N".m"h".^^'d'  +  &c. 

zz{N\m.\/a  +  N'\rn.\/a  +  N"\m".y/'a"  H-&c.).  sin.  {gt-\-%). 
we  shall  have  in  like  manner, 

N.ml.\/a-\-N'm:i'V^  +  N".m"r.s/'^  +  &c. 

={N\m.K/a-{-N'\m'.^/7-{-  N"\m!'.s/7'  +  &c.)  cos.  {gt-\-^). 

The  commencement  of  the  time  being  fixed  at  an  epoch,  for  which 

the  values  of  h,  I,  h',  I',  &c.  are  supposed  to  be  known ;  the  two  pre- 
ceding equations  give 

—  [liO].  JV—  &c.)  =  (iV./m.  Va.  +  N'.l'm'.>/a'.  +  &c.)  g;  now  by  substituting  for 
dh        dh' 
•^+-^+&c.  /,  /',  &c,  we  obtain;  m.Va.  (m.g.  cos.  (gt-\-Z)  +  NNg,.  cos.(g/-|-e,)-|- 

NN^g;,.  cos.  {g,tJf.Z^))+  &c.  +nt'.v/a'.  (N'^.g.  cos.  (gt+Z)  +  N'N.'.g,.  cos.  (g,t+  Z,)  + 

NN\.g,.  cos,  (gj  +e,)+&c.)  =g)N~.  mVa.  cos.  {gt  +  €)  +  iVA^,  cos.  (g^  +  g,)  + 

NN'2-  cos.  (g,<+e,)  +  m'Va'.N'^.  cos.  (gt  +  <^)  +  N'N,'.  cos.{g,t  +  €)  +  N'N',.  cos. 
{gtt+  ̂ 2)+  &c.)  From  hence  it  follows,  that  in  order  for  this  equation  always  to  obtain, 

we  must  have  N N,mVa+ N' N;.m'.^/a'  +  &c.  —  0. 
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tan.  e=  N.hn.\/a  +  WM.m'.^/d'-'r  N".k"m''.s/a:'+8ic.  * NJm,K/a  +  N'.l'.m'.x/7+N".l"m"Va"+  &c. 

This  expression  of  tan.  6  does  not  contain  any  indeterminate  quantity  ; 

for  although  the  constant  quantities  N,  N',  N",  depend  on  the  inde- 

terminate quantity  N^'-^'>  ;  yet,  as,  their  ratio  to  this  indeterminate 
quantity  is  known  by  what  precedes,  it  must  disappear  from  the  tan. 

e.  e  being  thus  determined,  we  shall  obtain  iV^'~",  by  means  of  one  of 
the  two  equations  which  determine  tan.  €,  and  from  it  we  infer  the 

system  of  indeterminates  N,  N',  N",  &c.,  relative  to  the  root  g. 
And  if  in  the  preceding  expressions,  this  root  be  successively  changed 

into  gi,  gs,  gs,  &c.,  the  values  of  the  arbitrary  quantities  relative  to 
each  of  these  roots  will  be  obtained. 

These  values  being  substituted  in  the  expressions  for  h,  I,  K,  I',  &c. 

the  excentricities  e,  e',  &c.  of  the  orbits  may  be  deduced  from  them, 
as  also  the  longitudes  w,  z/,  &c.,  of  their  perihelions,  by  means  of 
the  equations 

e*  =  /«*  +  l"  ;     e"  =  h*'-\-l"  ;  &c. 

h  ,         h'      0 
tan.  w  r:  -J  ;    tan.  sr  —  —p-  ;  &c. 

thus  we  shall  have 

e\=  N'  +  iSTj*  +  N^''  +  kc+QNNi.  cos.  ({gi—g).t+€i~-t)* 

-     +2NN,.  cos.  ((g,—g).i+t,^Q-)+^N,N,.  cos.(5-2— gi).^+e2— e)  +  &c. 

This     quantity   is    always  less  than    (^N  +  A^,  +  N„+    &c.)*,    when 

♦  By  fixing  the  origin  at  the  epoch  when  h,  h',  I,  I',  &c.  are  known,  gt  vanishes,  there- 

fore the  coefficients  of  N.m.Va  ■\-  N'^.m'.*/a'  -{-  &c  are  sin.  6,  cos.  S. 

•  The  coefficients  by  which  2NN  is  multiplied  in  the  values  of  A'+f  are  sin.  (gi+€). 

sin.  (g,t  +  €,),  COS.  (gt  +  S).  cos.  {gf  +€  ,),  and  the  sura  of  these  two  =  cos.  {g, — g) . 

*  +  £,—£). 
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the  roots  g,  g„  &c.,  are  all  real  and  unequal,  the  quantities  N,  N„  &c., 

being  supposed  to  be  positive.     In  like  manner  we  shall  have 

N.  sin.  (g-/.+g)+AV  sin.  (g-tif+gi)+ JV„.  sin.  (g.^+  e„).f  &c. 

N.  COS.  (^gt-\-^)-^Ni.  COS.  (^git-\-^i)+N2'  COS.  (g2^+fo)+  &c.  ' 

tan.  -azz 

hence  it  is  easy  to  infer 

AVsin.((g.— g)./-fg.-€))+.Vo.sin.((gc-ff).^+e,-g))+&c. 

im.^-^:-^ f-6;_  ̂ ^^^^ cos.((^'-i-5-). ^+e,-e))  +A^o. cos. ((-2--). ^+e,-e))+&c.* 

When  the  sum  A^,  +iV"j,  +&c.  of  the  coefficients  of  the  cosines  of  tiiis 
denominator,  taken  positively,  is  less  than  N ;  tang,  (w — gt — S)  can 

never  become  infinite ;  therefore  the  angle  ra- — gt — g  can  never  attain 
the  fourth  part  of  a  circumference  ;  so  that  in  this  case,  the  true  mean 

motion  of  the  perihelion  is  equal  to  gt. 

57.  From  what  precedes  it  follows,  that  the  excentricities  of  the 

orbits,  and  the  positions  of  the  greater  axes  are  subject  to  considerable 

variations,  which  change  at  length  the  nature  of  these  orbits,  and  as 

their  periods  depend  on  the  roots  g,  g ,  gt,  &c.,  they  embrace  relatively 

to  the  planets,  a  great  number  of  ages.  The  excentricities  may  therefore 

be  considered  as  of  variable  ellipticities,  and  the  motions  of  the  peri- 

helions  as  not  altogether  uniform.     These  variations  are  very  consider- 
PART  1.  BOOK  II.  V  U 

^  r^      ,       ,        »v>        tan.  ar — tan.  (ff<  +  S)       h  ,        ., 
*  Tan.  izr—{st-\-i))  =  — ;   l^-i-;s,=  -,   tan.  (gtJ^^) 

V       \&  -r  Ji       l-f-tan.  a-.  tan.(^4-€)     J_   - 

l+y.tan.(^/+e) 
A.  COS.  (f<+£) — /.  sin.  (rf+?)  ,         ,../.,.,..       ,  ,, 
  ,        ,; — r— ^ — ^-^5r>  no«'  by  substitutine  for  h  and  /  their  values,  and  observ- 

/.  cos.(^+£)+A.  sin.  (^<+e)'  •'  ^ 
ing  that  sin.  (g«+S).  cos.  (^;+g,)— sin.(g/+Q.  cos.(g<+€)=sin.((g,— g).  t  +  (?,—£)), 

the  numerator  of  this  fraction  becomes  A',  sin.  {gt  +  £).  cos.  (gi + S)  +  -^^z-  sin.  (gf  +  £,).  cos. 

{gt-\-Z)Jr  &c — iV.  sin.  (gt  +  £).  cos.  {gl  +  <i)—N,.  sin.  fgt+€).  cos.  {g,t  +€,)  _  &c.  = 

y,.  sin.  {(g—g).  <  +  (S'— €)+N„.  sin.  (gi,—g).  t  +  (C„ — €))  +  &c.,  and  the  denominator 

becomes  N.  sin.'  (^+  €)  +  N.  cos.^f^+g)  +  A'^  sin.  (g<  +  g).  sin.  {gjt  +€,)  +  N,.  cos. 
(^+£) .  cos.(^;+€,)+&c.  =:N-\-N,  cos.  (g-g).  <+(£—£,)  +  &c. 
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able  in  the  satellites  of  Jupiter,  and  we  shall  see  in  the  sequel  that 

they  explain  the  remarkable  inequalities  which  are  observed   in  the 
third  satellite.     But  are  there  limits  to  the  variations  of  the  excentri- 

cities,  and  do  the  orbits  always  differ  very  little  from  circles  ?     It  is  of 

great  moment  to  investigate  this  question.     We  have  already  observed, 

that  if  the  roots  of  the  equation  in  g,  are  all  real  and  unequal,  the  ex- 

centricity  e  of  the  orbit  of  m  is  always  less  than  the  sum  N+N-1  +  N^-^- 
&c.  of  the  coefficients  of  the  sines  of  the  expression  for  h,  taken  posi- 

tively ;  and  as  these  coefficients  are  supposed  to  be  very  small,  the  value 

of  e  will  be  always  inconsiderable.     It  is  therefore  evident,  that  if  we 

only  consider  the  secular  variations,  the  orbits  of  the  bodies  ?»,  m\ 

m",  &c.  will  undergo  slight  changes  in  their  compression,    deviating 

inconsiderably  from  the  circular  form ;  but  the  positions  of  the  greater 

axes  will  experience  considerable  variations.   These  axes  will  be  always 

of  the  same  magnitude,  and  the  mean  motions  which  depend  on  them 

will  be  always  uniform,  as  we  have  seen  in  N".  54.     The  preceding 
results,  which  are  founded  on  the  small  excentricities  of  the  orbits,  will 

invariably  subsist,  and  maybe  extended  to  future  and  past  ages  ;  so  that 

we  can  affirm,  that  at  any  assigned  period,  the  orbits  of  the  planets 

and  of  the  satellites  have  not  been  very  excentrick,  at  least,  if  we  only 

consider  their  mutual  action.     But  this  would  not  be  the  case  if  any  of 

the  roots  g,  gu  gi-  &c.,  were  equal  or  imaginary :  the  sines  and  cosines 

of  the  expressions  of  h,  I,  fi',  I',  &c,  corresponding  to  these  roots,  will 
then  be  changed  into  arcs  of  circles,  or  into  exponentials ;  and  as  these 

quantities  increase  indefinitely  with  the  time,  the  orbits  will  eventually 

become  very  excentrick  ;  the  stability  of  the  planetary  system  will  then 

be  destroyed,  and  the  results  to  which  we  have  arrived  will  cease  to 

have  place.     It  is  therefore  very  interesting  to  determine  whether  the 

roots  g,  gi,  gi,  &c.,  are  all  real  and  unequal.   This  may  be  demonstrated 

very  simply  in  the  case  of  nature,  in  which  the  bodies  m,  m',  m",  &c.,  re- volve in  the  same  direction. 

Resuming  the  equations  (A)  of  N°.  55,  and  multiplying  the  first  by 
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w».v/a.  h ;  the  second  by  m.  \/a,  I;  the  third  by  n(.  \/d.  h';  the  fourth 

by  m'.^a'.  I',  Sec,  and  then  adding  them  together  ;  the  coefficients  of 

k.  I,  K.  I,  h".  I".  &c.,  will  vanish  in  this  sum  ;  the  coefficient  of  A'.  / — h.  I', 

will  be  [oTT"].  m.^a —  []Z°]'  fn'-s/a'.  and  it  will  be  equal  to  nothing, 

in  virtue  of  the  equation  [oTT").  vi.y/ a  —  fTT^l .  m',\  V,  which  has  been 
found  in  N°.  55.  The  coefficients  oih".l—h.  I",  h".  l—K.F  will  va. 
nish  for  the  same  reason  ;  therefore  the  sum  of  the  equations  (A)  thus 

prepared,  will  be  reduced  to  the  following  equation : 

(hdh  +  ldO         r     (h'dh/-\-l'dt)      ,    /-  ,    .         ̂  ^^   ^- — -.m.y/a'l.^^   ^   .  m'.Va'  +  &c.  =0; at  at 

and  consequently  to  the  following, 

0—ede.m.y/ a  +  efde".  w:,\/a'-\-  &c. 

By  integrating  this  equation,  and  remarking  that  by  N".  54,  the  greater 
axes  fl,  a',  of,  of  the  orbits  are  constant,  we  will  have 

e*.Tn.y/~aJre".ni.s/7-\-  e"*.rn'-\/^'  +  &c.  =  constant;      (zO- 

Now  the  bodies  m,  m\  nf,  &c.,  being  supposed  to  revolve  in  the 

same  direction,  the  radicals  \/5i  \/a',  -^ d' ;  &c.,  ought  to  be  taken 

positively  in  the  preceding  equation,  as  has  been  observed  in  N°.  55  ; 
therefore  all  the  terms  of  the  first  member  of  this  equation  are  positive, 

and  consequently  each  of  them  is  less  than  the  constant  of  the  second 

member  ;  but  if  we  suppose  that  at  any  given  epoch,  the  excentricities 

are;  very  small,  this  constant  quantity  will  be  very  small ;  therefore 

eai^h  of  the  terms  of  the  equations  will  always  remain  very  small,  and 

cannot  increase  indefinitely ;  consequently,  the  orbits  will  be  always 

ve  ry  nearly  circular. 

The  case  which  we  have  now  examined,  is  that  of  the  planets  aad  of  the 

sa  tellites  of  the  solar  system  ;  because  all  these  bodies  revolve  in  the  same 
direction,  and  the  excentricities  of  their  orbits  are  at  this  present  epoch 
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very  inconsiderable.  In  order  to  remove  every  doubt  on  this  important 
result,  it  may  be  observed  that  if  the  equation  which  determines  g, 
contains  imaginary  roots,  some  of  the  sines  and  of  the  cosines  of  the  ex- 

pressions of  //,  /,  h',  I',  &c.,  will  be  changed  into  exponentials ;  thus  the 
expressions  for  h  will  contain  a  finite  number  of  terms  of  the  form 

P.c^',  c  being  the  number  of  which  the  hyperbolic  logarithm  is  equal 
to  unity,  and  P  being  a  real  quantity,  because  h  or  e.  sin.  sr  is  a  real 

quantity.  Let  Q.c^',  P'.c^',  Q.c^\  P".c^\  &c.,  be  the  corresponding 

terms  of  /,  U,  V,  ¥,  &c. ;  Q,  P',  Q,  P",  &c.,  being  also  real  quanti- 
ties :  the  expression  of  e''  will  contain  the  term  (P*-|-Q*).  &^* ;  the 

expression  of  e'*  will  contain  the  terra  (P'^+Q'*).  (?^\  and  so  on  of  the 
rest :  consequently  the  first  member  of  the  equation  {u)  will  contain 
the  term 

((P*  +  Q^).»n.v/a+(P'HQ'*).wj'.\/74-(P"*-fCr*).wi".\/?''-f&c.).c=-^ 

If  c^'  be  the  greatest  of  the  exponentials  which  h,  I,  h',  I,  &c.,  con- 

tain, that  is  to  say,  in  which  f  is  the  most  considerable ;  c^-"  will  be 
the  greatest  of  the  exponentials,  which  the  first  member  of  the  pre- 

ceding equation  will  contain  ;  therefore  the  preceding  term  cannot 

be  destroyed  by  any  other  term  of  this  first  member ;  consequently  in 

order  that  this  member  may  be  reduced  to  a  constant  quantity,  it  is 

necessary  that  the  coefficient  of  r^'  should  vanish,  which  gives 

0=(P^  +  Q^).M.v^  +  {P"-+a').m'.\/a+  (P'^-fQ'0-"i"-vV'-}-&c. 

When  \/a,  \/a\  \/ a",  &c.,  have  the  same  sign,  or  what  comes  to 

the  same  thing,  when  the  bodies  m,  m ,  m",  &c.,  revolve  in  the  same 
direction,  this  equation  is  impossible,  unless  we  suppose  PzzO,  QzzO, 

P'=0,  &c. ;  hence  it  follows,  that  the  quantities  //,  /,  h',  /*,  &c.,  do 
not  contain  exponential  quantities,  and  that  consequently  the  equation 

in  g  does  not  contain  imaginary  roots. 

If  this  equation  have  equal  roots,  the  expressions  of  h,  I,  h',  I',  &c., 
contain,  as  we  know,  arcs  of  circles,  and  we  would  have  in  the  ex- 

pression for  //,  a  finite  number  of  terms  of  the  form  P.f.     Let  Q.t% 
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Ff,  Q'f,  &c.,  be  the  corresponding  terms  for  /,  h',  I'.  &c. ;  P,  Q,  F, 
&c.,  being  real  quantities  j  the  first  member  of  the  equation  in  ?Mvill 

contain  the  term* 

(P'+Q'),  mVa+(P'^  +  Q^).  m!.s/a  ̂ {P'"'  +  Q'^-^m" .s/^' ,  &c.)  f\ 

If  V  be  the  highest  power  of  t,  which  the  values  of  //,  I,  h',  iy  &c. 

contain  ;  t^  will  be  the  highest  power  of  t,  contained  in  the  first 
member  of  the  equation  (ii)  ;  thus  in  order  that  this  member  may  be 

reduced  to  a  constant  quantity,  it  is  necessary  that  vve  have 

0=(P"  +  Ct).m,<y~a-k-{P"  +  Q'* ).)«'.  >/a^+  &c. 

consequently  P=0,  Q—0,  P'z=.0,  Q'=0,  &c.  It  follows  therefore 

that  the  expressions  of  h,  I,  h',  I',  &c.,  do  not  contain  either  exponen- 
tial quantities,  or  arcs  of  circles,  and  that  consequently  all  the  roots 

of  the  equation  in  g  are  real  and  unequal. 

The  system  of  the  orbits  of  ?«,  in,  m",  he,  is  therefore  perfectly 
stable,  relatively  to  their  excentricities ;  these  orbits  only  oscillate 

about  a  mean  state  of  ellipticity,  from  which  they  deviate  a  little,  the 

greater  axes  remaining  the  same  :  their  excentricities  are  always  sub- 
ject to  this  condition,  namely,  that  the  sum  of  their  squares  multiplied 

respectively  by  the  masses  of  the  bodies,  and  by  the  square  roots  of 

their  greater  axes  is  constantly  the  same. 

58.  When,  by  what  precedes,  the  values  of  e,  and  of  ts-  shall  have 
been  determined  ;  let  them  be  substituted   in  all   the  terms   of  the 

expressions  for  r,  and  —7—,  which  are  given  in  the  preceding  numbers, 

the  terms  which  contain  the  time  t,  without  the  signs  sine  and  cosine, 

*  See  Lacroix,  torn,  2,  No.  613,  for  the  truth  of  the  assertion  will  be  immediately  ap- 

parent, in  the  first  case,  if  in  place  of  the  sines  and  cosines  their  imaginary  exponentials 

be  substituted,  or  if  in  the  second,  the  equal  roots  be  supposed  to  diflFer  by  very  small  in- 
determinate quantities. 
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being  effaced.  The  elliptic  part  of  these  expressions  will  be  the  same 
as  in  the  case  of  the  undisturbed  orbit,  with  this  sole  difference,  that 

the  excentricity  and  the  position  of  the  perihelion  will  be  variable ; 

but  the  period  of  these  variations  being  very  long,  on  account  of  the 

smallness  of  the  masses  m,  m',  m",  relatively  to  M;  we  can  suppose 
these  variations  proportional  to  the  time,  for  a  long  interval,  which 

for  the  planets  may  be  extended  to  several  ages,  before  and  after 

the  epoch  which  we  select  for  the  origin  of  the  time.  It  is  useful,  for 

astronomical  purposes,  to  have  under  this  form  the  secular  variations 

of  the  excentricities  of  the  perihelions  of  their  orbits ;  they  can  be 

easily  inferred  from  the  preceding  formulae.  In  fact,  the  equation 

e*=A*-j-f,  gives  edezzhdh+ldl ;  and  if  we  only  consider  the  action  of 

m',  we  have,  by  N".  55, 

§=(o,,)./-[on:.f; 

therefore -^=-(0,l).A  +  [oQ].A'> 

but  we  have  h'U—hl'—e.ef.  sin.  (z/—sr) ;  therefore  we  shall  have 

-J-  =[^]'  ̂ -  sin.  (tj — bt)  ; 

consequently,  if  we  only  take  into  account  the  reciprocal  action  of  the 

bodies  m',  m",  &c.  we  shall  have 

-^  =  \El\-  e'-sin.  (^— T!r)+  [ol]  ̂'.  sin.  (z^'—z,)-^  &c. 

-^  =  [iT],  e.  sin.  (w— i!r')+[ili].  e^'-  sin.  {z!"—z/)^&cc. 

•    h—t. sin.  ■zr,  A'  =  e'.  sin.  -s/ ;  l^ e.  cos.  ar ;  i'  =  e' cos.  w',  •/  hi  —  hi  =  te'.  sin. 
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^^1    

'—r-  =  [iTol.  e.  sin.  {-a — g^04-[g'  Q.  C  sin.  (w— tst^-J-  &c.  ; 
&c. 

The  equation  tang,  w  =:  -j-,  gives  by  difFerenceing  it 

e^.dts  zz  l.dh  — •  h,dl. 

If  the  action  of  m',  be  only  considered,  by  substituting  for  dh  and  dl 
their  values,  we  shall  have 

i^=(0,  1).  (A»  +  /»)-[^]'  {^A'  +  ̂0 }  * 

which  gives 

-£-  =  (0,  1)—  [oTT].  -^.  COS.  (Tsr'—Zir)  j 

therefore  we  shall  have,  in  consequence  of  the  reciprocal  actions  of  the 

bodies,  m,  m',  m",  Sec. ; 

^"^  ==(0,  1)+  (0,  2)+&C.— [oT].  — .  COS.  (-sZ—Tir)  — dt 

      e" 
[o.  g"}.    .  COS.  (w"— w)—  &C.  J e 

-^=(l,0)  +  (l,2),4-&c.— [i^].-^.  cos.  (w— w')— . 

      e" 
("i,  z"!.  — r.  cos.  (w"— w*) —  &c. } 

cos — —  =   ;  but  from  the  equation  tang,  -a  —  -j- ,  we  have  cos.  'w  s 

,^ — ^  —  -^,  V  by  substituting  we  have  the  expression  in  the  text. 
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-^=  {%  0;+(2,  0+&C.  -  [E^].  -^.  COS.  (^-;;r")- 

[2^].
-7r. 

 COS. 
 (■=/ —

 ■et'O —
  &c.

 

&c. 

These  values  of  -rr,  -7-,  &c. :  —7-.  — Tr-»  &c.,  being  multiplied  by at      at  at     at 

the  time  t,  the  differential  expressions  of  the  secular  variations  of  the 

excentricities  and  of  the  perihelions  will  be  had ;  and  these  expres- 

sions, which  are  only  rigorously  true,  when  t  is  indefinitely  small,  can 

however  serve  for  a  long  interval,  relatively  to  the  planets.  Their 

comparison  with  accurate  observations,  which  are  made  at  consider- 
able intervals  from  each  other,  is  the  most  exact  means  of  determining 

the  masses  of  the  planets,  which  have  no  satellites.     For  any  time  t,  the 

1.       .  .  (de\   ,     f      d'-e  ,„         de     d^'e     ̂  
excentncity  e  is  equal  to  e-\-tA-r  j  +  —3-.        ■•+«c;  e,—r-,     ,^  ,  &c. 

being  relative  to  the  origin  of  the  time  t,  or  to  the  epoch.  The  preced- 
es 

ing  value  of  — ^  will  give  by  differencing  it,  and  by  observing  that  a, 
etc 

a',  &C.J  are  constant,  the  values  of  -j-^t  '"ITr^  *^^"  ̂ ^  ̂ '^^  therefore 

continue  as  far  as  we  please  the  preceding  series,  and  by  a  similar 

process,  the  series  relative  to  to-  ;  but  in  the  case  of  the  planets,  it  will 
be  sufficient,  in  the  comparison  of  the  most  ancient  observations  of 

which  we  are  in  possession,  to  take  into  account  the  square  of  the  time, 

in  the  expressions  in  series  of  e,  e',  &c.,  a-,  -a',  &c. 
59.  Let  us  now  consider  the  equations  relative  to  the  position  of  the 

orbits,  and  for  this  purpose  let  the  equations  (3)  and  (4)  of  N°.  5S,  be 
resumed, 

4-=:^.aV.B....(;^y). 
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By 

No.  49, we  have, 

fl'a'.jB<"=  «*.  e^^' ; 

and by  the  same  number 
we have 

'}■
' 

-_     ̂ -^-i 

(1—*)*  ' 
therefore  we shall  have 

mn 

4    
•' 

3*a' 4.(1— a 
The   second  member  of  this  equation  is  that  which  we  have  de- 

signated by  (0,  O  in  N°.  55  ;  consequently  we  shall  have 

^=(0,l).(y'-j); 

-^  =  (0,  1).  ip-^p)  J 

hence  it'  is  easy  to  infer,  that  the  values  of  q,  p,  q\  ̂Z,  &c.,  will  be 
determined  by  the  following  system  of  differential  equations, 

-^=((0,l)+(0,2)+&c.).i>-(0,  l).y-(0,!2).i>"-&c.  \ 

-^=-((0,  l)+(0,2)+&c.).y+(0,  1  ).?'+(0,  2).  /+&C. d(i  _ 

dt =((l,0)+(l,2)+&c.)./— (1,  0).^)— (1,  2).  y— &c. 

^=-((l,0)+(l,2)+&c.)g'+(1.0)-  ?+(!'  2)-  /"+&«. rf/ (C; 

^=((2, 0) +(2, 1  )+&c.).  /"-(S.O).  p— (2, 1 ).  p'— &C. rf^ 

-^=  -  ((2,0)+(2,l)+&c.).  /+(2,0;,9+(2,  1).  9'+&c. 
&c. 

PART  I. — BOOK  II. 
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This  system  of  equations  is  similar  to  that  of  the  equations  (A)  of 

N°.  55  ;  it  would  coincide  altogether  with  it,  if  in  the  equations  A,  h, 

I,  h',  I',  &c.,  be  changed  into  y,  p,  q,  p',  &c.,  and  if  we  suppose 

[oTT'].  =  (0,  1)  ;  [iTo]  =  (1,  O),  &c. ;  consequently,  the  analysis 
which  we  have  employed  in  N".  56,  in  order  to  integrate  the  equa- 

tion (A),  is  applicable  to  the  equations  (C).     Therefore  let  us  suppose 

q  z=N.  cos.  (gt+^)-\-Ni.  COS.  (git-\-^i)-^N2.  cos.  (gJ+Q+Scc. ; 

p  =  N.  sin.  (gt+&)-\-N'i.  sin.  (git+^O+N^.  sin.  (gst+Q2)+  &<=•  i 

q'  =  ivr'.cos.  f^f+e)+iVi'.  COS.  (§i?+e,)+A7.  cos.  (^2f+g2)+  &c. ; 

/  =  iV'.  sin.  (gt-^%)^Ni.  sin.  {g  /+ei)+iV'2.  sin.  {git^%^-if  &c. ; 
&c. 

and  by  the  method  given  in  N°.  5^,  an  equation  in  g  of  the  degree  i, 
may  be  obtained,  of  which  the  different  roots  will  be  g,  g,,  g^,  &c. 

It  is  easy  to  see  that  one  of  these  roots  vanishes,  because  the  equations 

(C)  vvill  be  satisfied  by  supposing  p,  p',  p",  &c.,  equal  and  constant, 

and  also  q,  q',  (^',  &c.,  but  this  requires  that  one  of  the  roots  of  the  equa- 
tion in  g  should  vanish,  and  thus  the  equation  is  depressed  to  the  degree 

i — 1.  The  arbitrary  quantities  N,  Ni,  N^,  &c.,  €,  fi,  Sj,  &c.,  may  be 

determined  by  the  method  detailed  in  N°.  56.  Finally,  by  an  analysis 
similar  to  that  of  No,  57,  we  shall  find 

const.  =  {p^-\-q').  m.\/a-\-(p'^  +  q'^).  m'.^+  &c. ; 

from  which  may  be  inferred,  as  in  the  above  cited  N".  that  the  ex- 

pressions of  p,  q,  p',  q',  &c.,  do  not  contain  either  arcs  of  a  circle,  or 

exponential  quantities,  when  the  bodies  m,  m',  m",  &c.,  revolve  in  the 
same  direction  :  and  that  consequently  all  the  roots  of  the  equation  in 

g,  are  real  and  unequal. 
Two  other  integrals  of  the  equations  in  C  may  be  obtained.  In  fact, 

if  the  first  of  these  equations  be  multiplied  by  m.  y/a,  the  third  by  m.\/d^ 

the  fifth  by  m".ija",  &c  ,  we  shall  have  in  consequence  of  the  relations 

found  m  N°.  55, 
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0=  -^.  m.\/a  +  -^.  w'VZ  +  &c. 

which  being  integrated,  gives 

constant  =  ̂ .»2.v/a  +  9'.»j'.\/a'+ &c.     (1) 
In  the  same  manner  we  shall  find 

constant  =.  f.m.^ a  -\- p .rn.sf  a'  -f  &c.     (2) 

Naming  p  the  inclination  of  the  orbit  of  m,  on  the  fixed  plane,  and 

9  the  longitude  of  the  ascending  node  of  this  orbit  on  the  same  plane  ; 

the  latitude  of  m  will  be  very  nearly,  tang.  ip.  sin.  (n/+£ — 6).  By 

comparing*  this  value,  with  the  following,  ̂ .  sin.  («/  +  i) — ^.  cos. 
{nt-\-i)  we  will  have 

p  ■=.  tang.  (p.  sin.  6  ;     ̂   i=  tang.  (p.  cos,  6\ 

hence  we  deduce 

tang.  9  =  \//)*+y*  ;    tang.  6  =  ̂ ^  , 

-JL 

1 

therefore  the  inclination  of  the  orbit  of  m,  and  the  position  of  its  node, 

may  be  obtained  by  means  of  the  value  of  ̂   and  of  q.  If  we  denote 

successively  by  one  stroke,  two  strokes,  &c.,  relatively  to  m',  m",  &c., 
the  values  of  tang,  (p,  and  of  tang.  &,  the  inclinations  of  the  orbits  of 

xxSJ 

»    I                /          d'^     \       idh — hdl  _       ,  „  ,     .      .  ,       J  „      ,  w 
*  d.  tan.  TT.Izz    ;—  1=   =   ,  •  •  as  P—  e-.  cos.  'a-,  we  obtain eHin^idh — hdl; 

\         COS.  ̂ w/  P 

as  hh'+ll=  ed.  cos.  (a-'— n-) ;  if -^7^=  (0,  1).  (A'  +  V)—  [M].  i}iK-\-U),  be  divided  by 

e*=A*4-^  we  shall  have  the  value  of  —j-  which  is  given  in  the  text. 

*  This  is  the  value  of  i,  or  of  the  latitude  very  nearly,  when  periodic  quantities  are  ne- 
glected, in  fact  the  values  of  ip  and  i,  which  are  derived  from  a  comparison  of  the  two 

values  of*,  are  tho  mean  values,  only  affected  with  secular  inequalities ;  see  N°.  53. 
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m',  val'.,  &c.,  and  the  positions  of  their  nodes,  will  be  had  by  means  of 

the  quantities  f',  q.  f",  q",  &c. 

The  quantity  s/p^  +  q*,  is  less  than  the  sum  N,  Nu  N^,  +  &c.  of 
the  coefficients  of  the  sines  of  the  expression  for  q  ;  therefore  these  co- 

efficients being  very  small,  because  by  hypothesis,  the  orbit  is  inclined 

by  a  very  small  angle  to  the  fixed  plane,  its  inclination  to  this  plane 

will  be  always  inconsiderable  ;  hence  it  follows,  that  the  system  of  the 

orbits  is  always  stable  relative  to  their  inclinations,  as  well  as  relative 

to  their  excentricities.  The  inclinations  of  the  orbits  may  therefore 

be  considered  as  variable  quantities  comprised  between  determinate 

limits,  and  the  motions  of  the  nodes  as  not  being  altogether  uniform. 

These  variations  are  very  sensible  in  the  satellites  of  Jupiter,  and  we 

shall  see  in  the  sequel  that  they  explain  the  singular  phenomena, 
which  are  observed  in  the  inclination  of  the  orbit  of  the  fourth 
satellite. 

From  the  preceding  expressions  for  p  and  q,  results  the  following 
theorem : 

That  if  a  circle  be  conceived,  of  which  the  inclination  to  the  fixed 

plane  is  N,  and  of  which  gt-{-^  is  the  longitude  of  its  ascending  node ; 
and  if  on  this  first  circle  a  second  be  conceived  inclined  to  it  by  an 

angle- equal  to  N„  g,t+^,  being  the  longitude  of  its  intersection  with 
the  second  circle,  and  so  of  the  rest ;  the  position  of  the  last  circle 
will  be  that  of  the  orbit  of  m. 

The  same  construction  being  applied  to  the  expressions  of /z  and  of /of 

N".  56  ;  it  will  appear  that  the  tangent  of  the  inclination  of  the  last 
circle  on  the  fixed  plane,  is  equal  to  the  excentricity  of  the  orbit  of 

m,  and  that  the  longitude  of  the  intersection  of  this  circle  with  the 

same  plane,  is  equal  to  that  of  tlie  perihelion  of  the  orbit  of  in. 

60.*  It  is  useful  for  astronomical  purposes  to  obtain  the  differential 
variations  of  the  nodes  and  of  the  inclinations  of  the  orbits.  For  this 

purpose  let  the  equations  of  the  preceding  N°.  be  resumed,  namely, 

♦  It  should  be  observed,  that  tlie  differential^expressions  which  are  gJvcii  in  this  N"., 
are  relative  to  the  secular  variations  uf  Uit-  uoJes  ana  ot  the  inclinations  of  the  orbits. 
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tang.  <p  —  \^p*+q*  ;    tang  9  =  — • 

By  differentiating,  there  will  be  obtained, 

d(p  zz  dp.  sin.  ̂ -\-dq.  cos.  6 ;  * 

J.  _  dp.  COS.  0 — dq.  sin.  6 oB  —   , tang.  <p 

Substituting  for  dp  and  dq,  their  values,  which  have  been  given  by 

the  equations  (C)  of  the  preceding  N".,  we  will  have 
,H.         <i»C 

-^  —  (0,  1).  tang.  <(,'.  sin.  (6_6')H-(0,  2)'.  tang.  <p".  sin.  (9—6''')+  &c. 

-^=-((0.  i)+(o,2)+&c.)+(0,  D.^f^'.  COS.  (9-^)  * 

+C0, 2).  ̂̂ "^'  '^" .  COS.  (0— 90  +  &C.  ; 
tang.  <p  ^         ■" 

d^  pdp-^gdg  , 
*  rf.  tan.  (p=:   r— =  'J—J-  =  by  substituting  for  p  and  o  their  values,  and 

COS.*?l  -v/^  +  y^  -^  6  A' 
 "/ 

neglecting   —,  the  expression  in  the  text.    d.  tan.  6  =   —  =(f«.  r   "t     i  = COS.  '?!  COS.  ̂ S  \     q      f 
q.dp—p.dq 

,—   ,  which  becomes,  by  substituting  for  p  and  q  their  values,  and  multiplying  by 

9*,  rf«.  tan.  2(p  =  dp.  cos.  9.  tan.  ip — rfy.  sin.  «.  tan.  ip. 
f  When  this  substitution  is  made,  the  first  term  in  the  expression  for  dp.  sin.  6  becomes 

equal  to  the  first  term  of  the  expression  for  dq.  cos.  6,  and  affected  veith  a  contrary  sign, 

consequently  they  destroy  each  other.  The  second  terms  of  these  expressions  are  respec- 

tively (0,|1).  tan  Ip'.  cos.  6'.  sin.  « — (0,  1).  tan.  <p'.  sin.  (/.  cos._^^=(0,  1).  tan.  qi.  sin.  (6 — f) ;  by 
a  similar  process  the  third  and  following  terras  are  obtained.  The  first  term  in  the  value 

of</;j.  cos.«=  — ((0, 1) -I- (0,  2)  +  (0,3)  +  (0,4)  +&c.,)  tan.?,  cos.  %  and  the  second 

term  =  (0, 1).  tan.  ip'.  cos.  i'.  cos.  6;  in  like  manner  the  first  term  of  the  value  of — dq  sin. 

»  is  —({0,  1),  +(0,  2)  +  (0,  .S)  +  &c.  tan  (p  sin.  -6,  and  the  second  term  =—(0, 1).  tan.  ip. 

sin.  V,  sin.  6,   &c.,  by  making  these  terms  respectively  to  coalesce,  they  become — ((0, 1) 

+(0,  2)+(0,  3)+&c.)  +(0,  1).    ""''^    .  (cos.  6.  cos.  «'+sin.  i.  sin.  V).     If  there  are  only 
ttin*  (p 
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In  like  manner  we  will  have 

-^  =  (1,0).  tang.  <p.  sin.  (e'_e)+(l,  2).  tang.  /.  sin.  (6'— r)+  &c.j 

^=-((1,  0H(1,  2)+&c.)+(l,  0).-^^.  COS.  (S'-fi) 

&c. 

Astronomers  refer  the  celestial  motions  to  the  moveable  orbit  of 

the  earth ;  in  fact,  it  is  from  the  plane  of  this  orbit  that  they  are 

observed;  it  is  therefore  of  consequence  to  know  the  variations 

of  the  nodes  and  of  the  inclinations  of  the  orbits,  with  respect  to 

the  ecliptic.  Suppose,  therefore,  that  it  were  required  to  deter- 
mine the  differential  variations  of  the  nodes,  and  of  the  inclinations 

of  the  orbits,  with  respect  to  the  orbit  of  one  of  the  bodies  7n,  m',  nf, 
&c.,  for  example,  relatively  to  the  orbit  of  m.  It  is  evident  that  q.  sin. 

(71't+i') — -p.  cos.  (n't'  +  e)  will  be  the  latitude  of  m'  above  the  fixed  plane, 
if  it  was  in  motion  on  the  orbit  of  wi.  Its  latitude  above  the  same  plane, 

is y.  sin.  (?i't-]-i) — p'.  cos.  (n't-{-i');  now  the  difference  of  those  two 

latitudes,  is  very  nearly  the  latitude  of  m'  above  the  orbit  of  m  ; 
therefore  i?/  representing  the  inclination,  9/  being  the  longitude 

of  the  node  of  the  orbit  of  m'  on  the  orbit  of  m,  by  what  goes  before 

two  bodies  m,  m',  the  nodes  of  each  of  them  will  regrade  on  the  fixed  ecliptic,  when 

-Eh^.  cos.  in   6\  . .  COS.  [6 — (f)  are  respectively  less  than  unity ;  if  one  of  them, 
tan.  ip'  ̂        '      tan.  (p  ^        '  " 
as,  for  instance,  the  first,  be  greater  than  unity,  this  can  only  arsise  from  tan.  f  being 

,  greater  than  tan.  ip',  therefore  the  second  must  be  less  than  unity ;  consequently,  the  nodes 

of  one  of  the  orbits  must  always  regrade.     It  appears  also  from  this  expression,  that  if 

the  distance  between  the  ascending  nodes  of  the   two  planets  be  greater  than  90°,  the 

nodes  must  regrade.     It  is  likewise  evident  that  if  t — i  is  greater  than  180,  the  inclination 

increases,  and  that  it  diminishes  when  this  inclination  is  less  than  1 80 ;  the  variation  is 

greater  according  as  the  distance  between  the  nodes  approaches  to  90,  and  according  as  f 

increases.    See  Princep.  Matth.  Lib.  I.  Prop.  66,  Cor.  11. 
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there  will  be  obtained 

tang.  9/  =  v/(?/-pr  +  (y'-#  ;    tang.  9/  =  ̂ Ef-* 
If  the  fixed  plane  be  assumed  to  be  that  of  the  orbit  of  m,  at  a  given 

epoch  ;  for  this  epoch  p  and  q  will  be  respectively  =  0 ;  however  the 

differentials  dp,  dq,  will  not  vanish  ;  thus  we  shall  have 

d(p]z=.{dT^ — dp\  sin.  ̂ '•\-{dq' — dq").  cos.  6'  ;t 

„ ,  _  {dji — dp'),  cos.  9' — {dq — dq\  sin.  6' 
'  tang'.  9'  * 

By  substituting  for  rfp,  dq,  dpi,  d(f,  &c.,  their  values  given  by  the 

equation  (C)  of  the  preceding  N°,  there  will  be  obtained 

-^=((1,  2)-(0,  2)).  tang.  <p'^  sin.  (9  — 9'")* 

*  Neglecting  quantities  of  the  second  and  higher  orders,  the  differences  of  the  expres- 
sions for  the  tangents  of  these  latitudes,  which  in  the  present  case  may  be  substituted  for 

the  latitudes  themselves,  is  equal  to  (9' — q).  sin.  (n't-\-i) — (p' — p).  cos.  [n't-\-^)-=  tan.  <p/ 

sin.  {n't-\-^ — «;),  •/  q —  ijf  —  tan.  ip/.  cos.  «/ ;  p' — p  =  tan  if  J.  sin.  «/  ;  hence  we  get  the 

values  of  $/.  and  tan.  ̂ 6',  as  before. 

t  d.  tan.  ip/  =  dip;  =  (as  p  and  q  vanish)  (  P—  P)-P +\  1—  V-  ?  ̂  ̂\{x,^  by  sub- 

stituting  for  p'  and  y',  their  values  tan.  Q^.  sin.  «',  tan.  (f'.  cos.  i'.  becomes  the  expression 

•I  o-    •,    ,     ,.         ̂     ■      ■  d6!  (dp'—dp).q'—{dq'—dq').p'    ^  I 
in  the  text.     Similarly  by  substitutmg    '-^-=1  —      ^   „    ■'   ili-;  but   — -, 

^    ̂   ^    co%.°6;  q'^  cos.^«," 

_    ?"+f"  ,  ,_  (dp' — dp).  COS.  »—{dff—dq).  sin.  V 
-  f-     '  ■•■  "*'   T^.^ 

X  dp.  sin.  6'  =  —((1,  0)  +  (1,  2)  +  &c.)  tan.  tp'.  cos.  6'.  sin.  «'+(!,  2),  tan.  ip".  cos.  «". 

sin.«'+&c.; — dp.sm.ef— — (0,  l).tan.  (p'.  cos.  «'sin. «' — (0,  2).  tan.  <p".  cos.  fl".  sin- «'-&c.) ; 

dq'.  cos.  «'=((!,  0)+(  1,2)+ &c.).  tan.<p'.  sin.  «'.  cos.  «' —  ( 1 ,  2).  tan.  ip/'.  sin. «".  cos.  «' 

—  &c.)  — dq.  COS.  y  =  (p,  1).  tan.  ?>'■  sin.  «' cos.  '6  +  (0,  2).  tan.  (p".  cos.  e  +  &c. ;  hence, 
obliterating  the  terms  which  destroy  each  other,  and  making  corresponding  factors  of  tan. 

ip",  tan.  (p"',  &c.,  to  coalesce,  we  obtain  the  expressions  which  are  giveen  in  the  text.   Since 

dp     dq     dp/        . 
p  and  qzzO,  the  coefficients  of  these  terms  are  neglected  in  the  vhlue  of  "^j  ''jr'~Jt' 
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((1,  3)— (0,  3)).  tang.  <f".  sin.  (9'— 9^)+  &c. 

-((1,  0)  +  (l,  2)+(I,  S)+cScc.)— (0, 1) 
dt 

+  ((1,  2)-(0,  2))-^!^.  COS.  (fl'-flO 

+  ((1,  3)-(0,  3))  -^J^.  COS.  (6'-r)+  &c. 

It  is  easy  to  infer  from  these  expressions,  the  variations  of  the  nodes 

and  of  the  inclinations  of  the  orbits  of  the  other  bodies,  w!\  m" ,  &c., 
on  the  moveable  orbit  of  m, 

61.  The  integrals  previously  found  of  the  differential  equations 
which  determine  the  variations  of  the  elements  of  the  orbits,  are  only 

approximative,  and  the  relations  which  they  indicate  between  all  these 
elements,  have  place  only  on  the  hypothesis  that  the  excentricities  of 
the  orbits  and  their  inclinations  are  very  small.  But  the  integrals  (4), 

(5),  (6)  and  (7),  to  which  we  have  arrived  in  N°.  9,  give  the  same 
relations,  whatever  may  be  the  excentricities  and  the  inclinations.     For 

this  purpose,  it  may  be  observed,  that  — ^"^^ —  is  double  of  the  area 
described  in  the  time  dt,  by  the  projection  of  the  radius  vector  of  the 

planet  m,  on  the  plane  of  x  and  of  y.  In  the  elliptic  motion,  if  the 
mass  of  the  planet  be  neglected,  relatively  to  that  of  the  sun,  which 

is  assumed  equal  to  unity,  we  have  by  N°%  19  and  20,  relatively  to  the 
plane  of  the  orbit  of  m, 

xdy — ydx 
dt 

=  s/a.{l—e^y. 

In  order  to  refer  the  area  of  the  orbit  to  a  fixed  plane,  it  is  necessary 

to  multiply  it  by  the  the  cosine  of  the  inclination  of  (p,  of  the  orbit  to 

this  plane  ;  therefore  with  respect  to  this  plane  we  will  have 
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  -r.   =  COS,  ffl.va.f  1 — e)  =  V  — ^^   r  * 
o'  r^      V.  y         ̂ l+tang.  ?>• 

In  like  manner  we  have 

x'dy'—y'dx'  _     /  a'.(\J:^ 

dt  ^  1-ftang.  >'' 
&c. 

These  values  of  xdy—ydx,  x'dy'—y'dx',  &c.,  may  be  employed, 
when  we  do  not  take  into  account  the  inequalities  of  the  motion  of  the 

planets,  provided  that  the  elements  e,  e',  &c.,  (p,  (p',  &c.,  are  consi- 
dered as  variable,  in  consequence  of  the  secular  inequalities  ;  therefore 

the  equation  (4)  of  N".  (9).  will  then  give 

'  l-f-tang.  *(P  1+tang.?)* 

+E.7nm' 

,  ̂  (a/— t). {di/—dy)—{y'^y).{dx'-dx) 7 
'I  dl  5* 

This  last  term,  which  is  always  of  the  order  mm',  being  neglected, 
we  shall  have 

c  =  m.y  — !^   /-  +  7n'.  V  — H^   r^  +  &c. 
^  1-l-tang.  >  ̂         ̂   1-l-tang.  *9'  ̂  

Therefore,  whatever  changes  may  be  produced  in  the  progress  of  time, 

in  the  values  of  e,  e,  Sec,  tp,  <p' ,  &c.,  in  consequence  of  the  secular 
variations  j  these  values  ought  always  to  satisfy  the  preceding  equation. 

If  the  very  small  quantities  of  the  order  e*,  e*ip*,  be  neglected,  this 
equation  will  give 

c  ■=.m.s/a-\-m.\/a' ^  &c.  — \.m.s/ a.  (e*-ftang.  *i?) 

— |.7B'.v/«'-(e'*+tang.  *(p')— &c. ; 

PART  1.  BOOK  II,  T  y 
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and  consequently,  if  the  squares  of  e,  ef,  9,  &c.,  be  neglected,  we 

shall  have  m.\/a  -j-  m'.\/a'  +  &c.,  constant.  It  has  appeared  already, 

that  if  only  the  first  powers*  of  the  disturbing  force  be  taken  into 

account,  a,  a',  &c.,  will  be  separately  constant ;  the  preceding  equa- 
tion will  therefore  give,  when  the  very  small  quantities  of  the  order 

e*,  or  e*^*,  are  neglected, 

const.  =  m.s/a.  (e*  +  tang.  * (p*)-\-m' .\/ a' .  (e'*  +  tang.  *?>')  +  &c.  ; 

on  the  supposition  that  the  orbits  are  very  nearly  circular,  and  inclined 

to  each  other  at  small  angles,  the  secular  variations  of  the  ex- 

centricities  of  the  orbits,  are  by  N°.  56,  determined  by  means  of  dif- 
ferential equations  independent  of  the  inclinations,  and  which  are 

therefore  the  same  as  if  the  orbits  existed  in  the  same  plane  ;  but 

on  this  hypothesis,  ?>  ir  0,  ?>'  =  0,  &c. ;  consequently,  the  preceding 
equation  becomes 

const.  =  e'-.niy/'a  +  e"'.vi'.\/'d^->re"''.m".s/ a-'-if  &c. 

this  equation  has  been  already  obtained  in  N°.  57. 
In  like  manner,  the  secular  variations  of  the  inclinations  of  the 

orbits,  are  by  N".  59,  determined  by  means  of  diflFerential  equations 
independent  of  the  excentricities,  and  which  are  therefore  the  same  as 

if  the  orbits  were  circular ;  but  on  this  hypothesis,  ezzO,  elzz.  O,  &c. ; 
therefore 

const.  z=m.\/a.  tang,  (p* -\-n^ .\/ a! .  tang.  (p'*-{-rnf'-\/a".  tang.  ?**+  &c. 

which  equation  has  been  obtained  in  N°.  59- 
If  we  suppose,  as  in  this  last  number,  that 

p  zz  tang,  (p.  sin.  0  ;    qzz  tang.  ip.  cos.  6 ; 

It  is  easy  to  be  assured,  when  the  inclination  of  the  orbit  of  m,  on 

the  plane  of  a;  and  _y,  is  <p,  9  being  the  longitude  of  its  ascending  node, 

reckoned  from  the  axis  of  z ;  that  the  cosine  of  the  inclination  of 

•  See  No.  54,  page  324. 
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this  orbit  on  the  plane  of  x  and  2;,  will  be 

q        * \/l+tan.  *^ 

This  quantity  being  multiplied  by  — ^^-j~ —  ,  or  by  its  equivalent  va- 

lue  \/a.(i — e*),  the  value  of    ^   ,  will  be  obtained ;  therefore 
at 

the  equation  (5)  of  N°.  9,  will  give,  when  quantities  of  the  order  m* 
are  neglected, 

/a.ri— e»)         ,   ,  A  I'd. {I— e'*)   ,   „ d  —m.q.is/  -r~-^   /  +  vi.q'.  V  r-j- — r-,  +  &c. 
^        1  +  tan.  *<p  *      *  l+tan.*p' 

In  like  manner  the  equation  (6)  of  N°.  9,  will  give 

^*l+tan/9^      ^    *l+tan.*? 

If  quantities  of  the  order  e',  or  e*(p,  are  neglected  in  these  two  equa- 
tions ;  they  become 

constant  =  mq.\/ a-\-m' q' .\/ a'  -(-  &c.t 

constant  =  mp.\/  a-\-rrip'  .\/  a!  +  &c. 

which  equations  have  been  already  obtained  in  N".  59. 
Finally,  the  equation  (7)  of  No.  9,  when  quantities  of  the  order 

Y  Y  2 

by  substituting  for  q  its  value  tan.  <p.  cos. ),  we  obtain 
\^l-|-tan.=ip 

S  =s  sin.  p.  COS.  i,  which  is  the  cosine  of  the  inclination  of  the  orbit  of  tn  to 
■v^l-f-  tan.  =<p 

the  plane  x,  r. 

f  tan.  ̂ ,  tan.  (f,  being  of  the  order  c,  the  quantities  which  are  neglected  are  of  the 

order  e^,  and  of  higher  orders. 
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miri  are  neglected,  will  give,  by  remarking  that  by  N".  18,  —=  — ^ 

df  ' 

.     .        m    ,    m'       m"       .     . constant  z=.   r-{ — - -^  See* 
a         a        a' 

These  different  equations  subsist  with  respect  to  those  inequalities  of  very 

long  periods,  which  may  affect  the  elements  of  the  orbits  of  wz,  m,  &c. 

It  has  been  remarked  in  N".  54,  that  the  relation  of  the  mean  motions 
of  these  bodies  may  introduce  into  the  expressions  of  the  greater  axes 

of  the  orbits  considered  as  variable,  inequalities  of  which  the  argu- 

ments being  proportional  to  the  time,  increase  with  great  slowness, 

and  which  as  they  have  for  divisors  the  coefficients  of  the  time  /,  may 

at  length  become  sensible.  But  it  is  evident,  that  if  we  only  take 

into  account  the  terms  which  have  similar  divisors,  the  orbits  being 

considered  as  ellipses  of  which  the  elements  vary  in  consequence  of 

these  terms,  the  integrals  (4),  (5),  (6)  and  (7)  of  N".  9,  will  always 
give  the  relations  which  we  have  found  between  these  elements ; 

because  that  the  terms  of  the  order  7nm  which  have  been  neglected  in 

order  to  infer  these  relations,  have  not  for  divisors  the  very  small  coef- 

ficients of  which  we  have  spoken  ;  or  at  least,  they  only  contain  them 

multiplied  by  a  power  of  the  disturbing  force,  superior  to  that  which  has 
been  taken  into  account. 

6a.   It  has  been  remarked  in  N°'.  21  and  '_'2,  of  the  first  book,  that 

in  the  motion  of  a  system  of  bodies,  there  exists  an  invariable  plane, 

♦  When  quantities  of  the  order  mw' are  neglected,  we  have  (M  being  considered  as 

unity)  A=2m.    ~fr   •  "°"'  ̂ '^  ̂ ^^^  f«=l+'">  '-■  " '"^  expression  —  = 

—  —  [ —     j'i      )  ^^  multiplied  by  m,  it  will  give  when  quantities  of  the  order  m*  are 

neglected,  —  =  —  —  m.     ̂        ̂ ''    '    ,  •/   by  making  similar  substitutions  for  the 

bodies  rri,  m",  &c.,  we  obtain  the  expression  which  is  given  in  the  text. 
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which  preserves  always  a  parallel  position,  and  which  the  following  con- 
dition enable  us  to  find  easily,  at  all  times,  namely,  that  the  sum  of  the 

masses  of  the  system  respectively  multiplied  by  the  projections  of  the 

areas  described  by  the  radii  vectores  in  a  given  time,  is  a  maximum. 

It  is  principally  in  the  theory  of  the  solar  system,  that  the  investigation 

of  this  plane  is  important,  in  consequence  of  the  proper  motions  of  the 

stars,  and  of  the  ecliptic,  which  render  the  exact  determination  of  the 

celestial  motions  a  matter  of  great  difficulty  to  astronomers.  Naming 

y  the  inclination  of  this  invariable  plane,  to  the  plane  of  x  and  of  ̂ ,  and 

n  the  longitude  of  its  ascending  node,  it  follows,  from  what  has  been 

demonstrated  in  N".  21  and  '^2,  of  the  first  book,  that  we  will  have 

tan, y.  sm.  n  —  —  ;  tan.  y.  cos.  n  n  — ; 

consequently. 

7n.v/a.(l-e*.  sin.  a,  sin.  6-fm'.v/a'.('l-e"').  sin.  <p'.  sin.9'-|-&c. 
tan.  y.  sm.IT  n      ;  —   ,   =   

wj.Va.(l — e*.cos.  <p+w'.\/a'.(l — e"').  cos.  ip'+  &c.    • 

w.v'c.{'l-e*).sin.<2i.cos.9+w2'.V'a'.Cl-£^*).  sin.©'.  cos.6'-f&c. 
tan.y.cos.nrr-   >    ■      ■   ■     — 

7n.v  fl.(l — e*).  cos.  <(-\-m' y  d .{\ — e*).  cos.  <p'  +  &c. 

The  two  angles  y  and  IT  may  be  easily  determined,  by  means  of  these 

values.  It  is  evident  that  in  order  to  determine  accurately  the  invari- 

able plane,  it  is  necessary  to  know  the  masses  of  the  comets  and  the 

elements  of  their  orbits  ;  fortunately,  their  masses  appear  to  be  very 

small,  so  that  their  action  on  the  planets  may  be  neglected  without  any 

sensible  error  ;  but  time  will  give  us  fuller  information  on  this  point. 

It  may  be  remarked  here,  that  with  respect  to  the  invariable*  plane, 
the  values  of  ̂ ,  ry,  p\  q,  &c.  do  not  contain  constant  terms  ;   for  it  is 

•    Since   -—  —  cos.  'ip  we  obtain  c"-=z  m.y'a.(l  —  £*).  sin.  ipsin.  i+  &c.,  by 
1-f-tan.  ̂ <p 

substituting  for  p,  its  value  tan.  f.  sin.  i. 
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evident  from  the  equations  (C),  of  N".  59,  that  these  terms  are  the 

same  for  p,  p',  pi',  &c.,  and  that  they  are  also  the  same  for  q,  q',  q",  &c. 
and  as  relatively  to  the  invariable  plane,  the  constant  quantities  of  the 

first  member  of  the  equations  (1)  and  (2)  of  N".  59,  vanish  ;  in  con- 
sequence of  these  equations,  the  constant  terms  must  vanish  from  the 

expressions  of  ̂,  p',  he,  q,  q',  &c. 
Let  us  now  consider  the  motion  of  two  orbits,  which  are  inclined 

at  any  angle  to  each  other,  by  N°.  6l,  we  will  have. 

d  =  sin.  (p.  COS.  6.  m.\^ a.{\ — e*)  +  sin.  (p'.  cos.  9'.  m'.\/a'.(l — e'*)  ; 

d'—  sin.  <p.  sin.  9.  7».v^a.(l— e*)  +  sin.  ̂ '.  sin.  fl'.  7ril.\/d.{\ — e'*); 

Let  us  suppose  that  the  fixed  plane  to  which  the  motion  of  the  orbits 

is  referred,  is  the  invariable  plane  of  which  we  have  treated,  and  with 

respect  to  which  the  constant  quantities  of  the  first  members  of  these 

equations  vanish,  as  has  been  remarked  in  N''^  21  and  22  of  the  first 

book.  The  angles  9  and  (p'  being  positive,  the  preceding  equations 
give  the  following : 

7n.\/a.(l — e*).  sin.  <p  —  vrl.^/a'.^l — e'*).  sin.  9' : 

sin.  &  "=.  —  sin.  9' ;     cos.  9  =  —  cos.  9' ; 

hence  we  infer  that  6'  =  9  +   the  semicircumference  j  consequently  the 
nodes  of  the  orbits  are  on  the  same  line ;  but  the  ascending  node  of 

one  coincides  with  the  descending   node  of  the  other;  so  that  the 

mutual  inclination  of  these  two  orbits  is  equal  to  (p+(p'. 

By.  N".  61,  we  have 

c  =  m.v^a.(J — e*).  cos.  ?i+7n'.\/a'.(l — e*).  cos.  (p'; 

this  equation  being  combined  with  the  preceding  one  between  sin.  f 

and  sin.  <p',  gives* 

•  These  constants  must  vanish,  for  they  are  in  fact  equal  to  c'  and  c",  which  in  the  case 
of  the  invariable  plane  are  equal  to  cypher. 
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2mc.  COS.  9.\/a.(l— e*)  =  c*  +  7n*a.(l— e*)— ?n'V.(l— e'*). 

If  the  orbits  be  supposed  to  be  circular,  or  at  least  of  such  a  small  ex- 
centricity,  that  the  squares  of  the  excentricities  may  be  neglected,  the 

preceding  equations  will  give  <p  equal  to  a  constant  quantity  ;  therefore 

the  inclinations  of  the  planes  of  the  orbits  to  the  fixed  plane,  and  to 

each  other,  will  be  constant,  and  these  three  planes  will  always  have  a 

common  intersection.  It  follows  from  this,  that  the  mean  instanta- 

neous variation  of  this  intersection,  is  always  the  same ;  because  it  is 

only  a  function  of  those  inclinations.  When  they  are  very  small,  it 

may  be  easily  proved  by  N°.  60,  and  in  virtue  of  the  relation  just  foundt 
between  sin.  <p,  and  sin.  <p',  that  for  the  time  t,  the  motion  of  this  in- 

tersection is— ((0,  1)-|-(1,0)).  t. 

The  position  of  the  invariable  plane,  to  which  the  motion  of  the 

planets  has  been  referred,  may  be  easily  determined  for  any  given 

instant;  as  it  is  only  requisite  to  divide  the  angle  of  the  mutual  in- 

clination of  the  orbits  into  two  angles  (p,  and  <p',  such  that  the  preced- 
ing equation  may  obtain  between  sin.  (p,  and  sin.  q>'.  Therefore  de- 

noting this  mutual  inclination  by  w,  we  shall  have 

m',\^a'.(l — e'*).  sin.  tir 
tan.  (p=   — ■   — ^^   ,    ̂     .t 

m.\/a.{\ — e*)+m .%/«'.!  1 — e'*).  cos.w 

•  Multiplying  both  sides  of  this  equation  by  2m.  Va.{^\ — e^.  cos.  ip,  we  obtain  2mc.  cos.  (p. 

•/a.(l — e*  =  2ni^a(l — e").  cos  'ip  +  2jn.m'.  cos.  ip.  cos.  (p'Va.(\ — ^).  V a'{\ — e^),  which 

will  coincide  with  the  second  member  of  this  equation,  if  we  substitute  for  c^  its  value,  and 

observe  that  m?a.[\ — e').  sin.  ''(p=jn"a'.(l — e^).  sin.  *(?'. 

f  When  q>  and  <p'  are  very  small  the  nodes  must  regrade.     See  page  342. 

f  If  one  of  the  angles  be  9,  then  we  have  sin.  <p.  m.V  a.[\  — e^)  =  sin.  (»•  —  <p)_ 

m'.i/ a'.{\—d^)  =  (sin.  ar.  cos.  (p  —  sin.  <p.  cos.  ■a).  m'-\^a'.(\ — e^),  •/  dividing  by  cos.  (p. 

tan.  (p.(mVa.(l— e^j  -J-  cos.  'a.m'Va'.(l—e^)  =  sin.  w.  m'Va'.{l—e^). 
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CHAPTER  VIII. 

Second  method  qf  approximation  of  the  Celestial  Motions. 

63.  It  has  been  observed  in  the  second  chapter,  that  the  coordinates 

of  the  heavenly  bodies,  referred  to  the  foci  of  the  principal  forces 

which  actuate  them,  are  determined  by  differential  equations  of  the 

second  order.  These  equations  have  been  integrated  in  the  third 

Chapter,  the  principal  forces  being  solely  taken  into  account,  and  it 

has  been  shewn  that  in  this  case,  the  orbits  are  conic  sections,  of 

which  the  elements  are  the  constant  arbitrary  quantities  introduced  by 

the  integrations.  As  the  action  of  the  disturbing  forces,  cause  only 

very  small  inqualities,  to  be  added  to  the  elliptic  motion  ;  it  is  natural 
to  endeavour  to  reduce  to  the  laws  of  this  motion,  the  disturbed 

motion  of  the  heavenly  bodies.  If  the  method  of  approximation  ex- 

plained in  N".  45,  be  applied  to  the  differential  equations  of  elliptic 
motion,  increased  by  small  terms  due  to  the  action  of  the  disturbing 
forces ;  we  can  still  consider  the  celestial  motions  in  the  reentrant 

orbits  as  being  elliptical ;  but  the  elements  of  this  motion  v/ill  be  va- 

riable ;  and  their  variations  can  be  obtained  by  this  method.  It  follows 

from  it  that  the  equations  of  the  motion^  being  differentials  of  the 

second  order,  not  only  their  finite  integrals,  but  also  the  indefinitely 

small  integrals  of  the  first  order,  are  the  same  as  in  the  case  of  inva- 

riable ellipses ;  so  that  we  can  differentiate  the  finite  equations,  the 

elements  of  this  motion  being  considered  as  constant.  It  likewise 

results  from  the  same  method,  that  the  equations  of  this  motion,  which 

are  differentials  of  the  first  order,  may  be  differenced,  the  elements  of 
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the  orbits,  and  the  first  differences  of  the  coordinates  being  solely- 
made  to  vary ;  provided  that  in  place  of  the  second  differences  of  the 
coordinates,  we  only  substitute  that  part  of  their  values,  due  to  the 

disturbing  forces.  These  results  may  be  immediately  inferred  from 
the  consideration  of  elliptic  motion. 

For  this  purpose,  conceive  an  ellipse  passing  through  a  planet,  and 
through  the  element  of  the  curve  which  it  describes,  the  centre  of  the 

sun  being  supposed  to  exist  in  one  of  the  foci.  This  ellipse  is 

that  which  the  planet  would  invariably  describe,  if  the  distubing 
forces  ceased  to  act  on  it.  Its  elements  are  constant  during  the 

interval  of  dt;  but  they  vary  from  one  instant  to  another.  Let  there- 
fore F=0,  be  the  finite  equation  of  the  invariable  ellipse,  F  being  a 

function  of  the  rectangular  coordinates,  a\  y,  z,  and  of  the  parame- 

ters c,  c',  d',  &c.,  which  last  are  functions  of  the  elements  of  elliptic 
motion.  This  equation  will  also  obtain  in  the  case  of  the  variable 

ellipse ;  but  the  parameters  c,  c',  &c.,  will  be  no  longer  constant. 
However,  since  this  ellipse  appertains  to  the  element  of  the  curve 
described  by  the  planet,  during  the  instant  dt ;  the  equation  F  =  0, 

will  also  obtain  for  the  first  and  last  point  of  this  element,  c,  c/,  &c., 

being  considered  as  constant. 

This  equation  can  therefore  be  differenced  once,  x,  y,  z,  being 

solely  made  to  vary,  which  gives 

''=(^:)--(f )-.+  (?)--  CO- 
PART  I.  BOOK  II.  Z  Z 

*  In  consequence  of  the  mutual  action  of  the  planets  on  each  other,  it  is  necessary  to  add 

to  the  differential  equations  of  their  motion,  terms  which  render  the  accurate  integration  of 

the  resulting  equations  impossible  in  the  present  state  of  analysis,  we  are  therefore  obliged 

to  have  recourse  to  approximations ;  fortunately  the  terms  resulting  from  the  action  of  the 

disturbing  forces  are  extremely  small,  for  they  are  multiplied  by  the  masses  of  the  planets, 

or  rather  by  their  ratio  to  that  of  the  sun  ;  therefore  if  the  differential  equations,  deprived 

of  these  terms,  were  integrated,  the  constant  arbitrary  quantities  in  this  case,  would  only 
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Hence  we  see  the  reason  why  the  finite  equations  of  the  invariable 

elh'pse,  may,  in  the  case  of  the  variable  ellipse,  be  differenced  once, 
tlie  parameters  being  considered  as  constant.  For  the  same  reason, 

every  differential  equation  of  the  first  order,  which  belongs  to  the  invari- 

able ellipse,  obtains  equally  for  the  variable  ;  for  let  PnO,  bean  equation 

of  this  order,   V  being  a  function  of  x,  y,  z,  ~jjy-n:'  -^  »  ̂ ^^  of  the 

parameters  c,  c',  &c.  It  is  evident  that  these  quantities  are  the  same 
for  the  variable  ellipse,  as  for  the  invariable  ellipse,  which  coincides 

with  it,  during  the  instant  dt. 

Now,  if  we  consider  the  planet  at  the  end  of  the  time  dU  or  at  the 

commencement  of  the  subsequent  instant ;  the  function  V  will  not 

vary  from  the  ellipse  relative  to  the  instant  dt,  to  the  consecutive 

ellipse,  except  in  consequence  of  the  variation  of  the  parameters,   since 

differ  by  a  very  small  quantity,  from  tlie  arbitrary  quantities  which  the  integration  of  the 

complete  equations  vvould  furnish,  if  such  integration  could  be  effected  ;  for  since  the  two 

equations  differ  only  by  these  small  terms,  the  difference  between  the  arbitrary  quantities 

must  depend  on  the  disturbing  force,  and  therefore  must  be  extremely  small ;  hence  the 

expressions  of  the  constant  arbitrary  quantities,  which  would  be  furnished  by  the  integra- 

tion of  the  imperfect  or  elliptical  equations,  may  be  assumed  to  express  the  variable  arbi- 

trary quantities,  provided  that  the  variations  of  those  latter  are  determined  by  means  of 

the  difference  between  the  two  sets  of  equations  ;  therefore  the  elements  of  elliptic  motion, 

which  would  be  constant  if  the  planet  was  subject  to  the  sole  action  of  the  sun,  are  liable 

to  small  variations ;  and  although  the  motion  is  no  longer  elliptic,  still  it  may  be  considered 

as  such,  during  each  indefinitely  small  portion  of  time,  and  the  variable  ellipse  in  which 

the  planer  may  be  considered  to  move  during  each  instant,  will  be  osculatory  to  the  true 

orbit  of  the  planet ;  in  fact,  since  the  equation  V-=  0,  has  place  for  the  first  and  last  point 

of  the  curves  described  by  the  planet  during  the  instant  dt,  the  expressions  for  the  coor- 

dinates X,  y,  2,  will  be  the  same :  consequently  the  curves  to  which  they  belong  are  si- 

milar, but  in  one  case  the  curve  is  an  ellipse ;  •/  the  curve  of  which  x,  i/,  z,  are  the  coor- 

dinates when  c,  d,  c",  &c.,  are  variable,  must  be  similar  to  the  former,  and  •.•  an  ellipse, 
and  if  the  disturbing  forces  ceased  to  act,  the  planet  would  describe  this  ellipse ;  but  as 

c,  d-,  c",  &c.,  have  different  values  for  each  subsequent  instant,  the  ellipses  which  would  be 
respectively  described  if  the  disturbing  forces  ceased  to  act  during  these  instants,  must  be 

different,  so  that  they  constitute  a  series  of  ellipses  of  curvature  to  the  orbits  of  the  planets. 
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the  coordinates  x,  y,  z,  relative  to  the  end  of  the  first  instant,  are  the 

same  in  the  case  of  the  6wo  ellipses;  thus  the  function  F being  equal 

to  cypher,  we  have 

This  equation  may  be  also  inferred  from  the  equation  V-zi  d,  by 

making  to  vary  at  once,  x,  y,  z,  c,  c',  &c. ;  for  if  the  equation 
(?)  be  subtracted  from  this  differential,  we  shall  have  the  equa- 

tion (?'). 
By  differentiating  the  equation  (i),  we  shall  have  a  new  equation 

in  dc,  dc'y  &c.,  which  combined  with  the  equation  («')  will  enable  us 

to  determine  the  parameters  c,  c',  &c. 
It  is  thus  that  the  geometers  who  first  occupied  themselves  with  the 

theory  of  the  celestial  motions,  have  determined  the  variations  of  the 

nodes  and  of  the  inclinations  of  the  orbits ;  but  this  differentiation  may 

be  simplified  in  the  following  manner. 

Let  us  consider  generally  the  differential  equation  of  the  first  order 

V  zz  0,  which  equation,  as  we  have  seen,  appertains  equally  to  the 

variable  ellipse  and  to  the  invariable  ellipse,  which,  during  the  interval 

dt,  coincides  with  it.     In  the  following  instant,  this  equation  agrees 

equally   to  the  two  ellipses,  but  with  this  difference,  that  c,  d,  &c., 

remain  the  same  in  the  case  of  the  invariable  ellipse,  whilst  they  change 

with  the  variable   ellipse.     Let  V"  be   what    V  becomes,  wiien   the 
ellipse  is  supposed  invariable ;  let   V,  be  what  this  same  function  be- 

comes,  in  the  case  of  the  variable  ellipse.     It  is  evident  that  in  order 

to  obtain  V",  we  must  change  in    V,  the  coordinates  rr,  y,  z,  which 
are  relative  to  the  commencement  of  the  first  instant  dt,  mto  those 

which  are  relative  to  the  commencement  of  the  second  instant ;  it  is » 

necessary  then  to  increase  the  first  differences  da;  dy,  dz,  respectively 

by  the  quantities  d^a,,  d^y,  d^z,  relatively  to  the  invariable  ellipse, 
the  element  dt  of  the  time,  being  supposed  constant. 
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In  like  manner,  in  order  to  obtain  V',  it  is  necessary  to  change  in 
V'  the  coordinates  x,  y,  z,  into  those  which  are  relative  to  the  com- 

mencement of  the  second  instant,  and  which  are  likewise  the  same 

in  the  two  ellipses ;  it  is  necessary  afterwards  to  increase  dx,  dy, 

dz,  respectively  by  the  quantities  d''x;  d^y,  d''z ;  finally,  it  is  neces- 

sary to  change  the  parameters  c,  (/,  &c.,  into  c-\-dc,  c  -j-  (^c\  ̂''  + 
dd',  &c. 

The  values  of  d^x,  d''y,  d^z,  are  not  the  same  in  the  two  ellipses ; 
they  are  increased  in  the  case  of  the  variable  ellipse,   by  quantities 
which   are   due   to   the   action    of    the    disturbing   forces.      It    thus 

appears  that  the  two  functions  V  and  Vf  only  differ  in  this,  that  in 

the  second,  the  parameters  c,  d,  &c.,  are  increased  by  dc,  dc',  &c. ; 
and  the   values   of  (Px,  d^y,  d^z,  relative   to   the  invariable  ellipse, 
are   increased   by  the   quantities   which   are    due  to    the   disturbing 
forces. 

We  shall  therefore  obtain  V' —  V''  by  differencing  on  the  supposition 
of  J^,  y,  z,  being  constant,  &c.,  and  of  dx,  dy,  dz,  c,  d,  d',  &c.,  being 

variable,  provided  that  in  this  differential,  we  substitute  for  di^x,  d''y, 

d*z,  &c.,  the  parts  of  their  values,  which  arise  solely  from  the  action 
of  the  disturbing  forces. 

Now,  if  in  the  function  P' — V  we  substitute  in  place  of  d^'x,  d^y, 

d^z,  their  values  relative  to  elliptic  motions,  we  shall  have  a  function  of 

X,  y,  z,  —Tr^—4r>  ~yr>  <^y  ̂»  &c.,  which,  in  the  case  of  the  invariable* 

ellipse,  is  equal  to  cypher  ;  this  function  is  therefore  likewise  nothing  in 

*  When  in  V" —  V,  the  values  of  — —,  •  .  „  »  — rr-  >  due  to  the  elUptic  motion  are  substi- 

tuted,  the  terms  of  the  resulting  equation  must  be  identically  equal  to  cypher ;  but  in  the  case 
d'^x     d^v      d^- 

of  F;-F,  the  values  of-—,  — |-,  -—1.  must  be  increased  by  the  quantities  due  to  the 

aaion  of  the  disturbmg  forces ;  so  that  after  substitution,  the  resulting  expression  may 

be  resolved  into  two  distinct  equations,  one  of  which  would  obtain,  if  there  were  no  dis- 
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the  case  of  the  variable  ellipse.     We  have  evidently  in  this  last  case,  V, 

— F'=0  ;  for  this  equation  is  the  differential  of  V'zzO  ;  by  subtracting 

from  it  the  equations  P'' — V'  =  0,  we  shall  have  V' — V'zzO'y  conse- 

quently we  can  in  this  case  difference  the  equation  V'=:0,  dx,  di/,  dz, 

c,  c',  &c.,  being  solely  made  to  vary,  provided  that  for  d''x,  d^'y,  d^z,  be 
substituted  the  parts  of  their  values,  relative  to  the  disturbing  forces. 

These  results  are  precisely  the  same  as  those  which  we  obtained  in  N°. 
45,  from  considerations  purely  analytic  \  but  considering  their  great 

importance,  it  was  deemed  right  to  deduce  them  here  from  the  consi- 

deration of  elliptic  motion.     This  being  premised, 

64.  Let  the  equations  (P)  of  N°.  46  be  resumed. 

0=4^+ 

0 

dV 

Oz= 

dtf" 

d^z 

-73- 

de 

fdR\ {dxj' 

dR\ 

dyj' 

( 
(p) 

If  we  suppose  R=:0,  we  shall  have  the  equations  of  elliptic  motion, 

which  were  integrated  in  the  third  chapter. 

In  N".  18,  the  seven  following  integrals  were  obtained, 

-zdz       „     ydz — zdy    xdy — ydx       ,    xdz — z^^       „   
-  It        '  It        ' 

0=/+^;. t^[^ 
■\-dz^ 
dt 

(dx^'+dz' 
\  )    ,  xdx.dy + 

n  _  /^       2/^  _L  fdx''-^dy'-+dz^\ 

dt' 

xdx.dz 
de 

dt zdz.dx 

~~df 

zdz.dy 

~dF~ 

ydy.dz 

dF~
 

{P) 

turbing  forces,  and  by  means  of  the  other  the  variations  af  the  parameter,  may  be  ob- 

tained, these  equations  are  respectively  equal  to  V"  and  V, —  F". 
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These  integrals  give  the  arbitrary  quantities,  in  functions  of  the  coor- 

dinates and  of  their  first  differences  ;  their  form  is  extremely  commo- 

dious for  determining  the  variations  of  these  arbitrary  quantities.  The 

three  first  integrals  give,  by  differencing  them,  and  by  making  the  pa- 

rameters c,  (/,  d',  &c.,  and  the  first  differences  of  the  coordinates 
solely  to  vary, 

_  xdP'y — yd^x      , ,  __  xdi^z — zd^'x     ,  «_  yd^z—zd^y 
'^'-        di       '  "^^  -        Jt       '  '^''-        di       ' 

By  substituting  in  place  of  d^x,  d^y,  d^'z,  the  parts  of  their  values  whicl* 
are  due  to  the  actions  of  the  disturbing  forces,  and  which  in  virtue 

the  differential  equations  CP),  are  — dt"",  (  -f-;]  » — dt^.  (  ;t-  )  >  — dt^' 

(  -T-  J  ;  vye  shall  have 

/         ,,  ̂       fdR\  fdR\l 

We  have  seen  in  N°'.  18,  and  19,  that  the  parameters  c,  d,  d',  &c., 
determine  the  three  elements  of  the  elliptic  orbit,  namely,  (p  the  incli- 

nation of  the  orbit  on  the  plane  of  x  and  3/,  and  9  the  longitude  of  its 

node,  by  means  of  the  equations 

tan.  (B  ■=.   -T   ;   tan.  6  =  — j-  j 
c  d 

and   the   semipararaeter  a.(l — e'")  of  the  ellipse,    by   means   of  the 
equation 

iua.(l— e*)  =z  e-Vd"-  +  d"- ; 

These  same  equations  obtain  also  in  the  case  of  the  variable  ellipse, 
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provided  that  c,  c',  d ,  are  determined  by  means  of  the  preceding 
differential  equations.  In  this  manner  the  parameter  of  the  variable 

ellipse,  its  inclination  to  the  fixed  plane  of  x  and  y,  and  the  position 
of  its  node  may  be  obtained. 

By  means  of  the  three  first  equations  (p),  we  have  deduced  in  N°.  19 
the  finite  integral  Q  —  d'x  —  dy  +  cz ;  this  equation,  and  also  its  first 
differential,  0  =  d'dx  —  ddy  +  cdz,  taken  on  the  supposition  that 

c,  c',  d',  are  constant,  obtain  in  case  of  the  disturbed  ellipse. 
If  the  fourth,  the  fifth,  and  sixth  of  the  integrals  {'p)  be  differenced, 

the  parameters  f,  /',  f",  and  the  differences  dx,  dy,  dz,  being  con- 
sidered as  the  sole  variables,  and  if  then  we  substitute,  in  place  of 

d''x„  d^'y,  d^z,  the  quantities  — dt''.  {  -r-  )  > — dt^'  17")  — '^^^ 

I  y-  J  ,  we  shall  have 

+  (jydx—xdy).  ̂ -^j  +(zdx  —  xdz).  (^  j  5 

*  Differentiating  under  these  restrictions  we  have 

„    (du.(Py+dz.dh)  ,      d'^y  ̂       d'-x     ,       ,      d^x  .      d°-z 

•/  by  ordering  the  terms  we  have 

df=  dy.  (  ^.  —  -  X.  ̂ )  ̂dz.  (..__.._)+  (ydx-xdy).  ̂ ,  + 

d^Z  ,  ^.       fdR\     /'^^\    /<^^\ 
(:rfx — xdz).  —„,  wliich  becomes  the  expression  m  the  text,  wheni -^1,  i~7~)'  Vd')' 

,     .        ,  ̂     d''x    d-ii   d°z are  substituted  for   -j-r-,  -;^)  -r-;. 
dt-    d-y   dt^ 
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+  {xdy-ydx).  g|  +  izdy-ydz).  |^^ j 

^^{xdz-zdx).  Jg  ̂  +{ydz^zdy).  \^\  . 
Finally,  the  seventh  of  the  integrals  (^),  when  differenced  with  the 

same  restrictions,  will  give  the  variations  of  the  semiaxis  major  a,  by- 

means  of  the  equation  d.  ̂   =  2.  diJ,  the  differential  di2  being*  re- 

ferred solely  to  the  coordinates  x,  y,  z,  of  the  body  m. 
The  values  oif,f\  f,  determine  the  longitude  of  the  projection  of 

the  perihelion  of  the  orbit,  on  the  fixed  plane,  and  the  ratio  of  the 
excentricity  to  the  semiaxis  major ;  for  /  being  the  longitude  of  this 
projection,  we  have  by  N".  19, 

tan.  /=  ̂ , 

*  Differentiating  the  seventh  equation  under  the  same  restrictions,  we  obtain  d.  —  = 

By  means  of  this  expression,  Lagrange  ascertained  that  the  mean  motions  were  invari- 

able, if  the  first  power  of  the  disturbing  masses  be  only  considered,  the  approximation 

being  extended  to  any  power  of  the  excentricities  and  inclinations.  From  the  extreme 

simplicity  of  this  expression  of  the  differential  of  the  major  axis,  the  determination  of  the 

longitude  is  a  very  easy  problem.  In  the  supplement  to  the  third  book,  Laplace  investi- 

gated the  simplest  form  of  which  the  other  elements  were  susceptible,  and  he  has  suc- 

ceeded in  assigning  such  a  form  to  them,  that  they  only  depend  on  partial  differences  of 

the  same  function,  taken  with  respect  to  these  elements,  and  what  is  particularly  remark- 

able, the  coefficients  of  these  differences  do  not  involve  the  time,  and  are  solely  functions 
of  the  elements  themselves. 
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and  e  being  the  ratio  of  the  excentricity  to  the  semiaxis  major,  we 

have  by  the  same  number 

This  ratio  may  also  be  determined,  by  dividing  the  semiparameter 

a.(l — e*),  by  the  semiaxis  major  a,  and  by  taking  the  quotient  from 
unity,  the  value  of  e^  will  be  obtained. 

The  integrals  (p)  have  given  by  elimination,  in  N°.  19,  the  finite 
integral,  O^j^r — h*-\-fx-\-f'y-\-f"z\  this  equation  obtains  also  in  the 
case  of  the  disturbed  ellipse,  and  it  determines  at  each  instant  the 

nature  of  the  variable  ellipse,  we  can  difference  it,  f,  /',  /'''',  being 
considered  as  constant  quantities,  which  gives 

0  =  ft.dr+fdx+f'dy-y'dz. 

The  semiaxis  major  a  determines  the  mean  motion  of  m,  or  more 
accurately,  that  which  in  the  troubled  orbit,  corresponds  to  the  mean 

motion  in  the  invariable  orbit ;  for  by  N".  20,  we  have  nz=.a~*'\/y. ; 
moreover,  if  we  denote  by  ̂  the  mean  motion  of  m,  we  have  in  the 
invariable  elliptic  orbit  d^  =  ndt  j  this  equation  obtains  equally  for  the 

variable  ellipse,  since  it  is  a  differential  of  the  first  order.  By  differ- 

encing, we  shall  have  c?'^  =r  dn.dt;  but  we  have 

,        San     J    «*       SanAR  , 
dnzz  —- — .  a.  —  =   , 

therefore 

San.dtAR d^^  = 

PART  I.   BOOK  II.  S  A 
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and  by  integrating 

^  =  — .  JXayi.dtAR . 

Finally,  it  has  been  observed  in  N°.  18,  that  the  integrals  (p)  are 
only  equivalent  to  five  distinct  integrals,  and  that  they  furnish  between 

the  seven  parameters  c,  d,  d ,  f,f',f'\  and  e  the  two  following  equa- 
tions of  condition,  rr;;,  il 

O^fd'-fd^f'c; 

these  equations  obtain  also  in  the  case  of  the  variable  ellipse,  provided 

that  the  parameters  be  determined  by  what  precedes.  We  can  likewise 

be  assured  of  this  a  posteriori. 

We  have  thus  determined  five  elements  of  the  disturbed  orbit, 

namely  its  inclination,  the  position  of  its  nodes,  the  semiaxis  major 

(which  gives  the  mean  motion),  its  excentricity,  and  the  position  of 

the  perihelion.  It  now  remains  for  us  to  determine  the  sixth  element 

of  the  elliptic  motion,  namely,  that  which  in  the  undisturbed  ellipse 

corresponds  to  the  position  of  m,  at  a  given  epoch.  For  this  purpose, 

let  the  expression  for  dt  of  N°.  1 8  be  resumed. 

J         (1+e.  cos.(t;— ̂ ))* 

This   equation   being   expanded   into   a  series,  gave   in  the   number 
already  cited, 

ndt  =dv.(l+  E™.  cos.  (r— zr)  +  £(^'.  cos.  ±(v—zr)  +  &c.)  : 

which   being  integrated  on  the  supposition  that  e  and  w  are  constant, 

will  give 

fndt+izzv-\-  J2"'.  sin.  (v — v)  -\   ^— .  sin.  2.{v — or)  +  &c. 
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t  being  an  arbitrary  quantity.  This  integral  is  relative  to  the  inva- 

riable ellipse  ;  in  order  to  extend  it  to  the  disturbed  ellipse,  it  is  ne- 

cessary when  we  make  ail  the  terms  to  vary,  even  to  the  arbitrary 

quantities  e,  e  and  ■nr,  which  it  contains,  that  its  differential  should 

coincide  with  the  preceding  ;  which  gives 

di—de.  \  1—7—  \'  (sin.  (v — w)  -f-  \,  \—j—  \  •  sm*  ̂ 'iy  —  ■=^)+  &c.  | 

—d^.iWK  cos.(i>-3r)  +  i:%cos,.2<i^w)+&p,),,    ,,, 

V — Tij- is  the  true  anomaly  of  m,  reckoned  on  the  orbit,  arid  w  is  the 

longitude  of  the  perihelion,  also  reckoned  on  the  orbit,  /the  lon- 

gitude of  the  projection  of  the  perihelion,  on  a  fixed  plane  has  been 

already  determined  ;  but  by  N°.  22,  we  have  by  changing  v  into  w, 

and  V,  into  /  in  the  expression  for  v — €  of  that  N°., 

■w — e=/— ^+tang.*4(p.  sin.  2(7—6)  +  &c. 

If  then  y  and  v,  be  supposed  equal  to  cypher,  in  this  same  expression, 
we  have 

€=9+tang.  *^9.  sin.  26  +  &c. 
therefore 

w=/+tang.  *4(?.(sin.  26+sin.  2(7— G))-|-&c. ; 

which  gives 

dis—dl{\^-<i  tan.  '■\<p.  cos.  2.(7—9)  +  &c.) 

+2rf6.  tang.  *:|<f..(cos.  2^— cos.  2.(7—6)+  &c. 
^^tan.iy  ̂   26+sin,  2.(7-6)+  &c.) 

^      cos.    4?      ̂   \         J  ̂ 

consequently,  the  values  of  dl,  6?6  and  d-a  being  determined  by  what 

goes  before ;  we  shall  have  that  of  dv:,  by  means  of  which,  the  value 
of  dl  will  be  obtained. 

3  A  2 
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Hence  it  follows,  that  the  expressions  in  series  of  the  radius  vector, 

of  its  projection  on  the  fixed  plane,  of  the  longitude  reckoned  either 

on  the  fixed  plane  or  on  that  of  the  orbit,  and  of  the  latitude,  which 

have  been  determined  in  N".  22,  in  the  case  of  the  invariable  ellipse, 
obtain  equally  in  the  case  of  the  disturbed  ellipse,  provided  that  nt  be 

changed  into  Jiidt,  and  that  the  elements  of  the  variable  ellipse  be  de- 

termined by  the  preceding  formulas.  For,  since  the  finite  equations  be- 
tween r,  V,  s,  X,  y,  z,  and  fndt,  are  the  same  in  the  two  cases ;  and 

since  the  expressions  in  series  of  N".  22,  result  from  those  equations  by 
operations  purely  analytic,  and  altogether  independent  of  the  con- 

stancy or  variability  of  the  elements ;  it  is  evident  that  these  expres- 
sions obtain  also  in  the  case  of  variable  elements. 

When  the  ellipses  are  extremely  excentric,  as  is  the  case  in  the 

orbits  of  the  comets,  the  preceding  analysis  should  be  changed  a  little. 

The  inclination  (p  of  the  orbit  on  the  fixed  plane,  6  the  longitude  of  its 

ascending  node,  the  semiaxis  major  a,  the  semipararaeter  a.[\ — e*), 
the  excentricity  e,  and  /  the  longitude  of  the  perihelion  on  a  fixed  plane, 

may  be  determined  by  what  goes  before.  But  the  values  of  ts-,  and  of 

(/la- being  given  in  series  arranged  according  to  the  powers  of  tan.  ̂ ^, 
it  is  necessary  in  order  to  render  them  convergent,  to  select  the  fixed 

plane,  such  that  tang.  \(p  may  be  inconsiderable,  and  the  simplest 

mode  of  effecting  this,  is  to  assume  for  the  fixed  plane,  that  of  the  orbit 

of  m,  at  a  given  epoch. 

The  preceding  value  of  di  is  expressed  in  a  series  which  is  only 

convergent,  when  the  excentricity  of  the  orbit  is  inconsiderable,  it 

cannot  therefore  be  employed  in  the  present  case.  In  order  to  remedy 

this,  let  us  resume  the  equation 

dt.\/f/.  dv.(\ — e*)^ 

fll      ~  ( 1  -{-e.  cos.  (v — TB-))* 

If  we  make  1  —  e  z=  a,  we  have  by  the  analysis  of  N*.  23,  in  the  case 
of  the  invariable  ellipse, 
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^+T=  ̂ *  ̂^7^*]-.  tan.  h(v-^) \  1  +  -p^.  tan.  'Uv—nr)+  &c. l  ; 

T  being  an  arbitrary  quantity.  In  order  to  extend  this  equation  to 

the  variable  ellipse,  it  is  necessary  to  difference  it,  T,  the  semiparame- 

ter  a.(l — e*),  «  and  zr  being  considered  as  the  sole  variables.  By  this 
means  we  shall  obtain  a  differential  equation,  which  will  enable  us  to 

determine  T;  and  the  finite  equations  which  obtain  in  the  case  of  the 

the  invariable  ellipse,  will  likewise  subsist  in  the  case  of  the  disturbed 
ellipse. 

65.  Let  us  particularly  consider  the  variations  of  the  elements  of  the 
orbit  of  m,  in  the  case  of  the  orbits  having  a  small  excentricity,  and 

small  inclination  to  each  other.  In  N".  48,  we  have  shewn  how  to  deve- 

lope  R  in  that  case,  into  a  series  of  sines  and  cosines  of  the  form  m'.k, 
cos.  (in't — int+  A),k  and  A  being  functions  of  the  excentricities  and  of 
the  inclinations  of  the  orbits,  of  the  positions  of  their  nodes  and  of  their 

perihelions,  of  the  longitudes  of  the  bodies  at  a  given  epoch,  and  of 
the  greater  axes.  When  the  ellipses  are  variable  all  these  quantities 

may  be  supposed  to  vary  agreeably  to  what  precedes,  it  is  necessary 

moreover,  to  change  in  the  preceding  term  the  angle  i'n't — int  into 
i'fn'dt — ifndt,  or  what  comes  to  the  same  thing,  into  i'^' — i^. 

Now,  by  the  preceding  number  we  have 

^  =  2/di2; 
a 

I  —fndt-  -.  ffandtAR. 

The  difference  d/J  being  taken  solely  with  respect  to'  the  coordinates 

«,  y,  Zt  of  the  body  ni,  we  should  not  make  to  vary  in  the  term  m'k. 

cos.  (i'l' — i?,-\-A)  of  the  expression  for  R,  developed  into  a  series, 
only  that  part  which  depends  on  the  motion  of  this  body ;  besides,  R  being 

a  finite  function  of  x,  y,  z,  x,  y',  z,  we  can  by  N°.  63  suppose  the 
elements  of  the  orbit  constant  in  the  differential  dR,  it  is  therefore 
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sufficient  to  make  ̂   to  vary  in  the  preceding  term,  and  as  the  differ- 

ence  of  (  is  ndt,  we  shall  have  i.m'.hidt.  sin.  (i'^'  —  i^  +  A)  for  the 
term  of  dR,  which  corresponds  to  the  preceding  term  of  R.  Thus,  by 
having  regard  only  to  this  term,  we  shall  have 

1        2i.Tr/    \,,     ,      . 

J  =  -y-'  f^^'dt.  sm.  ii'^—ilJ^A)  ; 

i  ~  ̂^^.  fSakrC'dt\  sin .  {i'^—ii  +  ̂ ). 

If  the  squares  and  products  of  the  disturbing  masses  be  neglected, 
we  can  in  the  integration  of  tliese  terms,  suppose  the  elements  of  elliptic 
motion  constant,  which  changes  {  into  nt,  and  ̂   into  n't ;  hence  we deduce 

1  2im'n.k  ..,  ,^     .  ̂       .. 
—  =   ,v  ,  ■  N'  cos.  (tn't — mt+  A) : 
a  fA..(in'-in)  ^' 

I  =r  —  — jv, — ^-To.  sin.  (mt — tnt-\-A]. 
*  fi..(tn-iny  ^ 

It  appears*  from  this,  that  if  «V — in  does  not  vanish,  the  quantities 

a  and  ̂   only  contain  periodical  inequalities,  the  approximation  being 

continued  as  far  as  the  first  power  of  the  disturbing  force ;  but  as 

i'  and  {  are  integral  numbers,  the  equation  i'n' — in  =  0,  cannot  have 
place  when  the  mean  motionst  of  m  and  of  m    are  incommensurable, 

•  This  conclusion  which  was  first  shewn  by  Laplace  to  be  true,  when  the  approxima- 
tion was  continued  as  far  as  the  first  power  of  the  disturbing  force,  and  as  far  as  the  pro- 

ducts of  four  dimensions  of  the  excentricities  and  inclinations,  was  shewn  by  Lagrange  to 

be  true,  taking  into  account  any  power  of  the  excentricity  and  inclination ;  and  it  was 

further  extended  by  Poisson,  and  afterwards  by  Laplace  and  Lagrange,  who  proved,  that 

even  continuing  the  approximation  as  far  as  the  squares  of  the  disturbing  forces,  no  ine- 

qualities, but  those  which  are  periodic  affect  the  major  axis  ;  and  in  general,  that  the  sta- 

bility of  the  planetary  system  is  not  deranged,  when  the  squares  of  the  masses,  and  all 

powers  of  the  excentricities  and  inclinations,  are  taken  into  account.    See  N".  o*. 

\  The  equation  i'n'  —  in  =  0,  w  ould  therefore  suppose  an  unique  case,  among  an  in- 

finity of  others  equally  possible,  besides  the  disturbing  action  of  m'  is  solely  considered  in 
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which  is  the  case  of  the  planets,  and  we  may  assume  in  general,  since 

n  and  n'  are  constant  arbitrary  quantities  susceptible  of  all  possible 

values,  that  their  exact  ratio,  number  to  number,  is  extremely  im- 

probable. 
We  are  consequently  brought  to  this  remarkable  conclusion,  namely, 

that  the  greater  axes  of  the  orbits  of  the  planets  and  their  mean  motions, 

are  only  subject  to  periodic  inequalities  depending  on  their  mutual 

configuration  ;  and  consequently,  if  these  quantities  be  neglected,  their 

greater  axes  are  constant,  and  their  mean  motions  are  uniform  :  which 

result  accords  with  that  which  was  previously  deduced  in  another 

manner,  in  N°.  54. 

If  the  mean  motions  nt  and  n't  without  being  accurately  com- 

mensurable, are  yet  very  nearly  in  the  ratio  of  i'  to  i ;  the  divisor  i'riL — in 

will  be  extremely  small,  and  there  would  result  in  {  and  ̂ ',  inequalities 
which  increasing  with  extreme  slowness,  may  give  ground  to  observers, 

to  think  that  the  mean  motions  of  the  bodies  vi  and  m',  are  not  uni- 
form. We  shall  see  in  the  theory  of  Jupiter  and  Saturn,  that  this 

is  the  case  relatively  to  those  two  planets ;  their  mean  motions  are 

such  that  twice  that  of  Jupiter,  is  very  nearly  equal  to  five  times  that  of 

Saturn  ;  so  that  5n' — 2n  is  not  the  seventy-fourth  part  of  n.  The 
smallness  of  this  divisor  renders  the  terra  of  the  expression  for  I, 

which  depends  on  the  angle  5n't — ^nt  extremely  sensible,  although  it 

is  of  the  order  ?■'—/,  of  of  the  third  order,*  with  respect  to  the  ex- 

this  case,  but  strictly  speaking  iZ  is  a  function  of  the  actions  of  all  the  planets  m',  m",  m"', 

&c.,  V  the  form  of  the  angle  will  he  (m  +  i'n'-{-i">i" +  Szc.)t+ A,  so  that  the  similar  equa. 

tion  of  mean  motion  would  suppose  in  +  i'n'+i'n" +  &c.  =0,  which  is  even  more  improba- 

ble than  the  equation  i'n' — iti=0  ;  besides,  if  this  last  equation  obtained,  when  there  were 

only  three  bodies,  it  would  cease  to  exist  when  the  action  of  the  other  planets  was 
taken  into  account. 

*  As  i'=5,  and?  =  2,  i'—i  =  3,  and  consequently,  the  periodic  function  is  multi- 

plied by  quantities  of  the  third  order,  with  respect  to  the  excentricities  and  inclinations- 

If  the  axis  major  is  subject  to  an  inequality  increasing  proportionally  to  the  time,  the  mean 

longitude  has  one  increasing  proportionally  to  the  square  of  the  time.     See  N".  5i- 
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centricities  and  inclinations  of  the  orbits,  as  has  been  observed  in  N*. 
48.  The  preceding  analysis  gives  the  most  sensible  part  of  these 

inequalities  ;  for  the  variation  of  the  mean  longitude  depends  on  tw^o 
integrations  ;  while  the  variations  of  the  other  elements  of  elliptic 

motion  depend  only  on  one  integration ;  consequently,  the  terms  of 

the  expression  for  the  mean  longitude  are  those  solely,  which  can  have 

the  square  of  (?V — in)  for  a  divisor  ;  therefore  taking  into  account  these 
terms  solely,  which  considering  the  smallness  of  this  divisor,  must  be 

the  most  considerable,  it  will  be  sufficient  in  the  expressions  for  the 

radius  vector,  the  longitude,  and  the  latitude,  to  increase  by  these 

terms  the  mean  longitude. 

When  we  have  inequalities  of  this  kind,  which  the  action  of  m 

produces  in  the  mean  motion  ofm;  it  is  easy  to  infer  the  correspond- 

ing inequalities  produced  by  the  action  of  m  on  the  mean  motion  of 

m'.     In  fact,  if  we  only  consider  the  mutual  action  of  the  three  bodies 

M,  m  and  m!  ;  the  formula  (7)  of  N".  9.  gives 

const.  =  ™.  V^+^^J:)  h.  „,,«f
e-+y+-^^") 

((mdx-{-in'da/y  +  {mdy  4-  rri'dr/y  +  (jndz  +  midzy )  ,  . 

2Mm  QMm'  2mm' 

The  last  of  the  integrals  {p)  of  the  preceding  number,  gives  by 

substituting  for  — ,  the  integral  S/dii a 

dx*->rdty-\-dz*  _    2.(M  +  7n)    __^  .^^ 

If  we  then  call;  R'  what  R  becomes,  when  the  action  of  m  on  mf  i« 

considered,  we  shall  have' 
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^,_  m.{xafAry2f-\-z^^ 
m 

df  -^/^^q^N^* 

the  differential  characteristic  d'  only  referring  to  the  coordinates 

x't y,  zl,  of  the  body  w!.     By   substituting   in  the  equation  (a)  in 

place  of   TIT   and  of    —-t:^-^   1  these  values,   we ^  df-  dt* 
shall  have 

mfdR+m'J'd'R  =  const. 

  C(m.dx+m'dx')*-\-(m.dy  +  n/.dy'y  +  {m.dz-{-m'.dz'y) 

2.(M  +  m+m')dt* 

It  is  evident  that  the  second  member  of  this  equation  does  not 

contain  terms  of  the  order  of  the  squares  and  of  the  products  of  the 

masses  m  and  m',  which  have  for  a  divisior  ifn' — in  j  therefore  if  we 
only  consider  such  terms,  we  shall  have 

mfdR+m'/d'H'  =  0 ; 
hence  if  we  only  take  into  account  those  terms,  of  which  the  divisor 

is  (i'n' — iny,  we  shall  have 

Sffa'n'dtd'R'  _  __  m.{M+m).a'n'     Sffandt.dR   ̂ 
M-\-m'        "        m'.(^M+m').an*        M+m        / 

but  we  have 

.  _  S.f/andtdR         __  S.ffdn'dt.d'R!  ̂ 

consequently 

PART  1.  BOOK  II.  3  B 
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7n'.(jM +m').an^' ±in.(M+m).a'n'))=.  0  ; 
moreover 

\/M+  m        ,       \/M4-m' ,   •      77'    —   I    . 
S  }      "■        ,5 

therefore  m  and  m'  being  neglected  in  comparison  with  M,  we  shall 
have  _ 

or 
m.y/a 

Thus  the  inequalities  of  ̂ ,  which  have  for  a  divisor  (i'n' — iny  will 
make  known  those  of  ̂ ',  which  have  the  same  divisor.  These  ine- 

qualities are,  as  we  have  seen,  affected  with  contrary  signs,  if  n  and 

n'  have  the  same  sign,  or  what  comes  to  the  same  thing,  if  the  two 

bodies  m  and  m'  revolve  in  the  same  direction ;  they  are  besides  in  a 
constant  ratio  to  each  other  ;  hence  it  follows,  that  if  they  appear  to 

accelerate  the  mean  motion  of  m,  they  will  appear  to  retard  that  of  m', 
according  to  the  same  law,  and  the  apparent  acceleration  of  m,  will 

be  to  the  apparent  retardation  of  m',  as  m'.\/a'  to  m.\/a.  The  acce- 
leration of  the  mean  motion  of  Jupiter,  and  the  retardation  of 

the  mean  motion  of  Saturn,  which  the  comparison  of  ancient 

with  modern  observations  made  known  to  Halley,  being  very  nearly 

in  this  ratio ;  I  have  inferred  from  the  preceding  theorem,  that  they  are 

owing  to  the  mutual  action  of  these  two  planets  ;  and  since  it  has 

been  demonstrated,  that  this  action  cannot  produce  any  change  in  the 

mean  motions,  independent  of  the  configuration  of  the  planets,  I  did 

not  hesitate  to  admit  that  there  exists  in  the  theory  of  Jupiter  and 

Saturn,  a  great  periodic  inequality  of  a  very  long  period.  And  observ- 
ing then  that  five  times  the  mean  motion  of  Saturn,  minus  twice  that 

of  Jupiter,  is  very  nearly  equal  to  cypher,  it  appeared  to  me  very 

probable  that  the  cause  of  the  phenomena  observed  by  Halley,  was 
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an  inequality  depending  on  this  argument.     The  determination  of  this 
inequality  verified  my  conjecture. 

The  period  of  the  argument  {i'n't — ini),  being  supposed  very  long, 
the  elements  of  the  orbits  m'  and  m  experience  in  this  interval 
sensible  variations,  which  it  is  essentially  necessary  to  consider  in  the 

double  mtegvsX  ff  akn* .dt^ .  sin.  (i'n't — int-^A).  For  this  purpose,  we 
shall  make  the  function  k.  sin.  [i'n't — int+A)  assume  the  form  Q. 

sin.  (i'n't — int+i'e' — ie)+Q.  cos.  (i'n't — int-\-i'e'—ie)  ;  Q  and  Q'  being 
functions  of  the  elements  of  the  orbits,  we  shall  have  consequently 

ffakn*.di\  sin.  (i'n't—int-^A)  =  • 

n*a.  sin,  (i'n't— int-\-i't— it)  ̂      _        2c?Q'   Sd^Q 
(i'ri—iny  V^      [i'n'^in).dt      (i'n'—in)\dt^ 

^  (i'n'—inydt^^        S 
3b  2 

•  Substituting  for  A  its  value  iV — u — gzr — g'w — g"t — g"'i;  sin.  [in't — inf+A)  =  sin. 

(in't — intJ^iW — ii).  cos.(g'o+g'a'-\-g"i-{-g"'i') — cos.{in't — int+i't — it),  sin.  (g-w+^'w'-t- 
g"H"g"'*)»  hence  the  value  of  k.  sin.  {iri't — inf+A)  will  be  given;  calling  in't — int  +  i't' 

. — ii-/t  +  b,  the  quantity  to  be  integrated  becomes  fdt.  fdt.  siB.(^Ji+b)Q+/dt. /dt.  cos. 

(./l+b).Q,  now  one  integration  gives  fdt.  sin.  (Ji-\-b).  Q=   rr-  cos.  {Ji+b)+-jrf. 

COS.  (fi  +  b).  dt.  -^.(=  j^'^-  sin.  (/^+J)+  jx-f-  sin.  {.fi-\-h)dt.  ̂ +  4c. 
O  \       dO  1       d^Q  1      d'Q 

=  ̂.cos.(fi  +  A)-yF.  ̂ . sin. (/<+&)+  _.  ̂ .cos.  (fi  +  b)^-^.-^, 

sin.(y]!  +  i)^&c. ;  in  like  manner  we  can  obtain  by  partial  integration,  yc?^  cos.(./?+A).Q' 

=  -^.  sin  (/<+6)+  -i  .  ̂.  cos.  (yi  +  i)  -  jr.  ̂-  sin-  (^2+*)— *c.,  in  order 

to  obuin  the  second  integrals,  i.  e.  fdt.  fdt.  sin.  (ft  +  b),  each  of  the  terms  of  the 

preceding  series  into  which  the  first  integrals  may  be  resolved,  should  be  multiplied  by 

dt,  and  then  integrated  in  the  same  manner  as  fdt.  sin.  (ft-\-b).  Q,  and  if  all  the  fac- 

tors of  sin.  (Jl  +  b),  and  cos.  {ft-\-b)  be  respectively  collected,  we  shall  obtain  by  sub. 

stituting  for  y and  b,  the  expression  given  in  the  text. 
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n'-a.  COS.  [i'n't—int-\-i't—u)  C  2rfQ  3rf*Q' \Q!  + 
(i'n'—iny  I       '   {i'n'—m).dt      {i'n'—inydt 

(i'n'—iny.dfi^ 

In  consequence  of  the  slowness  of  the  secular  variations  of  the  elliptic 
elements,  the  terms  of  these  two  series  decrease  with  great  rapidity. 
We  may  therefore  only  consider  the  two  first  terms  in  each  series.  If 

then  we  substitute  in  place  of  the  elements  of  the  orbits,  their  values 

arranged  according  to  the  powers  of  the  time,  the  first  power  being 
the  only  one  which  is  retained ;  the  preceding  double  integral  may  be 
transformed  into  one  sole  term  of  the  form 

{F-\-E.t').  sin.  (i'n't—mt-\-A-\-H.t). 

Relatively  to  Jupiter  and  Saturn,  this  expression  will  serve  for  several 

centuries  before  and  after  the  instant,  which  may  have  been  selected  for 
the  epoch. 

The  great  inequalities  of  which  we  have  been  speaking,  produce  some 
sensible  terms  among  those  which  depend  on  the  second  power  of  the 
disturbing  masses.     In  fact,  if  in  the  formula 

^  _  3w^^  ffakn\dt\  sin.  {i'^—i?^  +  A)  j 

we  substitute  for  |  and  ̂   their  values 

2i.m'.an''k 

nt- 

-TTj-, — ^t;  •  sin-  i^t^t — int+A) ; 

fA.(tn — my  t     j> 

there  will  result  among  the  terms  of  the  order  ra*,  the  following 

•   Assuming  p  =  -  .     ,  and  /  =        ,  ,     ̂ rr.  -rrr  ,   the  value  of  ̂   =  £. 
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There  will  result  in  the  value  of  |'  a  corresponding  term,  which  is  to  the 

preceding  in  the  ratio  oi  m.\/a  to  — m'.>/d ,  it  is  therefore 

3.i*.w»'*a*.n*.F  C  .—  ,—  1  m.\/~a 

66,  It  may  happen,  that  the  most  sensible  inequalities  of  mean 
motion  occur  among  the  terras  of  the  order  of  the  squares  of  the  dis- 

turbing masses.  If  we  suppose  three  bodies  m,  m',  rr^',  to  revolve 
about  M,  the  expression  for  di2  relative  to  terms  of  this  order,  will 

contain  inequalities  of  the  form  A.  sin.  (?n/ — ?'n7+«V^+^)>  now  if 
the  mean  motions  of  m,  m\  rnf,  &c.,  are  such  that  in — ?n'  +  i"n!', 
may  be  supposed  a  very  small  fraction  of  n,  there  will  result  a  very 
sensible  inequality  in  the  value  of  ̂ .  This  inequality  may  even 

render  rigorously  equal  to  cypher,  the  quantity  in — i'n'  +  i'n",  and  thus 
establish  an  equation  of  condition  between  the  mean  motions  and  the 

mean  longitudes  of  the  three  bodies  m,  ni,  rnf'-,  this  remarkable  case 
obtains  in  the  system  of  the  satellites  of  Jupiter.  We  proceed  to  deve- 
lope  the  analysis  of  it. 

If  we  suppose  M  to  represent  the  unity  of  mass,  and  if  m,  m',  m", 
be  neglected  in  comparison  with  M,  we  shall  have 

ffdi^.  sin.  {irlt — int-\-(jl — p).  sin.  {irit — int — A)  + A)  (a),  now  ify,p  be  supposed  to  be 
very  small,  we  shall  have  sin.  ((p'— jj).  sin.  {in't — intJf  A))  =  (y— ;?).  sin.  {i'n't — in/-f- A)» 
and  the  cosine  of  the  same  quantity  =1,  in  each  case  these  expressions  are  true,  for  the 

first  power  of  the  disturbing  force  ;  •/  in  the  expression  (a)  a  term  occurs  =£.  cos.(i'n't   int 

+  A)  (i'pf+ip).  sin.  (i'n't — inf— A)=  — .  (i'p'+ip)'  sin.2.(in't — int  +  A),  now  i'p/  +  ip 

_  3ian^k.(i'mVa  +  im'.^a'         ,  „        Sim'^aM  ,  _  . 
  — :   ,  and  E  =r   ,  "the  coefficient  of  sin.  2.(n't — nt 

fi.{i'n'—inf.V  a!  f*-"* 

,    ..        9i\m'°-.aV.k^     {i'mVa  +i'm'V7 .        ̂       ,         ,_     ̂     ,.,     .  .      . +  A)=:  ■     , , .,   :— — •    7=   ),  and  when  the  double  integration  is  per- 

formed,  there  will  result  the  expression  given  in  the  text. 
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we  have  also 

dlzz  ndt',  d^  =  n'dt;  di"=  nf'dt; 
consequently 

d»i  3     ̂   da       d^'  3      ,i  da!       d^?"  3     A  da" 

dt\-      r^'  a*    '     dt  -       I'd''      dt   -      2*"    v»- 

It  has  been  observed  in  N°.  6l,  that  if  we  only  consider  inequalities 
which  have  very  long  periods,  we  have 

,     ,       m    ,    m'    ,    m" constant  =   1   r  H   t  ; 
a         a  a' 

which  gives 

da  ,    da'  .     ,,  da" 
a*  a*  ff'* 

It  has  been  also  observed  in  the  same  number,  that  if  the  squares 

of  the  excentricities  and  of  the  inclinations  of  the  orbits  be  neglected, 
we  have 

constant  =  m.\/a  +  vd.y/d  -\-m".\/a"  j 

which  gives 

_        mda       ni.dd    .    m\da" 0  =  — ;=   + — 7^=-  + 

x/a         x/a'  n/o*    * 
From  these  different  equations  it  is  easy  to  infer 

d'^l  _      3     \    da      * ~dr-'~2-'^'  d^ 

d^_3_    m.n's     /  n—n"  \     da 
\fit   ~  -2'    m'.n  •  \n'—n")'   a« 
d*^"  _      3  m.n"i      /  n—ri  \     da 

dt  ~      2   m".n'  \n-^'' )  '    a** 

,      I        1  2      dn        da         ̂    d^K         ,  i       I    da       .    ... 
•   n^ss — ,  ••  — -x* — r=— ̂ .  and— T^=:rf«=:— —  .R  .  — r;   '« '»"  manner 
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da 

Finally,  the  equation  —  =  2/di?,  of  N°.  64,  gives 

zz  2diJ. 

It  is  therefore  only  requisite  to  determine  AR. 

By  N°.  46  we  have, 
m.r 

,-N~J 

R  =  —jr-  COS.  (y'—v) — rri.(r* — 2rr'.  cos.  (r/ — 5y)+r'«) 

r"
 

yJI 

nt'.r 

+  ̂ .  cos.  (i/"— v)— m^(r»— Srr^''.  cos.  (5:;"_t;)+r"*) 

the  squares  and  the  products  of  the  inclinations  of  the  orbits  being  ne- 
glected. If  this  function  be  developed  into  a  series  arranged  accord- 

ing  to  the  powers  of  the  cosines  of  »' — v,  of  i/' — v,  and  of  their 
multiples  :  we  shall  have  an  expression  of  the  following  form, 

/2  =  -^.  ir,ry^^m:{r,ry\  cos.  (v'~v')^m'.(r,rT\  cos.  2.(t/— r^) 

-j-w'.(r,r')'".  cos.  3.(w'— w)+&c. 

+  -^'  (,r,r'y^^rri'.{ryY\co%.{v''^v)^rri'.{ryT-  cos.  1.\x/'^v) 

4  2 

maa    ,    maa  _  ""     =  f  as  n= — 1-   1   7^=—  ,   therefore  multiplying 

-I      -t            ,    „          .     m.nn'.da         m'nri.da'        mn'n".da 
both  sides  by  »in'=a  ''.  a'  *=,  we  shall  obtain    1   1   —  =    -^   1- 

m'rm'Kda'        ^    da'  _  m.n'.{n—n")      da_   ..J^^_^   „,i     _^__i.M.n't 

J?       '  '•*     a«  ~  ?«'.«.(«'—«")'   a«  '  '•'    dt  2'         ■    a'^        ̂ ''i^' 

(M_n^    -JL   the  expression  for  — r-  may  be  obtained  in  a  similar  manner. 
(«"_«')      a*  '  ^  dt  ̂  
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heuce  we  obtain 

dR  = 

dr. 

m 

  < 

2 

"2~ 

]d.(r,rT 

dr \  +'^'ldr      \'  ^os.{r/-v)  +  mf. 

d.(r,ry^ dr .  COS.  2.(5/ — f)+&c. 

\d.{r/'y^] 
:       dr      " 

+m\^ d.{ryy^\ 

dr      ' 
,008.(5/ — !:;)-|-»i''. 

(^  j     \^y.       (-008.2.(1/^— t;)
+&c. 

I  +^t,  S  ̂'-(r.r^Tl  sin.  (»'-t;)+2ffz'.(r,r0''^  sin.'2.(t;*-t;)+&c. 
L         '  W'.(r,r'/)a).sin.(r;^-t;)+2OT".(r,r"p.sin.2.(t;"-y)+&c. 

Suppose  agreeably  to  what  is  indicated  by  observations,   in  the  system 

of  the  three  first  satellites  of  Jupiter,  that  n — '^n',  and  n' — 2«".  are 

very  small  fractions  of  n,  and  that  their  difference  (n'—9,n')—(n' — ^2w"), 
or  n — 3n'-\-2n!'  is  incomparably  less  than  each  of  them.     It  results Sr 

from  the  expressions  of  — ,  and  oi  Sv,  of  N°.50,  that  the  action  of  wt' 

produces  in  the  radius  vector,  and  in  the  longitude  of  m,  a  very  sen- 

sible inequality,  depending  on  the  argument  2.(n7 — nt-{-t — 1).  The 

terms  relative  to  this  inequality  ,have  for  a  divisor  4.(n'— n)* — w*,  or 

(n — ^n').(3n — 2m').  and  this  divisor  is  extremely  small  in  consequence 
of  the  smallness  of  the  factor  n — 2n',  It  appears  also  from  a  conside- 

ration of  the  same  expressions,  that  the  action  of  m  produces  in  the 

radius  vector,  and  in  the  longitude  of  m',  an  inequality  depending  on 

the  argument  (n't — nt-\-t — e),  and  which  as  it  has  for  a  divisor  («' — n)* 

— n''  or  n.(n— 2«')  is  extremely  sensible.  It  appears  in  like  manner, 
that  the  action  of  m"  on  m  produces  in  the  same  quantities  a  consi- 

derable inequality,  depending  on  the  argument  2.(w"/^ — n't-\-i" — «'). 
Finally,  we  may  perceive  that  the  action  of  m',  produces  in  the  longi- 

tude and  radius  vector  of  m"  a  considerable  inequality,  depending  on 

the  argument  n''t — n't-\-('' — t'.  These  inequalities  have  been  recog- 

nized by   observations,   we  shall  devclope  them  in  detail  in  the  theoi*y 
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of  the  satellites  of  Jupiter ;  their  magnitude  relative  to  the  other  ine- 

qualities permits  us  to  neglect  the  latter  in  the  present  question.  Let 
us  therefore  suppose 

ir-=.m'.E'.  COS.  2.(wV— n^+t'— t)  ; 
ivzzm.F.  sin.  2.(n't — nt+ 1 — i)  ; 

iT^=m".E".  COS.  '2.{nl't—nt-]rt"--i')+m.G.  cos.  (j^f—nt+t'—i) ; 
Sv'=m".F".  sin.  2.{n't—n't+i"—i')+m.H.  sin.  (n't—nti-t'—i)  ; 
irJ'-m".G".  COS.  {n"t—n't-\-e"—t') ; 
iv"=m".H'.  sin.  (n"t—n't  +  i"—i')- 

It  is  necessary  now  to  substitute  in  the  preceding  expression  for  d^, 

instead  of  r,  v,  r',  v',  r",  v",  the  values  of  a-tSr,  ni-\-i+h',  a' +3/, 
n't+t'+Sv',  a"-\-ir'',  n"t  +  ("-\-Sv",  and  only  to  retain  the  terms  de- 

pending on  the  argument  nt—3n't-{-2n"t+  i — Ss'+Sf",  it  is  easy  to  see 

that  the  substitution  of  the  values  of  ir,  Sv,  Sr",  Sv",  cannot  produce 
any  such  term.  Therefore  it  can  only  arise  from  the  substitution  of 

the  values  of  Sr^,  and  of  Sv' ;  the  term  m'.{r,r'y^\  dv.  sin.  (y' — v)  of 
the  expression  of  d7?,  produces  the  following  quantity  : 

  2     \E\  — ^V   F  .(a,a'y^).sir\.nt-3n'l-if2n't+(-3f]-2i"). 

And  it  is  the  only  quantity  of  this  kind,  which  the  expression  of  dR 
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*  (r/)(«)  =  (a,ffl')W+   '^•^''f^^'\  ̂ r+  ̂ 6^.  3/  +  &c. ;  sin.  (v'—v)  =  sin.  («'<+»' da  ■da 

+3i/ — nt — e — 3w)  =  sin.  (n't — nt  +  s' — f)  +  cos.  {n't  —  ni  +  s'  — »).  dv'  &c. ;  by  substi- 

tuting for  V,  we  shall  have  ̂ i^^^,  J/  =  d.(a'a')W  ̂   ̂ ^„^,^  ̂ ^^  {2.{n"t—n't+  •"— s'), 
da  da 

which  when  multiplied  into  sin.  {n't — n^-j-s' — i)  gives  a  term  of  the  form  — m".E".  sin.  (nt 

— Sn't-\-2n"t-\.i — 3£'+2e"),  in  like  manner  by  substituting  for  3d',  we  obtain  cos.  (»V — 

»if +j — s').  ivf  = —  m".P.  sin.  (nt — 3n't  +  2n"t  +  s— 3e'  +  2s"),  hence  if  we  substitute  for 
dv  its  value,  there  will  result  in  the  term  m',  (r,r')(').  dv.  sin.  (i/ — r),  the  expression  which 
is  given  in  the  text. 
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ir 

contains.     The  expressions  of — and  of  J^  of  N°.  50,  being  applied  to 

the  action  of  m"  on  m',  give,  when  the  terms  which  have  n* — 2m'   for 
a  divisor  are  retained,  and  observing  that  n"  is  very  nearly  equal  to 
UL 

2  ' 
E'  _  ̂        L         t       dd       S  '    ri — n         ̂ 3 
~d~  ~  (w^2n").  (3w'— 2w") 

therefore  we  shall  have 

^^_  m'.rri'.ndt   ̂ ,  ■\%\a,a!T     {d.(,a,a'y^)  i 
2         '      'I        a'  da'         S 

X  sin.  (nt—3n't+2n"t+('—3s'  +  2s")=—  4-  -r. 

This  value  of  -^-  being  substituted  in  the  values  of  — ~-,  — ^  ,  and a*  °  dt       dt 

d''l" ■^  •,  will  give,  because  n  is  very  nearly  equal  to  2n',  and  n  is  very 

nearly  equal  to  2«"; 

*  In  page  296,  if  we  substitute  for  — 5 —  ,  A'-^\  their  values,  the  coefficient  of  cos. 

da! 

2inH-n't+  ."_0  becomes  =  ̂   .  n'^.a'^  '-^^  +  -^,  «'.(a;«"P  =  t!^' ; ^  '  '  2  da!  n — n"  a' 

(n'— 2n").(3«'— 2n") 

in  like  manner  the  coefficient  of  sin.  2.(«"i — n't+s" — t')  in  the  expression  for  Jv',  given 

b  page  298,  =  In'',  a-.  -^J-  +  -,-^, .  a'.(a!a'T  ^E" -=F"  =  ' 

^.  («'— 2n").(3n'— 27i") 
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d^  _  ̂ ^+  ̂ S-=  e^*-  sin.  Ciit—^nf-t^n'r+i—Si  +  Se")  ;* at  dJ'  atr 

(6  being  made,  in  order  to  abridge,  equal  to 

Or  more  accurately, 

SO  that  if  we  assume 

V  =  ̂ —3^'  +  2|"+  £— S5'  +  2£", 
we  shall  have 

—   ■=.  €.«*.  sin.  F. 

dt^"
 

As  the  mean  distances  a,  a',  a",  and  also  the  quantity  n  vary  very 

little,  we  can  in  this  equation  consider  €«*  as  a  constant  quantity.  By 
integrating  it,  we  obtain 

3c2 

dr?,  3      I  da 
*    —4-  =   .  n^        therefore  multiplying  by   n,    we    obtain  the    coeflScient 
ar  2  a* 

of  — r  =  —  ̂ .  n"  =  —  -^  .  n=a,  therefore  by  substituting  for  — j-  ,  we  obtain  —^  = 

j„  /2.y)  _  '^•("^«0"'y  „"-.„'^"o.  sin.(«f_2n7+3?j"«+s~3»'-2e");  in  like 

„  da    .     ,  ^d°t       S      mn'i       3?        9     wn'^a' manner  the  coefficient  of—-  m  the  value  of  -rr  =  -^'  — ; — •  — ^='7;* — ; —  ' 
"-  dt-        2       m'.n         *         2      »»'.?< a-  „ 

2 

which  being  multiplied  into  m"m'ndt,  gives  (by  substituting  for  n'-,  its  value  /—  )  1  —- 

^^=1.  E„(Wfl_dJ^Y_^  ^,^^_,^^,,    sin.(«.-3«.+2«"/+.-3.'+2.«). rfr        2  \       a'  da'      I  '^ 

1d-l" 
The  value  of  -     -  may  be  obtained  in  a  similar  mamier. 
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±dV 
dt  = 

\/c — 2S«*.  COS.  V 

c  being  a  constant  arbitrary  quantity.     From  tlie  different  values  of 

which  this  constant  is  susceptible,  the  three  following  cases  arise. 

If  c  be  positive  and  greater  than  ±2S«*,  the  angle  F  will  increase 
continually  ;  and  this  will  be  the  case,  if,  at  the  commencement  of 

the  motion  (« — 3n'-j-2n"y  is  greater*  than  ±2Qn*.(l  +cos.  V),  the  su- 
perior, or  lower  signs  having  place  according  as  S  is  positive  or  negative. 

It  is  easy  to  be  assured,  and  shall  we  point  it  out  particularly  in  the  theory 

of  the  satellites  of  Jupiter,  that  6  is  a  positive  quantity  relative  to  the 

three  first  satellites;  therefore,  supposing  T  ■a- =  tt — V,f  (n  being 
the  seraicircumference)  we  shall  have 

dt=  ̂
" \/c-f-2S«*. COS. ra- 

in the  interval  from  zr  =  0,  to  la  ir  — ;  the  radical  v/c+^^??2*.  cos.ra^ 

is  greater  than  ̂ 2Sn*,  when  c  is  equal  to  or  greater  than  2Qn'  ;  there- 
fore, the  time  t  in  which  the  angle  u  passes  from  zero  to  a  right  angles 

is  less  than   7=^*     '^^^  value  of  S  depends  on  the  masses  m,  m', 

fn".  The  inequalities  which  have  been  observed  in  the  motions  of  the 
three  first  satellites  of  .Jupiter,  and  which  we  have  already  adverted  to, 

assign  relations  between  their  masses  and  that  of  Jupiter,  from  which  it 

*  If  c  be  positive  and  greater  than  ±  2£n',  the  angle  V  must  always  increase,  for  the 

quantity  under  the  radical  sign  can  never  be  equal  to  cypher  ;  c  —  2?n'.  cos.  ̂   =  I  -77-) 

=  (n—  3/i'  +  2n"f,  if  this  quantity  be  greater  than   ±  2£n'.(l  :+.  cos.  V),  c — 2Zv?.  cos. 

Fmust  be  greater  than  ±2.  S«^.(l  rpcos.  V)  ;  i.  e.  c  must  be  greater  than  2Sn'. 

f  By  making  q:  -srz:  ir- —  V,  we  get  rid  of  the  ambiguity  of  sign  in  the  value  oidU 
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follows  that    >=  is  less  than*  two  years,  as  we  shall  see  in  the 

theory  of  these  satellites.  Therefore  the  angle  ra-  passes  from  zero  to  a 
right  angle  in  less  than  two  years ;  now  from  observations  made  on 

Jupiter's  satellites,  it  appears  that  since  their  discovery,  the  angle  w 
has  been  either  equal  to  cypher,  or  insensible,  consequently  the  case 

which  we  have  examined,  is  not  that  of  the  three  first  satellites  of 

Jupiter. 

If  the  constant  c  is  less  than  ±  2Sw*,  the  angle  Fwill  only  oscillate,  it 
will  never  attain  to  two  right  angles,  if  €  be  negative,  since  then  the 

radical  v'^c — 2g?z*.  cos.  V  will  become  imaginary  ;t  it  will  be  never 
equal  to  cypher,  if  €  is  positive.  In  the  first  case,  its  value  will  be  al- 

ternately greater  or  less  than  cypher ;  in  the  second  case,  it  will  be 

alternately  greater  or  less  than  two  right  angles.  From  all  observations 

made  on  the  three  first  satellites  of  Jupiter,  it  appears  that  this  second 

case,  is  that  of  these  stars,  therefore  the  value  of  £  ought  to  be  positive 

relatively  to  them,  and  as  the  theory  of  gravity  assigns  a  positive  value 

to  €,  we  ought  to  consider  this  phenomenon  as  an  additional  confir- 
mation of  this  theory. 

Since  according  to  observation,  the  angle  a-  in  the  equation 

*  As  7)  =:  -— -  ,  P  being  the  time  of  revolution  of  the  first  satellite,  we  have  t  Z 

P 

;  the  value  of  £  depends  on  the  masses  m,  m',  m",  and  also  on  n,  ri,  n",  these  last 

are  had  by  knowing  the  periodic  times  of  the  three  first  satellites,  and  the  first  are  deter- 

mined by  their  effects  in  producing  certain  inequalities,  and  are  obtained  in  the  same 

manner  as  the  masses  of  Venus,  Mercury,  and  Mars,  are  determined  from  certain  effects 

which  they  produce  on  the  earth's  orbit. 
-|-  When  c  is  negative  and  less  than  q:2Sn',  the  radical  is  evidently  imaginary  when 

F=?r ;  •/  V  can  never  be  =  to  «-,  and  it  must  be  alternately  positive  and  negative,  its 

mean  value  being  equal  to  cypher.  If  €  is  positive,  the  radical  is  evidently  imaginary 

when  r=0;  v  '"  t^'®  case  V  can  never  be  =0,  its  value  is  therefore  periodic,  and  in 

its  mean  state  is  equal  (o  ir. 



3«2  CELESTIAL  MECHANICS, 

dtz=     .        ̂"      ,* 
V  C+2g?l*.  COS.  TS 

must  be  always  very  small,  we  can  suppose  cos.  w  =  1 — ^t^-*,  and  the 
preceding  equation  will  give  by  integrating  it, 

w  =  A.  sin.  Qiit.\/1,  +  y), 

X  and  y  being  two  constant  arbitrary  quantities,  which  can  be  deter- 
mined by  observation  alone.  Hitherto,  it  has  not  indicated  this  ine- 

quality, which  proves  that  it  is  extremely  small. 

From  the  preceding  analysis  the  following  consequences  may  be 

inferred.  Since  the  angle  nt — 3n7-(-2n'^?+£ — 3/ — 2/  only  oscillates 
on  one  side  or  other  of  two  right  angles,  its  mean  value  is  equal  to  two 

right  angles ;  therefore  we  shall  have,  if  we  only  consider  mean 

quantities,  n  —  3n'  +  2Tf  zz  0 ;  that  is  to  say,  the  mean  motion  of 
the  Jirst  satellite  plus  tmce  that  of  the  third,  minus  three  times  that  of 

the  second,  is  exactly  and  constantly  equal  to  cypher.  It  is  not  ne- 

cessary that  this  equality  should  accurately  obtain  at  the  commence- 

ment, which  would  be  extremely  improbable,  it  is  sufficient  that  it  should 

be  nearly  the  case,  and  that  n — 3}i'+2n''^,  should  be,  abstracting  from  the 
sign,  less  thant  x.n.^^;  and  then  the  mutual  attraction  of  these  three 

satellites  would  have  rendered  this  relation  rigorously  exact.  We  have 

therefore  n — 3n'  +  In"  equal  to  two  right  angles  ;  hence,  the  mean  lon- 
gitude of  the  first  satellite,  minus  three  times  the  mean  longitude  of  the 

second,  plus  twice  tliat  of  the  third  is  exactly  and  constantly  equal  to 

*  Tlie  equation  ■  ,  is  that  of  a  pendulum  whose  length  is  -^ ,  i.  being 
VC  +  'iSn".  COS.  ar  **" 

the  number  of  seconds  in  a  revolution  of  the  first  satellite,  the  amplitude  of  the  arc  of  vi- 

bration  being   -—  • 

*  Or  in  other  words,  at  the  origin  of  the  motion,  it  should  be  comprized  within  the 
limits  ±  x.n.VZ, 
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two  right  angles.  In  consequence  of  this  theorem,  the  preceding  va- 

lues of  Sr'  and  Sv  are  reduced  to  the  following, 

Sr'  =  (m.G—mfW)-  cos.  (n't—nt+^—i)  ;* 

iv'=  [m.H—m'F').  sin.  {n't—nt-\-i'—i). 

The  two  inequalities  in  the  motion  of  m!,  arising  from  the  action  of 

m  and  oim".  are  consequently  confounded  into  one,  and  will  be  always 
combined.  It  follows  also,  that  the  three  first  satellites  can  never  be 

eclipsed  together  ;  they  cannot  be  seen  together  from  Jupiter,  neither 

in  opposition  nor  in  conjunetion  with  the  sun ;  for  it  is  easy  to 

perceive  that  the  preceding  theorems  obtain  equally  for  the  mean  sy- 

nodic motions,  and  the  mean  synodic  longitudes  of  the  three  satellites. 

These  two  theorems  likewise  obtain,  notwithstanding  the  changes  which 

the  mean  motions  of  the  satellites  may  experience,  either  from  a  cause 

similar  to  that  which  alters  the  mean  motion  of  the  moon,  or  from  the  re- 

sistance of  a  very  rare  medium.  It  is  evident  that  if  these  different  causes 

d''V 

operated  it  would  be  merely  requisite  to  add  to  the  value  of  —jpr  >    ̂  

quantity  of  the  form  j",  which  can  only  become  sensible  by  inte- 

grations ;  supposing  therefore  Vznir  —  -nr,  and  ts  very  small,  the  differ- 
ential equation  in  V  will  become 

0=——-  +  e«*.:D-  +         ̂  
df     '  df 

As  the  period  of  the  angle  w/.v^S  embraces  but  a  very  few  number  of 

years,  while  the  quantities  containedt  in  — rv  ̂ ^^   either  constant  or 

*  For2n"<.J.2i"— 2n'i— 26'  =  a-+M'i— 2<f+6'— t,  V  m".E".cos.  2.(«"<— n'^-f-s"— t')  = 

— m".E".  COS.  (n't — n^-f-s' — s),  in  a  similar  manner,  for  the  value  of  m".F".  sin.  2.{n"t — 

n'i+i''_8')  may  be  sabstituted  -~m".F".  sin.  (n'i— nt-J-s' — s). 
t  The  period  of  the  variation  of  ct,  and  •/  of  V  will  be  determined  by  means  of  the 
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extend  to  several  centuries,  we  shall  obtain  very  nearly,  by  integrating 

the  preceding  equation 

7^  =  x.  sin.  (nt.\  ̂ +y)  —  g^^r^- 

Thus  the  value  of  w  will  be  always  extremely  small,  and  the  secular 

equations  of  the  mean  motions  of  the  three  first  satellites  will  be  coor- 

dinated by  the  mutual  action  of  these  stars,  so  that  the  secular  equation 

of  the  first  plus  twice  that  of  the  third,  minus  three  times  that  of 

the  second,  is  equal  to  cypher. 

The  preceding  theorems  establish  between  the  six  constants  n,  n',  n" 

e,  e,  £*,  two  equations  of  condition  by  means  of  which  these  arbitrary 
quantities  are  reduced  to  four.  However  they  are  replaced  by  the  two 

arbitrary  quantities  \  and  y,  of  the  value  ofw.  This  value  is  distributed 

between  the  three  satellites  in  such  a  manner,  that  naming  p,  p',  j/^, 

the  coefficients  of  sin.  (7it.\/i-j-y)  in  the  expressions  for  v,  f',  5/ ;  those 

c/*<?    d*l'   d^^' coefficients  are  in  the  ratio  of  the  preceding  values  of     ,\i  -r^'  -j^» \M/L  (J/y  d/L 

and  moreover,  we  have  p — 3/y+2p''=iA.  Hence,  results  in  the  mean 
motions  of  the  three  first  satellites  of  Jupiter,  an  inequality  which  differs 

for  each  of  them  in  the  value  of  its  coefficient,  and  which  produces  in 

these  motions  a  species  of  vibration  the  extent  of  which  is  arbitrary. 

It  appears  from  observation  that  it  is  insensible. 

67.  Let  us  now  consider  the  variations  of  the  excentricities  and 

,_  P 

equation  nt.vZ  =  2?r,  •/  as  nP=27r,  tzz  ~7^\  hence  the  two  limits  of*  depend  on  those 

The  integral  of  the  equation  — — -  +  S?i'-w=0,  is  «r=A'.  sin.  («<.^^£  +  y) ;    nd  in  the 

ofC. 

IP  intPCTal   of  flip   pniiatinn  .   

equation  isr=x.  sin.  (ni.V'S  +  y)—  ■  ;  the  mean  value  of -37-,  and  •/  of  n  —  3h'-|- Z.n  .at-  lit 

^n')  =  0. 
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perihelias  of  the  orbits.  For  this  purpose,  let  the  expressions  of  df, 

df,  df",  found  in  N°.  64,  be  resumed  :  naming  r  the  radius  vector  of 
m,  projected  on  the  plane  of  x,  and  oi  y  ;  v  the  angle  which  this 

projection  makes  with  the  axis  of  x,  and  5  the  tangent  of  latitude  of  m 

above  the  same  plane  ;  we  shall  have 

x-=zr.  COS.  v;  y  z=.r.  sin.  w ;  z-=.rs\ 

hence  it  is  easy  to  conclude 

X. 

\dy\      ̂ '  Idx  \-ldvS' 
idRl  idR-i     ,,  ,   ̂ -  idR)  ^dRf sin. 

(dR 

.* 

SdR}  (dR)     ̂     ,    ,,    .         {dR)  .         Cc?i?) 5.  COS. 

L  (is  )  (.  ar  ̂  dR: 

^dRi 
moreover,  by  N°.  64,  we  have 

PART  r.   BOOK  ir.  3  D 

,      {^\_  (^\     dr       fdR\  .  dv        fdR\  ds     (^\  _  (dR\     dr       /'iR\ 

^     \dx)-  \dr)'~d^'^[Tv)'~d^'^['dIJ'  lL'U^)~[d,)-    dy/^Kuv)' 

dv        /dR\  ds             /-      X  dv     .            v^ 

2                  ds            Z.X      dv                  x-  ds             zu      ,                 dR 
—       ••   — .  COS.  v=—r  ; -r~  =■   t->   hence  ar.   

Vxt+^i'     '     dx  t^   '   di/'       '         r'  '  dy  r^  dy 

/dR\  fdR\       dR  (r.  cos.  u        r^.s^.  cos.  v\      dR  .   dR 
manner  x.l  -r- )  —  z.  ( -—  I  =  -—— i   1   •   1   —     r.  cos.  v.s.  +  — -• 

\dz)  \dxl         ds   \         r        ̂   7^  I        dr  *  ^  dv 
rs.  sin.  v  ,  .  i  ■  • 

=  the  expression  in  the  text,  and  by  a  similar  process  the  remaming  terms  may r 

be  obtained 
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xdy—ydxzzcdt'y  xdz — zdxz=.c!dt,  ydz—zdy—d'dt; 

these  differential  equations  in  f,f\  f",  will  consequently  become 

df=-dy.\-^^\-dz.p  +  s^).co..v.  j-^-r..  COS.  r.  \-^[  + 

\dR}-> 

..sm...  J^J^ 

,^  S  ■        UlR)  ,    cos.w  (.dR)      5.  sin,  w  {dR)  }       c'-di  ̂ dRf 
C  car)  r      (Cf)  r        (  ds  ))         r      ( dsy 

df'zzdx.  ]  -=-  i — dz.  ]  (1  +  5*).  sin.  v.  ]^-l  — rs.  sin.  v.   .    , 
Cdv  )  i^  ■'  t  ds  S  id? 

SdR-)} 
(  6?y  3  ) 

+  Cfl/.   SCOS.  V.   <-z-> 

dR) —  s. 

COS. 

sin.f    ̂ dR}        5.  COS.  t'     ̂ dR}}       d\dt 

(  dv  S  r  i  ds 

$dRi 
I  dsS' 

dj'  z=dx.  J(l-|-s»).  COS.  '"']--j-\ — r.s.  cos.  vA-j->-^s.sm.vA--r^'> 

dR)  UR} 
-r-  (■ — S.  COS.  r.  <^-  s- dr  )  (dv  ) ■j-dy.<(l-\-s').sin.v.\-j-i —  r.5,  sin,  v.  V-^[ — s.  cos,  t C  Cus  )  t  dr  ) 

,     ,   T,   ̂              {dRf  sin.  vidRl  5,  cos.  f    idRf) 
c              (  dr  y  r      (dv  ̂   r         i  ds  j) 

,     ,, ,.   S  •        SdR}  ,  cos.  w    ̂ dR)  5.  sin.  t'  {dRl  1 
^            L  dri  r       L  dv  )  r        (  ds^} 

The  quantities  c,  c"  depend,  as  we  have  seen  in  N".  64,  on  the 
inclination  of  the  orbit  of  m  to  the  fixed  plane,  so  that  these  quan- 

tities become  equal  to  zero,  if  this  inclination  is  nothing  ;  besides  it  is 

easy  to  perceive,  from  the  nature  of  i?,  tiiat  j  -j^i  is  of  the  order  of  the 

\_   do    \ inclinations  of  the  orbits ;  tlierefore  the  products  and  the  squares  of 

the  inclinations  of  tlie  orbits  being  neglected,  the  preceding  expres- 
sions for  djl  and  df',  will  become 
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„,       ,      /dR\   ,      ,,  C  fdR\        COS.  r    fdR\^ 

but  we  have 

dx  zz.  d.[r.  COS.  v);  dyzz  d.{r.  sin.  v)  ;  cdt  ■=.  xdy — ydx  n  r*dv ; 

therefore  we  shall  have 

df-=.  —  (dr.%\x\.  v-\-2rdv.  cos.  v).  (  -7-  )  — r*.c?r.  sin.  r.  (  "j"  )  >* 

df'zz(dr.  COS.  t; — 2r</y.  sin.  f).  |  -y-  )  +  r^'.dv,  cos.  ̂ '  I  77-  1  • 

These  equations  will  be  more  exact,  if  we  assume  for  the  fixed 

plane  of  x  and  y,  that  of  the  orbit  of  vi  at  a  given  epoch  ;  for  then  d, 

d\  and  s,  are  of  the  order  of  the  disturbing  forces  ;  consequently  the 

quantities  which  are  neglected  are  of  the  order  of  the  squares  of  the 

disturbing  forces  multiplied  by  the  square  of  the  respective  inclination 
of  the  two  orbits  of  m  and  of  iii. 

The  values  of  r,  dr,  dv,  (  -7-.  )    (  -j-  )   remain  evidently  the  same, 

whatever  be  the  position  of  the  point  from  which  the  longitudes  are 

reckoned  ;  but  if  v  be  diminished  by  a  right  angle,  sin  v  will  be  changed 

into  —COS.  V,  and  cos.  v  will  be  changed  into  sin  v,  consequently  the 

expression  for  df  will  be  changed  into  that  of  df  ;  hence  it  follows, 

that  if  the  value  of  dfhe  developed  into  a  series  of  the  sines  and  cosines 

of  angles  increasing  proportionally  to  the  time,  the  value  of  df  will 

3d2 

cdt.  COS.  V  ,  ,  m  •     .    /.  /liRy 
=  rdv.  COS.  V,  •,'  the  coefficient  of  ( —  j  in  the  value  o{  df  is  2rdv.  cos.  v. 



388  CELESTIAL  MECHANICS, 

be  obtained  by  diminishing  in  the  first,  the  angles  c,  c,  -a,  w',  6  and  6', 
by  a  light  angle. 

The    quantities  y  and y   determine  the  position  of  the  perihelion 

and  the  excentricity  of  the  orbit ;  in  fact,  we  have  seen  in  N°.  64,  that 

f 

tan.  7=--^ 
I  being  the  longitude  of  the  perihelion  referred  to  the  fixed  plane. 

When  this  plane  is  that  of  the  primitive  orbit  of  m,  we  have  (as  far  as 

quantities  of  the  order  of  the  squares  of  the  disturbing  forces  multi- 

plied by  the  square  of  the  respective  inclination  of  the  orbits)  I  zz  -u, 

zs-  being  the  longitude  of  the  perihelion  reckoned  on  the  orbit,  there- 
fore we  shall  then  have 

which  gives, 

tang,  w  =  ̂   ; 

sin.  w  ZZ  — .    '     ̂ =r  :  cos.  -ST  — 

hence  results,  by  N".  64, 

Thus  c  and  c"  being  on  the  preceding  hypothesis  of  the  order  of  the 

disturbing  forces,^''''  is  of  the  same  order,  and  neglecting  the  terms  of 

the  square  of  these  forces,  we  shall  have  (^.e  rz  "J  f^-\-f"''  If  in  the 

expressions  of  sin.  is,  cos.  m,  we  substitute  instead  of  >//''+ J"',  its 
value  f*e,  we  shall  have 

(ue.  sin.  uT  r:  /' ;  jj-e.  cos.  -a-  rr^ ; 

these  two  equations  will  determine  the  excentricity  and  the  position  of 

the  perihelion,  and  we  can  easily  infer 
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t.\edezzf.df-\-f'df ;  y.\e\d^  -fdf-fdf.^ 

By  assuming  for  the  plane  of  ̂'  and  of  j/,  that  of  the  orbit  of  7n  ;  we 

shall  have  by  N*".  19  and  20,  in  tlie  case  of  invariable  ellipses, 

         a.{\ — e*)  _  r^.dv.  e.  sin.  {y — tt) 

~l+e.cos.  (w — 37)  '        ~  fl.(l — e*)  ' 
r^dv—a^ndt.  \/l — e*  ; 

and  by  N".  63,  these  equations  subsist  also  in  the  case  of  variable  el- 
lipses ;  the  expressions  of  ̂ and  of  df  consequently  become 

df-=   ■/   -.  (2.  cos.  v-\-^e.  cos.  •za'+^ff.  cos.  (St; — sr)).  {  -^rr  )  ̂ 

—  a^'ndLVl — e*.  sjn.  vA^j  ; 

df  =   ^^£=-^.(2.  sin.  r+f.e.  sin.  ̂ +\.e.  sin.  (2v—^).  (-^  j 

-\-a*ndt.s/\ — e*.  cos.  v.   (  ̂   i  > 

therefore 

/'  rfar  fdf'—f'df 

*  fC-.e=r^r;  •:fc\ede=fdfJrfdf:  tan.  ,,  =  ̂ ,  ■ ; -—^  =-LJ—,J-J- 
*.•  substituting  for  f,  we  have  fi^^dra  ■=-fdJ'  — fdf. 

.                                                      .      ,„            r^.  f/u.e.  sin- (u — w).  sin.u 
f  Substituting  for  dr  and  t^dv,  we  obtain  dfz=L   

<la\ndtV  I— e".  (cos,  v.  (1  +  e).  cos.(7;— nr)  __    andt    ̂        ̂ ^^^  ■oA.g.sm.  v.  sin.  (i> 
a.(l— e')  -/l— e' 

-J-2(r.  cos.  V.  cos.  (u — w) ;  e.  sin.  u.  sin.  (u  —  ■et)  =ze.  sin.  ̂ v.  cos.w — e.  sin.  v.  cos.  r.  sin.  a-. 

'2e.  cos.  V.  cos.  (u — a-)=2e.  cos.  °i).  cos.  ar-)-2e.  sin.  v.  cos.  i).  sin.  ̂ =6.  (sin.  ''i)-[-cos.  -ti).  cos.  ti- 

I                      .    ■          ■       X                        ,         ̂           cos.  (2u — w)   ,       cos.  3- -l-e.cos.D.(cos.u.cos.a-+sin.  ■u.sin.'CT)=e.cos.v  cos.(u — iij)  =  e.    ^^r   f-e. — - — , 

','  by  making  similar  terms  to  coalesce  we  obtain  the  expression  given  in  the  text,  we  can 
in  a  similar  manner  derive  the  other  expressions. 
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andt  .      .         N   ,^  ,  ,         ̂ ^    fdR\ 

ed-m  zz   J--  .  sin.  {y — rs).  (2+e.  cos.  (w — ra-)).  I  j—  ] 

+   ^   COS.  (t;-^).  (^  ̂j  , 

de  =   ^    ■     ̂   ■  (2.  COS.  {y — vs)-\-e-\-e.  cos.  *(y — •nr)).  (  -jZ  ) 
a^ndt 

,    ,  fdR\ 
^/\^e\  sin.  (v—nr).  ̂   ̂  j  • 

I"
 

This  expression  for  de  may  be  made  to  assume  a  form  which  in  se- 
veral  circumstances  is  more  commodious.     For  this  purpose,  it  may  be 

observed,  that  drJ-r;  J  =  di2  —  ̂ '"•{'J~)  >  ̂y  substituting  in  place 

of  r,  and  dr  their  preceding  values,  we  shall  have 

r\dv.  e.  sin.  (v  —  ■=■)•{  ̂ )  =^-C^ — ^')-  di? — a.(l — e*).  dv.(  ̂   )» 

but  we  have 

r"- .dv  =a''ndt.\/ \ — e" ;  dv=  ^.j 
7idt.  ( 1  +e.  cos.  (f — zr)  y 

(1— e*)i 

•  fdf'——  ̂ ^^^--.  2.  sin.  V.  cos.  arH   .  e.  sin.V.  cos.  w+^e.  sin.  (2«-^w).  cos. «».(  ̂i-  ) 

   ldR\ 

-\-ltxa\ndt.V\—e'.  cos.  v.cos.w.  ̂ ^J 

f'.df=  —  !^±^^,  2.  cos.  V.  sin.  =r  +  -|-.  e.  sin.  o-.  cos.  cr+Je.  sin.  ,j.  cos.  (2"— ̂ )-(  ̂ j 

.^1 — e° 
,    .  /iiJ\ 

—  ̂ e.a'.wc?i.v  1— e*.  sin.  v.  sm.  w.  y-j-f  \ 

•:  fc-e\dz,  =fdf'--f'df=  —  ~=-  2.  sin.  {v—a)+^.e.  sin.  (2t)— 2»).^^  j. 
,    .    /dR\ 

-\'fie. arndt.y  I — e*.  cos.  (v — d-).  f  —I, 
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therefore, 

,      .  fdR\ 
a'ndt.vl—  e*.  sill,  (y — sr).  [~r:) 

=  — !^   -.  dR   ;   .  ri+e.  COS.  (v—zr))\  f  -^  1 ; 

therefore  the  preceding  expression  for  dv  will  give 

ede  =  <^rtdW'^\  ( ̂ ̂   _  <i=!!l.  dR. fj.  \dv  J  f^ 

This  formula  may  be  also  obtained  in  a  very  simple  manner,  by  the  fol- 

lowing method.     By  N°.  64,  we  have 

dc  _      (dR\_      fdR\_       fdR\ 
dt  -y\dx)       '•  \dy)-~\dv)  ' 

but  by  the  same  number  we  have  c=\//*a.(i — e*),  which  gives 

thereforet 

^^   </g.v/ji*g(l-g*)    ede.\/ fi.a  . 

2a  -s/\—e'-   ' 

.*=^^J^.  (f )+.,,_.),  ̂ . 
then  by  N°.  64,  we  have 

i^  -        rlT?. 

which  is  evidently  equal  to  the  expression  given  in  the  text,  the  value  of  de  may  be  ob- 
tained in  a  similar  manner. 

t  Dividing  both  sides  by  J^^  and  observing  that  ««  = -^    and  vV;:^=£' VI — e-  ai  ' 

we  obtain  the  value  of  ede,  which  is  given  in  the  text. 
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thus  we  shall  obtain  the  same  expression   for  ede,  as  has  been  given 
above. 

68.  It  has  been  observed  in  N".  65,  that  if  the  squares  of  the  dis- 
turbing forces  are  neglected,  the  variations  of  the  greater  axis  and  of 

the  mean  motion  only  contain  periodic  quantites,  depending  on  the 

mutual  configuration  of  the  bodies  m,  m',  m",  &c.  This  is  not  the 
case  with  respect  to  the  variations  of  the  excentricities  and  of  the 

inclinations :  their  differential  expressions  contain  terms  which  are  - 
independent  of  this  configuration,  and  which  if  they  were  rigorously 

constant  would  produce  by  integration  terms  proportional  to  the  time, 

which  would  at  length  render  the  orbits  extremely  excentric,  and 

very  much  inclined  to  each  other  ;  consequently,  the  preceding  ap- 

proximations which  depend  on  the  small  excentricity  and  inclination 

of  the  orbits,  would  become  inadequate  and  even  erroneous.  But  the 

terms  which  being  apparently  constant,  enter  into  the  differential 

expressions  of  the  excentricities  and  inclinations,  are  functions  of  the 

elements  of  the  orbits  ;  so  that  in  fact  they  vary  with  extreme  slowness 

in  consequence  of  the  changes  which  these  elements  experience.  We 

may  conceive  therefore  that  there  ought  to  result  from  them  considerable 

inequalities,  independent  of  the  mutual  configuration  of  the  bodies  of 

the  system,  the  periods  of  which  depend  on  the  ratios  of  the  masses 

m,  m',  m".hc.,  to  the  mass  M.  These  inequalities  under  the  deno- 
mination of  secular  inequalities,  have  been  already  considered  in 

Chapter  VII.  In  order  to  determine  them  by  this  method,  let  the 

value  of  df,  given  in  the  preceding  number,  be  resumed 

andl       ,  _  ,  ,^         NN   [ dK\ 

dj—   7j=S-  (-•  co^-  '^'+1-  ̂ '  ̂ os-  ■=r+4.  <?.  cos.(2r— =r)).  (  -^  ] 

—  a^ndt.\/\ — e*.  sin.  v.(^y 

In  the  developement  of  this  equation  we  shall  neglect  the  squares 
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and  products  of  the  excentricities  and  of  the  inclinations  of  the  orbits ; 

and  amongst  the  terras  depending  on  the  excentricities  and  incli- 

natiens,  we  shall  only  retain  those  which  are  constant.  Let  us  then 

suppose,  as  in  N".  48, 

r  =  «.(!+«);    r' =  a'.(l+u;), 

V  =  nt-{-i+v^  t/  z=  ?i't-\-i'-\-vf. 

This  being  premised,  if  we  substitute  in  place  of  R,  its  value  found  in 

N".  48,  observing  that  by  the  same  N".  we  have 

(  rfr  5  ~  T'lda)  ~^  I  da  ) 

finally,  if  we  substitute  in  place  of  m,,  tt^',  v^,  »/,  their  values 

— e.  cos- (nt  +  c — J3-),  — e'.  COS.  ̂ m'^+e' — zr'),  2e.  sin.  (w/-f  i — w), 
2e'.  sin.  (n't+e — w'), 

which  are  given  in  N".  22,  and  if  among  the  terms  which  depend  on 
the  first  power  of  the  excentricities,  we  only  retain  those  which  are 

constant,  we  shall  find  (the  squares  of  the  inclinations  and  excentri- 
cities being  neglected,) 

_,^       am'ndt        .         C       idA^'^-)  ,     ,  C^^A'^^t). or  =:   .  e.  sm.  tj.<  a.  < — j — i-  4-  a'.<     ,  .    S^  >* 
^  2  (.       t    da  S  C  da     ̂  } 

+aM.  e.  sin.  .•.{a.-+  J„.{f^}+4„..{^}+i.a-.{^^,}} 

:'«rf^.S.|f.A«+  ̂ a.  {^^}}-  sin.  (i.(n7— w^+Z— 0+n^+O  J 

— am 
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*  Sin.  u=  sin.  {nt — i  +  v)  =  sin.  (n<-J-t).  cos.  v,-\-coi.[nt-\-i).im.  v„  now  sin.  v;=v, — 

-^-{-  &c.,  COS.  t!;=:l   ~--\-  &c.,  hence  substituting  for  r,  its  value  2.e.  sin.  («<+« — w), 

and  neglecting  the  square  of  e,  we  obtain  sin.  (nf-f-e-J-uJ  =  sin.(?i«-}-t)  +  cos.  (nt  +  «). 
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The  integral  sign  S  extending  in  this  expression,  as  in  the  value  of 

R  of  N°.  48,  to  all  entire  values  of  i,  as  well  positive  as  negative,  the 
value  t  =  0  being  included. 

2e.sia.{nt-\-i — w),  differencing  72  with  respect  to  a,  and  retaining  those  terms  only  in 

which  the  first  power  of  the  excentricity  or  inclination  can  occur,  and  from  which  we  may 

obtain  constant  quantities,  the  first  term  of  the  expression  for      -(diiferenced  under  these 

restrictions)  will  give  — ; — ,  the  second  term  will  give  — ; — ,  and  also  a.  — pr— ,  •/  (1 — 
da  aa  da* 

+ /rf«\       „  ,  ,/(dl^''\       //rfACA  /(^ACu 

6— w),  now  this  quantity  should  be  multiplied  into  sin.  u,  or  into  sin.  (nt-\-i)-{- cos.  (nf+s). 

2e.  (sin.(ni+s — vr) ;  hence,  performing  this  operation,  neglecting  the  square  of  e,  and  we 
'rfA'"' 

shall  have  the  coefficient  of  — -j — =:2.e.  cos.(ni+e).  &\a.(nt-\-t—'a)-{-e.  cos.  {nt-\-t — w). 

sin.  (jit-\-i) — e.  cos.  {iit-\-i — -a),  sin.  (^nf +e)=2e.  cos.  [nt  +«).  sin.  (nf +£ — w)  =  e.  sin.  (2) 
f/iA 

(«t+s) — ct) — e.  sin,  a- ;  in  like  manner,  the  coefficient  of  — a.  — r-?— .  is  e.  sin.  (nt+s).  cos. 

da 

(»f+i — ■Kr)=— .  sin.2.(«<-}-t) — ar)+  — .  sin.  w  ;  hence,  by  multiplying  by  —  ,  see  N°. 

48,  the  constant  part  of  the  second  term  of  the  value  oi  dfzz  — - —  .  dt.  e.  sin.   w. 

//rfAloiN        a    /d''Am\  \    .    ,., 
manner,  to  obtain  the  coefficient  of  e'.  sin.  -a-',  let  the 

third  and  fourth  terms  of  the  value  of  R  be  differenced  with  respect  to  a,  [i  being  equal  to 

-  1.  e'.  cos.  {n't — tii  +  ̂ — i).  cos.  (n't  4"  t' — =^) ;  — A<''. 

2.e'.  sin.  (w'<  +  s' — jt').  sin.  [ti't^ — 7it-\.t' — i) ;  sin.  (,nt-{-t)  is  the  only  part  of  the  value  of  sin. 
V,  into  which  these  quantities  can  be  multiplied  without  introducing  powers  of  e  greater 

than  the  first,  •/  when  for  these  quantities  equivalent  expressions  are  substituted,  deter- 

•      J  u     .u             »•           r.i      r                                ;         COS.  (a +  6) 4- cos.  (fl — b) 
mmed  by  the  equations  ot  the  form  cos.  a.  cos.  b  =■  — ;-^^ — ' — ^-^   ^   .  sm.  a.  sm. 

6  =  cos.  — "^   cos.  ;  we  shall  obtain  the  second  and  fourth  terms  of  the  second 
line  of  the  value  of  df;  in  order  to  obtain  the  first  and  third  terms,  let  the  third  and  fourth 

(
J
 
 

n 
 » 

—7-
/  

  

■= 

(  -r- ) ,  and  then  these  terms  become  — .  uj.  a'.  — ; — .  sin.  (n't — nt  +  s' — t) ;  +  -—.  w,' Af >. 
\di/  2  da'  ^  1  /     1    2      ' 
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By  the  preceding  number,  the  value  of  df  will  be  obtained,  if  the 

angles  i,  i ,  id-,  and  -r',  be  diminished  by  a  right  angle  in  that  of  f; 
hence  we  deduce 

df'=   —.  e.  COS.  ̂ .  |..|-^j+la  .|-^^|| 

-  «'««^^-  '■  ̂°«-  -  1^"+  4^-  {-d^]+  ̂^-  {-^j  +  ̂l^^ll 

+tt7»'«c?/.E.|iAc^+ia.|-^||.  COS.  {i.{n't—nt-^i'—i)-\-7it  +  X. 

Let  us  name,  in  order  to  abridge,  X  the  part  of  the  expression  of 

df,  contained  under  the  sign  S,  and  Y  the  part  of  the  expression  of 

df'  contained  under  the  same  sign.  Moreover,  let  us  make  as  in  N". 55, 

(0,  1):.   ^.|a^|— j+  i.«3.  |-^^j| ; 

It  should  be  then  observed,  that  the  coefficient  of  e'dt.  sin.  ts',  in  the 
expression  of  df,  is  reduced  to  foTTl,  when  we  substitute  in  it,,  in 

place  of  the  partial  differences  of  A'"  in  a',  their  values  in  partial 

differences  relative  to  a  ;    finally,  let,  as  in  N".  50, 

3e  2 

COS.  [n't — nt+e' — i),  when  we  substitute  for  «/  and  t)/  their  values,  and  proceed  as  before, 

we  shall  obtain,  after  the  resulting  quantities  are  multiplied  by  2.  cos.  («<+«).  (the  only 

part  of  the  value  of  cos.  v  which  can  be  taken  into  account) ;  the  first  and  third  terms  of 

the  coefficient  of  d.  sin.  sr' ;  in  order  to  obtain  the  variable  part  of  the  value  of  df,  e,  d, 
do  not  occur ;  the  first  terra  of  the  value  of  B,  must  be  differentiated  with  respect  to  v, 

or,  what  is  the  same  thing  with  respect  to  e,  and  then  multiplied  into  2.  cos.  («/  +  •), 

this  same  term  should  be  also  differenced  with  respect  to  a,  and  then  multiplied  into 

sin.  (ni-{-s). 
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e.  sin.  zT  ■=  h;    d .  sin.  is  ■=.  h', 

e.  COS.  Ts  ■=!  I;   e'.  COS.  z/  ■=.  I' ; 

which  by  the  preceding  number,    gives  yzzt^-l ;  J''=  fj-h  ;    or  simply, 
f-=.l;f'z=.  h,   the  mass  of  M  being  assumed  as  unity,  and  the  mass 
7)1  being  neglected  relatively  to  M ;  we  shall  have 

-^=  (0,  1)./— [oriy+ffm'.TZ.F; 

-7r-= — (0,  1  ).A+[orT]./«'. — am'.n.X. 

Hence  it  is  easy  to  infer,  that  if  the  sum  of  the  terms  analogous  to 

am'n  Y  be  named  ( F),  which  terms  arise  from  the  action  of  each  of 

the  bodies  ?b',  m",  &c.  on  m ;  if  in  like  manner,  the  sum  of  the  terms 

analogous  to  — ani'nX,  arising  from  the  same  action,  be  called  (X), 
finally,  if  we  denote  by  one,  two,  &c.,  strokes,  what  the  quantities  (X), 

( F),  h  and  /  become  relatively  to  the  bodies  wz',  »/'',  &c, ;  we  shall 
obtain  the  following  system  of  differential  equations  : 

=  ((0,  l)  +  (0,  2)  +  &c.).Z-[0]./'— [O].^'— &c.+(F); 

=—((0,  l)+(0,2)-i-&c.)./t+[o^]./i'  +  [ori].//''+&c.+(A') ; 

^/  =  ((1 . 0)  -K  J .  ̂)  +  &c.)/'-[ro]./— [17^]/— &c.+(  F ')  ; 

dt 

dl 
dt 

dh' 

^^1'  =—((!,  0)+(l,  2)4  &cOA'  +  [irr)]./i+[Tr^].//+&c.  +  (A'0. 
&c. 

In  order  to  integrate  these  equations,  let  it  be  observed  that  each  of 

the  quantities  h,  I,  //,  /',  &c.,  is  made  up  of  two  parts,  the  one  depend- 

ing on  tlie  mutual  configuration  of  the  bodies  77i,  m',  &c.,  the  other 
independent  of  this  configuration,  cor.taining  the  secular  variations  of 

these  quantities.  We  shall  obtain  the  first  part,  if  we  consider  that  when 

we  have  regard  to  it  solely,  h,  I,  h',  /',  &c.,  are  of  the  order  of  the  dis- 



PART  I.— BOOK  II.  397 

turbing  masses,  and  consequently  (0,  !)./«,  (0,  l)./,  are  of  the  order 

of  the  squares  of  these  masses.  Neglecting  quantities  of  this  order, 
we  shall  have 

dh'  dV 

therefore, 

h-f{Y).dt;  l  =  f{X).dt;  h'=f(Y').dt;  l'=f{X').dt;  &c. 

If  these  integrals  be  taken,  the  elements  of  the  orbits  being  considered 

constant;  and  if  Q  be  what /(Q).f//  then  becomes,  and  if  SQ  be  the 

variation  of  Q,  arising  from  that  of  the  elements,  we  shall  have 

fiY).dt-Q—fSQ; 

But  as  Q  is  of  the  order  of  the  perturbating  masses,  and  as  the  varia- 
tions of  the  elements  are  of  the  same  order,  SQ  is  of  the  order  of  the 

squares  of  these  masses,  therefore,  if  quantities  of  this  order  be  ne- 

glected, we  shall  have 

f{Y).dt=  Q. 

We  can  therefore  take  the  integrals /(y).^^/,  /(A^.^//,  /(F).<//, 

&c.,  on  the  hypothesis  that  the  elements  of  the  orbits  are  constant, 

provided  that  we  consider  these  elements  as  variable  in  the  inte- 

grals ;  by  this  means  we  shall  obtain  in  a  very  simple  manner,  the 

periodic  parts  of  the  expressions  of  //,  /,  h',  &c. 
In  order  to  obtain  the  parts  of  these  expressions,  which  contain  the 

secular  inequalities,  it  is  to  be  remarked,  that  they  are  furnished  by 

the  integration  of  the  preceding  differential  equations  deprived  of  their 

last  terms  (  F),  (X),  &c. ;  for  it  is  evident  that  the  substitution  of  the 

periodic  parts  of  h,  I,  h,  &c.,  will  make  these  terms  to  disappear. 

But  if  these  equations  be  deprived  of  their  last  terms,  they  will  coin- 
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cide  with  the  differential  equations  (A)  of  N°.  55,  which  we  have 
already  discussed   in  detail. 

69.  It  has  been  observed  in  N".  65,  that  if  the  mean  motions  ni  and 

n't  of  the  two  bodies  m  and  m',  are  very  nearly  in  the  ratio  of  /  to  i', 

so  that  in' — in,  may  be  a  very  small  quantity,  very  sensible  inequalities 
may  result  in  the  mean  motions  of  these  bodies.  This  ratio  of  the 

mean  motions  may  also  produce  sensible  variations  in  the  excentricities 

of  the  orbits  and  in  the  positions  of  their  perihelias ;  in  order  to  deter- 

mine them,  let  the  equation  found  in  N°.  57  be  resumed, 

ede  =  ̂ ^^dtVi=:?  /^|_^:Ozr£l.  ji?. 

It  follows  from  what  has  been  stated  in  N".  48,  that  if  we  assume  for 
the  fixed  plane,  that  of  the  orbit  of  m  at  a  given  epoch,  which  permits 

us  to  neglect  in  R,  the  inclination  cp  of  the  orbit  of  m  on  this  plane  ; 

all  the  terms  of  the  expression  for  R  which  depend  on  the  angle  i'n't — 
int,  will  be  comprized  in  the  following  form, 

mk.  cos.  (i'n't — int-\-i'i — ii — gzr — g'-js' — g"^')  ; 

i,  i',  g,  g',  g",  being  integral  numbers,  such  that  we  have  Oiri' — i — g — 

g'—^'.  The  coefficient  R  has  for  factor  e«.  ̂ '.  (tan.  yj",  g,  g',  g', 
being  taken  positively  in  these  exponents  ;  moreover,  if  we  suppose 

that  i  and  i  are  positive,  and  i'  greater  than  i,  we  have  seen  in  N". 
48,  that  the  terms  of  R  which  depend  on  the  angle  ?V/ — tnl  are  of 

the  order  i' — i,  and  or  of  an  order  higlier  by  two,  by  four,  &c.  unities ; 
if  therefore  we  only  consider  the  terms  of  the  order  i — i,  R  will  be  of 

the  form  ̂ .  e'^.  (tan.  yy.  Q,  Q  being  a  function  independent  of  the 
excentricities  and  of  the  respective  inclinations  of  the  orbits.  The 

numbers  g,  g",  g",  contained  under  the  sign  cos.  are  then  positive ; 
for  if  one  of  them,  g,  for  example,  was  negative  and  equal  to  —f,  k 

would  be  of  the  ordery+ o^'  \-g"  j  but  the  equation  Qz=:i — i — g — ^ — ^', 

^\sz^f-\-^-\-g"z=.i — ?  +  2/';  thus  k  would  be  of  an  order  higher  than 
i! — i,  which  is  contrary  to  the  hypothesis.     This  being  premised  by 
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N'.  48,  we  have  -|  — 7-  r  =  j  "j~  f>  provided*  that  in  this  last  partial 

diflFerence  we  make  e — sr  equal  to  a  constant  quantity,  therefore  the 

term  of  ■!  -5-  >-  which  corresponds  to  the  preceding  term  of  R  is 

m.{i+g).  k.  sin.  [i'7i't—int+i'i'—if(—gz7—g'zy'—g''''&'). 

The  corresponding  term  of  dR  is 

to',  ink.dt.  sin.  (e'nV — int-\-i'^ — u — g-m—g'Ts/ — •^'^S'), 

if  therefore  we  only  take  such  terms  into  account,  neglecting  the 
square  of  e  in  comparison  to  unity,  the  preceding  expression  for  ede 
will  give 

-        m'.andt    gk      •,.,,,.,..,,.  ,  ,      ,,,,s 
ae=   — .  sin.  (int — tnt-{-t'^ — n — gTs — gs/ — g'^^). 

fj-  e 

but  we  have 

^  =  g^^ .  e'^.  (tang.  yy\  Q=  ̂ l 

therefore  we  shall  obtain  by  integrating 

m'a7i         (dk^  ,.,  ,      ■        -i ,     ■  ,  1      «„,^ 

Now,  if  the  sum  of  all  the  terras  of  R,  which  depend  on  the  angles 

i'n't — int  be  represented  by  the  following  quantity, 

vi'P.  sin.  (i'n't — i?it+i'i-^ii)  +  m'.P'.  cos.  (i'n't — int+i'c — it); 

the  corresponding  part  of  e  will  be 

*  Hence — ^  =  6  —  6,  \' —gta  =:Z  —  gi,  therefore  if  we  substitute  this  quantity  for 

gvr,  and  then  take  the  value  of  -7-  ,  we  shall  obtain  the  expression  for  I—  J  ,  corres- 

ponding  to  the  value  of  R. 
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COS.  (i'n't — int-{-i'i' — ii)). 

This  inequality  may  become  extremely  sensible  if"  the  coefficient  in' — 
in  is  very  small,  as  is  the  case  in  the  theory  of  Jupiter  and  of  Saturn. 

Indeed,  it  has  for  a  divisor  only  the  first  power  i'n' — in,  while  the 
corresponding  inequality  of  the  mean  motion  has  for  a  divisor  the 

second  power  of  this  quantity,  as  has  been  observed  in  N°.  Q5  ;  but 

J  — -  >  and  -!  —T-  t  being  of  an  order  inferior  to  P  and  to  P",  the  ine- 
\de)         \de)  ^ 
quality  of  the  excentricity  may  be  considerable,  and  even  surpass  that 

of  mean  motion,  if  the   excentricities   e   and  c'  be  very  small ;    we 
shall  see  examples  of  this,  in  the  theory  of  the  satellites  of  Jupiter. 

Let  us  now  determine  the  corresponding  inequality  of  the  motion  of 

the  perihelion.     For  this  purpose,  let  us  resume  the  two  equations, 

which  were  obtained  in  N".  67.     These  equations  give 

df'^  l*de.  cos.  -a-^iAcdTsy.  sin.  w ; 

hence,  if  we  only  consider  the  angle  i'n't — int-\-i'i — ii — g-o! — g'z/ — g''^', 
we  shall  have 

(  dk  "i dfzzm'.andt.  -J-j-  |-  cos.  -ar.  sin.  (i'n't— int+i'i' — it — g-sr — g'-s/ — g'^d') 

— fxcdu.  sin.  -o-. 
Let 

—  m'.andt.  \\-^}+  ̂'^'•l-  cos.  [i'n't— int+h — it^g--a-g^-s/-g'^')* 

•  By  multiplying  by  sin.  ■a,  we  shall  have  dfz^ 

—m'andt.f  —  \,  (cos.  w.  sin.  (irii — ini-f-jV—  it — g-a — ^w' — g"  <') + sin.w.  cos.  (i'  n't — int  + 
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represent  the  part  of  fj-edzr,  which  depends  on   the  same  angle,  we 
shall  have 

df:=  m'.andt.  \\-f\-\-  h,^'  (•  sin.(«V# — int-\-t't'-u-{g-\').7ir-g'-sr-g''^'') 

— '"'■  ~~¥' '  ̂'  ̂^""  (*'"'^— ̂ "^  + «'«'—««— (5"+ 1  )•  ■^—g'-^—g'V). 

It  is  easy  to  perceive  from  the  last  of  the  expressions  of  ̂   given  in  N°. 

67,  that  the  coefficient  of  this  last  sine,  has  for  a  factor  e^+'.e'^.(tan.^ip)«"; 

r  dk  ~i 

k'  is  therefore  of  an  order  superior  by  two  units,  to  that  of  -j  -7-  > ; 

consequently,  if  it  be  neglected  in  comparison  to  ̂;7->-i  we  shall  have 

m'.andt    f  dk)  ,-i  >.     •  .    •■      ■  ,  ,     _//n/N 
  .  )  -J-  >-•  COS.  [in t — mt-{-i i — ii — gsT — gsf' — g"W), 

for  the  terra  of  erfar,  which  corresponds  to  the  term 

m'.k.  cos.  (i'rit — int — int-\-ii' — it — gzr — g'-^'—^'^'\ 

of  the  expression  of  R.     It  follows  from  this,  that  the  part  of  bt  which 

corresponds  to  the  part  of  R  expressed  by 

vti.P.  sin.  {irit — int-\-'H — ?£)-}-m'.P'.  cos.  {i'r^t—int-^i't — it), 

is  equal  to 

— Tv-i — T-T —  <  -J  -7-  v.  COS.  (i  n  t — int  +  ti' — it)  — ■{  -^—  t 
f*.{i  n' — tn),e  'Wde )  ̂   '       (_  de  } 

sin.  (i'n't — int-\-i'c — u)] , 

we  shall  by  this  means  obtain,  in  a  very  simple  manner,  the  variations  of 

PART  I.   BOOK  II.  3  F 

iW—u—gm—g''a'—g'6').) 
— triandt.k.  sin.  to.  cos.  {in't — intJ[-i'i — it — gw — ^■a' — g"K)  = 

dk 

—  m'andt,  —7-  .  sin.  (int — int — ?V — U—ie — !)•  w — g''a' — g"lf), 
de  ^ 

and  the  two  terms  into  the  value  of  the  coefficient  of     are  obtained  from  the 

e        ,      .  ,         sm.  (a4-i)4-sin.  (a — b) 
formula  sm.  a.  cos.  b  =    —i — —   >   '-. 2 
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the  excentricity  and  of  the  perihelion,  which  depend  on  the  angle 

i'lH — int-\-i'i' — ft.  They  are  connected  with  the  variation  ̂   of  the 
mean  motion,  which  corresponds  to  it,  in  such  a  manner,  that  the  va- 

riation of  the  excentricity  is 

Sin  '\de.dlj  ' 

and  the  variation  of  the  longitude  of  the  perihelion  is 
(i'n'-in)fda 

Sin.e      \  dej' 
The  corresponding  variation  of  the  excentricity  of  the  orbit  of  w',  due 
to  the  action  of  ot,  will  be 

1       \^l 
i'n'.d'lde'.dty 

3i'. 
and  the  variation  of  the  longitude  of  its  perihelion  will  be 

(rn'—in)    fdn 

Si'n'.e'    'Xde')' 

And  as  by  N°.  65,  we  have  ̂ 'zz   .  ̂  these  variations  will  be 

m'.\/a' 
m.Va  _   f_^l_\  and   ("'-^>0-^^V^  |^l 

Si'n'.m'.'\/a'Xde'.dty  si'n'.e'.m'.y/a'      KdC)' 

When  the  quantity  i'n' — in  is  very  small,  the  inequality  depending  on 
the  angle  i'n't — int  produces  a  sensible  one  in  the  expression  of  the 

^    5  _       Sm'anH 
-  Tfj^ZIinf — ■  ''■^'  "^*'^'  *''"''  ~  *'"*  +  «'s'— ") — P'-  sin.  i'n't— int  +  iV— is^)  differ- 

encing ^,  first  with  respect  to  e  and  then  with  respect  to  t,  the   coefficient  become* 
im'an^.i 

(i'n'—^in)~''  ̂ ^  '^^  variable  part  is  the  same  as  the  variable  part  of  the  expression  for  de, 

bence  the  ratio  of  de  to  (j-^j  is  that  of  1  to  Sin ;  in  like  manner  it  may  be  shewn,  that 

the  ratio  of  d^  to  (§),   is  that  of  1.  to  -^   
\de^  e  (in'— in) 
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mean  motion,  among  the  terms  depending  on  tiie  squares  of"  the  dis- 
turbing masses ;  the  analysis  of  them  has  been  given  in  N°.  6d. 

This  same  inequality  produces  in  the  expressions  of  de  and  d-u, 
terms  of  the  order  of  the  squares  of  those  masses,  which  being  solely 
functions  of  the  elements  of  the  orbits,  have  a  sensible  influence  on  the 

secular  variations  of  these  elements.  Let  us  consider  for  instance,  the 

expression  of  de  depending  on  the  angle  i'7i't — int.  By  what  precedes, 
we  have 

.  m'.an.dt  ( (dP^  ,.,  „     .  ̂ ,  ., .     ..       ( CdP'^ 

de=   ^r-\{d^]' ''''  ('  «'^-"^^+^'^  -^0  -  {{^  }. 
sin.  (i'n't — int+i'i' — u)]. 

By  N*.  65,  the  mean  motion  7it  ought  to  be  increased  by 

>  V  ,  '  •  L    ' )  P'  cos.f i'n't — int-\-i'e — ie — P'.  sin.  (i'n't — int+i'i' — ii)  u (in — tn)  .f*.  (.  ^  -  J 

and  the  mean  motion  n't  ought  to  be  increased  by 

3m'.an''i'        m.\/a    ,_  ,.,,,. 
'— T^TT— -:-T5 — •— — 7=7.  [P'  cos.  Ci'nt — mt+t^ — u) — 

P'.  sin.  (i'71't — int-\-i'^ — ii)} . 

In  consequence  of  these  increments,  the  value  of  de  will  be  increased 

by  the  function 

3m'.a''.in^.dt  ,_  ,-.    r      rdP'^  fdP^'^ 

2iJ.\'s/a.{t'n—iny  '\     \de)  Idejj' 

and  the  value  of  du  will  be  increased  by  the  function 

3m'.a\in\dt  _        cdP)      „,  {dP'} 

■     2^W~a'.(t'n'-iny.e<'''^''^"'-^''''"-'^'']^-  ll^r^'lwl' 

we  shall  find  in  like  manner,  that  the  value  of  de'  will  be  increased  by 
the  function 

3f2 
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Sma'' .s/ a.in^  .dt 

and  that  the  value  of  dz/,  will  be  increased  by  the  function 

3ma\\/7i.in\dt      ̂ .   ,     ._      .  .-^    ('      fdP^      „   fc/P'll 
o  ̂   '7->  , — '^^'  •  (.tm'Va'  +  t'.m.  ̂ a).  i  P.  i  -t-1+  P'-i  -rr  >  >• 

These  different  terms  are  sensible  in  the  theory  of  Jupiter  and 

Saturn,  and  in  that  of  the  satellites  of  Jupiter.  The  variations  of  e, 

e',  CT  and  zr',  relative  to  the  angle  i'n't  —  int  may  also  introduce 
some  constant  terras  of  the  order  of  the  squares  of  the  disturbing 

masses,  into  the  differentials  de,  de',  disy,  and  dz/,  and  depending  on  the 

variations  of  e,  e',  zr  and  ta-'  relative  to  the  same  angle  ;  it  will  be  easy 
by  means  of  the  preceding  analysis  to  take  them  into  account.  Finally,  it 

will  be  easy  by  our  analysis  to  determine  the  terms  of  the  expressions 

of  e,  -a;  s'  and  «/,  which  depending  on  the  angle  i'n'i — int-\-i'i — it  have 

*  Let  the  increment  of  nt  =  d.(nt')  =  j>.{^P.  cos.  A — F'.  sin.  A),  and  the  increment  of 

d.[n't)  =   '——: .  p.(P.  COS.  A  —  P,  sin.  A),  then   we   have  d.(i'n't  —  int)  = 

_  m'.Va'
 

(i'Tflt
V  d  

\   i\.  p-(P.  COS.  A  —  /*.  sin.  A),  calling  this  quantity  a,  and  substitute 
m'.Va'        

 
I 

ing  it   for    d.{in't  —  int)  in  the    value  of   de,  given    in    this   page,  we   shall   have   the 
dP                                  dP' 

factor  — T— .  cos.  ( A+  a)   — .  sin.  (A-|-  a  ),  then  by  developing  and  remarking  that 

dP                       dP 
sm.  A=  A,  and  cos.  a=1  q-p.,  the  preceding  expression  becomes— 7—  .  cos.  A   —. de  de 

dP      .       ̂     f       I'm.Va      ,\        ,_  A      r>,     ■      AS  ,     '^P'  A  / 
sin.  A   ;— .  sm.  A.  (   = — i]  .  P.(  "•  cos.  A — P'.  sin.  A)+  -r-  .  cos.  A.{  — 

de  \        m'Va'       '  de  \ 

i'fw.v  fli        \ 

  T^  — i).  p.(P-  COS.  A — P'.  sin.  A),  as  sin.  A.  cos.  A,  contain  only  periodic  functions, m'.Va'       ' 

the  quantities  multiplied  by  them,  or  any  powers  of  them,  need  not  be  considered  st  pre- 

sent ;  but  as  sin.  -A  =  i  —  i.  cos.  2A  ;  cos.  "A  =  A  +  ,^.  cos.  2A  ;  we  shall  obtain  (by 
substituting  for  sin.  *A,  cos.  *A),  two  terms  which  do  not  involve  periodic  functions,  and 

which  when  concinnatcd,  become  the  quantity  by  which  de  is  said  in  text  to  be  aug" ment 
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not  in' — in  for  a  divisor,  and  those,  which  depending  on  the  same 
angle  and  on  double  of  this  angle,  are  of  the  order  of  the  square  of  the 

disturbing  forces.  These  terms  are  sufficiently  considerable  in  the 

theory  of  Jupiter  and  of  Saturn  to  induce  us  to  have  regard  to  them  ; 

we  shall  develope  them  in  the  requisite  detail,  when  this  theory  will  be 

more  particularly  discussed  in  the  8th  Book. 
70.  In  order  to  determine  the  variations  of  the  nodes  and  of  the 

inclinations  of  the  orbits,  let  the  equations  of  N°.  64,  be  resumed 

--'•{4f}-{f}}' 

If  the  action  of  m  be  solely  considered,  the  value  of  R,  of  N°.  46, 

gives 

1 
((a,'_x)H(y-^)*+(5r'-^)')ii 

(dR^  (dR\  ^  ^    (  1 
<  —r  t — ^-  \  -^r-  ?■=  m'.(x'z — z'x).  \   

-   __i   I 
((x'— .r)»+(y— ̂ )*  +  (z'—zyp 

-   ?__   I 

((•f"-^)*+(i/'-y)*+(^'-*)*)'^ 
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Let  now 

by  N°.  64,  the  two  variables  p  and  q  will  determine  the  tangent  of 
the  inclination  (p  of  the  orbit  of  m,  and  the  longitude  9  of  its  node,  by 
means  of  the  equations 

tan.  <f~  ̂ p-  +  q^  J  tan.  <?=:-£-. 

Naming  p',  q',  p',  q\  &c.,  what^  and  q  become  relatively  to  the  bodies 
»»',  rt^'y  &c..  we  shall  have  by  N°.  64, 

zzzqy  —  ipx-y    z'  =z  qy' — •fx  ;   &c. 

The  preceding  value  of  ̂   being  differenced,  gives 

dt  ~  c'\     'di      j  ' 

by  substituting  in  place  of  dc  and  of  dd',  their  values,  we  shall  have* 

^=—.  ((q—q).  i/y'+  (P'— P).^'v).  I   ^-   5 

  L____V 

c"             d                       dp       I       dc"         „  dc\ 

1    idc"       c".dc\         dp        m'  ,  I   

(-   ,  1;  therefore  if  we  substitute  for  :  and  r    their  values,  we 

will  obtain  by  concinnating  and  obliterating  those  terms  which  destroy  each  other,  th» 

dp 

expression  

for  
-^,  

which  
i&  given  

in  the  
test*-. 
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in  like  manner,  ive  shall  find 

dq       nv    ..  , 

  -i   I 

If  in  place  of  x,  y,  x',  y',  their  values  /■.  cos.  i»,  r.  sin.  v,  r'.  cos.  W, 

r' .  sin.  I'',  be  substituted  ;  we  shall  have 

{q^q')-yy'+{p'—p)-^'y  =  |^^^^|.rr'.((cos.w'+t;)— cos.  (v—v))* 

+{^^  }.rr'.(sin.(t;'+tO— sin.  (v'^v))  ; 

(j>—p).X3/+(q — q')'3:y'  —Y—^ |-.r;-'.(cos.  (»'+»)  +  cos.  (u'— r)). 

-J.  -j^llll  I  r/.(sin.(t;'  +  r)  +  sin.  i}J — r)). 

The  excentricities  and  inclinations  of  the  orbits  being  neglected,  we 
have 

r-=za;  v  zznt-\-  i\  r'  =  c  j  v'  ■=.  ri t  -\-  i  \ 

which  gives 

1   I    J_ 

  1   

(a" — 2aa'.cos,(?z7— n^-j-t' — £+a*)J 

Moreovei-,  by  N°.  48,  we  have 

  J  =  \.  SB"\  cos.  i/n'(—nt+ 1'— 0; 
(y—lad.  COS.  (n't—nt  +  e'— e)  +  a'*)t 

*  rr".  COS.  XI.  COS.  u'  =  —  COS.  (w^-i)')  -}-  cos.  (v — v),  rr\  sin.  v.  cos.  »;'— -^  •    (•'''• 

(u+w')  +  sin.  (v — ti)). 
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the  integral  sign  E  extending  to  all  entire  values  of  ?,  positive  as  well 
as  negative,  the  value  i=0  being  included ;  by  this  means,  we  shall 
have,  neglecting  the  terms  of  the  order  of  the  squares  and  products 
of  the  excentricities  and  inclinations  of  the  orbits, 

dp       {a' — q)  m'a,        ,  ,      , 
-^-  -^-^.-^(cos.Im'^-I-w^+e'+O— COS.  (ivt—nt-^i'—i)) 

(p — p)  ma    ,  .     , 

+  ̂ ^-^;^.-^-  (sin.(n'i+n^+£'  +  j)— sin.  (nU—nt->ri'—i))* 

+       ~f.     •  TO'.aa'E5«.(cos.  [(i+l).(n7-7if  +  t'— «)]— cos.  («+l). 

+  (fc^.  m.aa'.EB").(sin.[(j  +  l).(«7— w^+f'— 0]— sin.(H- 1). 

{n't—nt-\-i  —  t)  +  Sw^-^Se])  ; 

dq      (p' — p)    m'.a    ,        ,  , 

di  ~      2r^'~^'  ̂ ^°^'  («^+«^+«'+0+cos.  (n't^nt+  I'— 0) 

+  -^-^  •  —^'  si"-  (w'^  +  «^+£'  +  0+  sin.  (n't—nt-\-(-—i)) 

-I-  \ElZP}.  wj.a'a.SJ5"'.(cos.  [(i  +  l).(n7— w^+e'— 0]  +  cos.  (i+l). 
4c 

{iVt—nt  +  £' — £)+2«f +20] 

*  The  value  of  the  third  term  in  the  expression  for  -j-  will  be  had  by  observing  that 

COS.  (tj±i/)  „,,  ,  2.BW 

  ^   ^.  ̂.  2.B('^.  cos.j.(n'<— nf+s'— e)=  — - — .  (cos.  (i.(«'t_n<  +  f'— i) +«'<+«<+ 

t'+f)+cos.  i.(n'<— 7!<4.  6'_ E)_?i7_„<_E'_£))_cos.  j.(n7 — ni+i'_,)+nV— n<+i'— i)— 
COS.  («.(n'< — nt-^i' — i)  — n't — r^i-f  s+'i);  therefore,  if  we  concinnate  the  terms  of  this  ex- 

pression, we  shall  obtain  by  observing  that  cos.  i.{n't—nt-\-i—t)-{-n't^  n<+t'  +  i)  =  cos. 

(i+1)  n't—nt  +  f'—s)+ 2)1/4- Se),  and' also  that  cos.  i.{n't—nt-^i—i)  f  «';—«<  + I'—i) — 
COS.  (j-|- !).(«'« — r>t-\-i' — i),  the  expression  given  in  the  text. 
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+  ̂̂ -T^-  m'.fla'.2Bc\(sin.[(?+  l).(n7— w^+f— 0]+sin.  («+l). 

(n'i—nt-^ «'— 0  +  2n^+  2i]). 

The  value  ̂ "  z:  —  1  gives  in  the  expression  of  —^  ,  the  constant 

quantity-^ — ^.m'.aa'.B^~^\  all  the  other  terms  of  the  expression  of 

—^  are  periodic,  if  P  represents  their  sum,  we  shall  have  by  N°.  48, 

at  4c 

(£('>  being  equal  to  5'-'0. 
By  the  same  method,  we  shall  find,  that  if  we  denote  by  Q  the 

sum  of  all  the  periodic  terms  of  the  expression  of  -^,  we  shall  have 

at  4c 

If  the  squares  of  the  excentricities  and  of  the  inclinations  of  the  orbits, 

be  neglected,  we  shall  have  by  N°.  64,  c=:\/[*a.  If  then  /x  be  sup- 

posed =  1,  we  have  n*a^  =  1,  which  gives  c  =   ;    the    quantity 

  ,  thus  becomes    -,  which  by  N  .  5\)  is  equal  to 

(0,  l);  hence  we  shall  have 

|-  =  (0.  l).{q'-qHP  ; 

-g--(0,  l).(^-p)  +  Q. 
It  follows  from  this,  that  if  (P)  and  (Q)  denote  the  sum  of  all  the 
functions  P  and  Q,    relative  to  the   action    of  the   different  bodies 

PART  I. — BOOK  II.  3  G 



410  CELESTIAL  MECHANICS, 

m',  m\  &c.,  on  m^,  and  if  in  like  manner  (P),  (Q),  [P'),  (Q),  &c., 
denote  what  (P)  and  (Q)  become,  when  the  quantities  relative  to  m 

are  changed  into  those  which  refer  to  m',  m",  &c.,  and  conversely  ;  we 
shall  have  for  the  determination  of  the  variables  p,  q,  p',  q,  j/,  q",  &c., 
the  following  system  of  differential  equations, 

^  =-((0,  l)  +  (0,2)+&c.)5'+(O,  \).q'  +  (0,  2)./^-&c.-^-(P); 

-^=((0,  l)-i-(0,  2)+&c.;.p— (0,  \).p—(0,  2)./"— &c.+(Q)  ; 

^=z— ((1,  0)  +  (l,  2)+&c.).?'+(l,  0).9  +  (l,  S^Z+Scc+lP-) 

^zr  r(l,  0)+(l,  2)  +  &c.).y-(l,  0).p-(l,  2).|/-&c.+  (Q'), 
&c. 

From  the  analysis  of  N°.  68,   it  appears  that  the  periodic  parts  of 

p,  q,  p',  q,  &c.,  are 

p=f(P).dti  q=f(Q).dt 

p^z=f(P').dt;   q'=f(Q'-).dt, 

we  shall  afterwards  obtain  the  secular  parts  of  the  same  quantities, 

by  integrating  the  preceding  differential  equations,  deprived  of  their 

last  terms  (P),  (Q),  (P'),  &c. ;  and  then  we  shall  light  on  the  equa- 
tions (C)  of  1S°.  59,  which  have  been  already  discussed  with  sufficient 

detail  to  dispense  with  our  reverting  to  this  object. 

71.  Let  the  equations  of  N°.  64  be  resumed,  namely, 

\/?*  +  C^  (/'' tan.  c=   ;  tan.  6zz— 7-; c  c 

from  them  may  be  deduced 

(/  c' 
—  ■=.  tan.  (p.  cos.  6  ;   —  =  tan.  a».  sin.  d  : 
c  c- 
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differentiating,  we  shall  have 

d.  tan.  (p=.—.  (dc'.  cos.  9  +  dc'\  sin.  9  —  dc.  tan.  <p)  ;* 

1 

dL  tan.  (pzz  — .  {dc*.  cos.  G — dc/.  sin.  0). 

,„.     ,  .  ,     .         .      ,         .  dc    dc'    d(f      .    . 
If  m  these  equations,  we  substitute  in  place  of  ~j7'~;jr'~^f  their  va- 

,        -  fdR^  (dR\        (dK\         cdR^         (dR\        (dR\ 

and  in  place  of  these  last  quantities,  their  values  furnished  in  N".  67, 
and  if  moreover,  we  observe  that  s  zz  tan.  (p.  sin.  (y — 9)  ;  we  shall  have 

,  ,  ̂           dt.  tan.  0.  COS.  (v-^)  f     d.dR')     .     ,     .n  ,  (dR^  ,     .>! 
\d.  tan.^=   ^   -^^  r.  ̂ ^5.  sin.  (t;-9)+ 1-^  j.  cos.  M)| 

_0±^'.e«.(.-.,{f}> 
3g2 

fi/                            c"                                &'.c'+t;c".c" 
*  Hence  cos.  «  =  -■  sin.  <=—   ■  •/  d.  tan.  ip=   7^-     „  "  —  o'^' 

=  by  substituting  cos.  6,  sin.  i,  for  their  respective  values,  the  expression  which  is  given 
in  the  text.    

di  dc".c'—dc'c"         d6V(^+if')       dc"    /_^L_._ 
'^•'^-  '  =  -^E^i= — 7- — ''•■ — 7 —  =-r-U?M=^ 

dd.c"       \ 

c'Vif'  +  c"''' 
•j-  Multiplying  the  value  of  rfc',  given  in  page  385,  by  cos.  6,  and  that  of  rfc"  by  sin.  6,  we 

shall  obtain  by  adding  them  together  (1  +«*).  cos.  ("— *)-(-;|j)  —  ''*•  ̂ °^-  (*'~*^(^)  "^ 

s.  sin.(v— «).^— W  — .  tan.  a  =d  tan.  qi,  hence  by  substituting  for  s  its  value,  we  shall \dv/       dv  _ 

obtain  the  expression  given  in  the  text. 
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These  two  differential  equations  will  determine  directly  the  inclination 

of  the  orbit  and  the  motion  of  the  nodes.     They  give 

sin.  (v — 9).  d.  tan.  p — dL  cos.  (v — 9).  tan.  (p=0  ;* 

this  equation  may  be  also  deduced  from  the  equation  5=tan.  (p.  sin.(t'-6); 

in  fact,  as  this  last  equation  is  finite,  we  may  by  N".  63,  difference  it, 
either  by  considering  (p  and  9  as  constant,  or  by  treating  them  as  if 

they  were  variable ;  so  that  its  differential,  taken  by  making  p  and  6 

the  sole  variables,  vanishes ;  hence  results  the  preceding  differential 

equation. 

Suppose  now,  that  the  inclination  of  the  fixed  plane  to  that  of  the 

orbit  should  be  extremely  small ;  so  that  the  square  of  s  and  of  the 

tan.  p,  may  be  neglected,  we  shall  have 

dt  ,       ,.    CdR^ 
a.  tan.  (p=:   .  cos.  (v — 6).  -j  -7-  f  5 

,«                     dt      .      ,       ,,.    (dill 
«9.  tan.  (p=:   .  sin.  (v — 9).  -J  -3-  r  5 

by  making,  as  before, 

p  ̂   tan.  (p.  sin.  0.  ;  y  zi  tan.  (p.  cos.  9 ; 

we  shall  have,  in  place  of  the  two  preceding  differential  equations,  the 
following 

dt  CdRl 
dg=--.  COS.  v.^-^j; 

*  By  multiplying  the  first  equation  by  sin.  {v  — [6),  and  the  second  by  cos.  {v  —  6), 

their  second  members  become  indentically  equal  to  each  other,  therefore  the  first  members 

will  be  also  equal  to  each  other. 
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,  dt    .  CdR^ 

but  s  z=  q.  sin.  v  —  p,  cos.  v,  hence 

\ds )~  sin. v'Xdq)  '    \ds )~       cos.  v'\dp)' 
therefore 

,        dt   {dRi 

dt   ̂ dR) '^P=-^-ld^\' 

We  have  seen  in  N".  48,  that  the  function  R  is  independent  of  the 
fixed  plane  of  x  and  of  j/ ;  supposing,  tlierefore,  that  all  the  angles 
of  this  function  are  referred  to  the  orbit  of  m,  it  is  evident  that  R  will 

be  a  function  of  these  angles,  and  of  the  respective  inclination  of  these 

two  orbits,  which  inclination  we  shall  denote  by  (pf.  Let  6/  be  the 

longitude  of  the  node  of  the  orbit  of  m'  on  the  orbit  of  m,  and  let  us 

suppose  that  m'k  tan.  ((p'y.  cos.  (i'7i't — int+  A — ^'.G/)  is  a  term  in  the 

value  of  R,  depending  on  the  angle  i'?i't — int :  by  N°.  60  we  shall  have 

tan.  (p/.  sin.  6/  zz  j/ — p  ;   tan.  ip/.  cos.  ̂ '=q' — q, 
hence  we  deduce 

(ta„.  ,>.  »in.  gr=  w-<,)+(p--pW='i-w-,y(P'-^W=ry.
 

2.v/— 1 

*  dq  =z  COS.  t.d.  tan.  <p — di.  sin.  t.  tan.  (p  =   .  (cos.  v.  cos.  S-|-sin.  v.  sin.  6).  cos.  (. c 

/dR\       dt    ,  .  .      V    .         fdR\  dt  /dR\    /dR\ 

\i'g/   \as/         as       sin.u         \(/s/       dq      sin.  u 
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If  we  only  consider  the  preceding  term  of  the  value  of  iJ,  we  shall 
have 

1^1=—^.  (tan.  <?;>-'.  rdh.  %va.{j!n't—int-\-k—[g—\\  fi)/)  ; 

I  ^  I  =— ̂ .(tan.  <fiy-^.  m'k.  cos.  (i'n't—int+  A— (^— 1  ).9/). 

If  these,  values  be  substituted  in  the  preceding  expressions  of  dp  and 

_   I* 

obtain 
of  dq,  and  if  we  observe  that  we  have  very  nearly,  c  ̂   —  ;    we   shall 

and  if  these  values  be  substituted  in  the  equation  sz=.q.  sin.  v — p.  cos.  v, 
\ye  shall  have 

s  =  -  4#|r^  •  (t^"-  ̂ />-'-  sin-  (i'«'^-^«^+  A-(5^-l).6;). 

*  sin.  ̂ ;  =  '       '   ,   COS.  6;  =    ^^^^^          •  • 

COS. «;  +  V_l.  sin.  «A«  =  COS.  gi',.  +  -/=  1 .  sin.  -«  =\-;j^^^^^^)  >    '^e°«=^ 

we  obtain  by  multiplying  by  tan.  ?>;,  and  its  values,  the  expressions  for  tan.  (p,«.  sin.  g«;, 

tan.  ip;s.  COS.  g«/,  which  are  given'  in  the  text ;  now  m'h  (tan.  ip/)e.  cos.  (t'n'i— »«/+ A— 

^<;)  =  m'i.  (tan.  ip/)«.  (cos.  .^«.  cos.(f'n7  —  inl  +  A)  +  sin.  gL  sin.  [in't  —  mt  +  A),  if 

we  substitute  for  (tan.  <p/)e.  cos.  g«;,  (tan.  0;>.  sin.  gf,  and  their  difference  with  respect  to 

;,  and  q,  we  will  obtain  the  expressions  for  — ,  -^,  which  are  given  in  the  text. 
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This  expression  of  s,  is  the  variation  of  the  latitude  corresponding  to  the 

preceding  term  of  R,  it  is  evident  that  it  is  the  same  whatever  may  be 

the  fixed  plane  to  which  the  motions  of  m  and  of  m'  may  be  referred, 
provided  that  its  inclination  to  the  plane  of  the  orbits  be  inconsiderable  ; 

therefore  we  shall  by  this  means  obtain  that  part  of  the  expression  for 

the  latitude,  which  becomes  sensible  from  the  smallness  of  the  divisor 

i'n' — in.  Indeed  this  inequality  of  the  latitude  involves  only  the  first 
power  of  this  divisor,  and  in  this  respect  it  is  less  sensible  than  the 

corresponding  inequality  of  the  mean  longitude,  which  contains  the 

square  of  this  divisor ;  but  on  the  other  hand,  tan.  (p'  occurs  affected 
with  a  power  which  is  less  by  unity ;  which  remark  corresponds  to 

that  made  in  69,  on  the  corresponding  inequality  of  the  excentricities 

of  the  orbits.  It  thus  appears  that  all  these  inequalities  are  connected 

with  each  other,  and  the  corresponding  part  of  R,  by  very  simple 

expressions. 

If  the  preceding  expressions  of  p  and  of  q  be  differenced,  and  if  in 

the  value  of  —~  and  of —7^  ,  which  result,  the  angles  nt  and  ?i't  be  in- 

creased by  the  inequalities  of  the  mean  motions,  depending  on  the  angle 

i'71't — hit ;  there  will  result  in  these  differentials ;  quantities  which  are 
solely  functions  of  the  elements  of  the  orbits,  and  which  may  sensibly 
influence  the  secular  variations  of  the  inclinations  and  of  the  nodes, 

although  being  of  the  order  of  the  squares  of  the  disturbing  masses  ; 

which  is  analogous  to  what  has  been  stated  in  N°.  (>9,  relative  to  the 
secular  variations  of  the  excentricities  and  aphelias. 

72.  It  remains  for  us  to  consider  the  variation  of  the  longitude  i  of 

the  epoch.     By  N".  64,  we  have 

di  =zae.j<  — - — C  V.  sin.  (v — w^-j-^.  j  — ^ —  V .  sin.  2.(y — u)  +  &c. 

—d'sr.({E''K  cos.  (u— T!r)-f  £®.  cos.  2.(t;— ■5r)+&c.); 

If  for  £'",  E^'\  &c.  be  substituted  their  values  in  series  arranged  ac- 
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cording  to  the  powers  of  e,  which  series  it  is  easy  to  infer  from  the 

general  expression  for  £''',  given  in  N".  l6,  we  shall  have 

</«=:  —  2c?e.  sin,  (y — Ts)-\-'ie.dzT.  cos.  (v — ra-) 

-j-  ec?e.(f+^e*  +  &c.).  sin.  2.(5y-5r)-e*.rf'5r.(f-|-|;e*+&c.)cos.  2(?>-sr)* 

— e''</e.(l+&c.).  sin.  3.(1; — 73-)  +  e'.  c?w,(J+&c.).  cos.  S.{v — ar) 

+  &C. 

If  for  de,  and  edsr,  their  values,  given  in  N".  67,  be  substituted, 
we  shall  find,  when  the  approximation  is  carried  as  far  as  quantities  of 

the  order  e*  inclusively, 

,        a^.ndt      /,   T-  ,^     -T  ,       s  ,    i  „  ,       \  ( dR'\ 
de  =   >/ 1 — e  .  (2 — fe.  cos.  [v-w)-\-e*.  cos.  2.(v--sr).<  -^—  > 

e.  sm.  {v—s:).{\  +  -.  cos. (i;— lir)).  J  —  ̂ . 

The  general  expression  for  di  contains  terms  of  the  form  m'.k.ndt. 

cos.  (i'«7 — int-[-A'),  and  consequently  the  expression  for   £  contains 

terms  of  the  form  .,  /  '  .  .  sin.  (i'n't—int+A.) ;  but  it  is  easy  to  be  as- t'n  — m 

sured  that  the  coeflScient  k  in  these  terms  is  of  the  order  i' — i,  and 

that  consequently,  these  terms  are  of  the  same  order  as  those  of  the 

mean  longitude  which  depend  on  the  same  angle.  The  latter  have 

for  divisor  the  square  of  i'n — in ;  we  have  seen  that  we  can  neglect  in 

respect  to  them,  the  corresponding  terms  of  i  when  i'?i' — in  is  a  very 
small  quantity. 

If  in  the  terms  of  the  expressions  of  di,  which  are  solely  functions 

*  ByNo.ie,  £(')=:±  ̂ e'.(\+eVl—£)^  •  •  log.  £("=2/.  log.  e+log.  (l+eVlH?) 
(1  +  V^l— e)' 

_i.log.  (l  +  ̂ ^r^T),  then  by  differentiating  and  substituting  for  £i*'  its  value,  we  can 
obtain  the  expression  which  is  given  in  the  text. 
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of  the  elements  of  the  orbits,  we  substitute  in  place  of  these  elements 

the  secular  parts  of  their  values,  it  is  evident  that  there  will  result  in 

them  constant  terms,  and  other  terms  affected  with  the  sines  and 

cosines  of  the  angles  on  which  the  secular  variations  of  the  ex- 

centricities  and  of  the  inclinations  of  the  orbits  depend.  The  constant 

terras  will  produce  in  the  expression  of  c,  terms  proportional  to  the 

time,  which  will  be  confounded  with  the  mean  motion  of  m.  As 

to  the  terms  aflFected  by  the  sine  and  cosine,  they  will  acquire  by 

integration,  in  the  expression  of  t,  very  small  divisors  of  the  same 

order  as  the  disturbing  forces ;  so  that  these  terms  being  at  once 

multiplied  and  divided  by  these  disturbing  forces,  they  may  be- 
come sensible,  although  of  the  order  of  the  squares  and  products  of  the 

excentricities  and  inclinations.  We  shall  see  in  the  theory  of  the 

planets  that  these  terms  are  insensible,  but  they  are  extremely  sensible 

in  the  theory  of  the  moon  and  of  the  satellites  of  Jupiter,  indeed  it 

is  on  these  terms  that  their  secular  equations  depend. 

We  have   seen  in   N".  65,    that    the  mean   motion    of  m  has   for 
3 

expression  —  Jfandt.  di?,   and   that   if  we   only    consider    the   first 

power  of  the  disturbing  masses,  di2  involves  only  periodic  quantities ; 

but  if  we  take  into  account  the  squares  and  products  of  these  masses, 

this  differential  may  contain  terms  which  are  solely  functions  of  the 

elements  of  the  orbits.  By  substituting  in  place  of  these  elements 

the  secular  parts  of  their  values,  there  will  result  terms  affected  with 

the  sines  and  cosines  of  angles,  on  which  the  secular  variations  of 

the  orbits  depend.  These  terms  will  acquire  in  the  expression  of 

the  mean  motion,  by  the  double  integration,  very  small  divisors, 

which  will  be  of  the  order  of  the  squares  and  products  of  the 

disturbing  masses ;  so  that  being  simultaneously  multiplied  and  di- 

vided by  the  squares  and  products  of  these  masses,  they  may  be- 

come  sensible,    although   being   of    the   order    of    the    squares   and 
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products  of  the  excentricities  and  inclinations  of  the  orbits.  "We 
shall  see  that  these  terras  are  likewise  insensible  in  the  theory  of  the 

planets. 
73.  The  elements  of  the  orbit  of  m,  being  determined  by  what 

precedes,  they  should  be  substituted  in  the  expressions  for  the  radius 

vector,  for  the  longitude,  and  latitude,  which  have  been  given  in 

N°.  22 ;  the  values  of  these  three  variables  will  thus  be  obtained 
by  means  of  which  astronomers  determine  the  position  of  the  hea- 

venly bodies.  By  reducing  these  values  into  a  series  'of  sines  and 
cosines,  we  shall  obtain  a  series  of  inequalities,  from  which  ta- 

bles may  be  formed,  and  thus  the  position  of  m  at  any  instant 

may  be  computed  with  great  facility.  This  method,  founded  on  the 

variation  of  parameters,  is  extremely  useful  in  the  investigation  of 

those  inequalities,  which  from  their  relations  with  the  mean  motions 

of  the  bodies  of  the  system,  acquire  great  divisors,  and  by  this  means 

become  very  sensible.  This  species  of  inequalities  affects  principally 

the  elliptic  elements  of  the  orbits  ;  therefore  by  determining  the  va- 

riations which  result  from  them  in  these  elements,  and  by  substituting 

them  in  the  expressions  of  elliptic  motion,  we  shall  obtain  in  the 

simplest  manner  possible,  all  the  inequalities  which  those  divisors 
render  sensible. 

The  preceding  method  is  likewise  useful  in  the  theory  of  comets  ; 

these  stars  are  only  perceived  for  a  very  small  part  of  their  course, 

and  observations  solely  make  known  the  part  of  the  ellipse,  which 

may  be  confounded  with  the  arc  of  the  orbit  which  they  describe 

during  their  apparition.  Therefore,  if  the  nature  of  the  orbit,  consi- 

dered as  a  variable  ellipse,  be  determined,  we  shall  have  the  changes 

which  this  ellipse  undergoes  in  the  interval  between  two  conse- 

cutive appearances  of  the  same  comet ;  we  can  therefore,  an- 

nounce its  return,  and  when  it  reappears,  compare  the  theory  with  ob- 
servations. 

After  having  given  the  methods  and  formulae  for  determining  by 

successive  approximations,   the  motions   of  the  centres  of  gravity  of 
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the  heavenly  bodies,  it  remains  for  us  to  apply  them  to  the  dif- 

ferent bodies  of'  the  solar  system  ;  but  as  the  ellipticity  of  these 
bodies  influences  in  a  sensible  manner,  the  motions  of  several  of 

them  among  each  other,  it  is  requisite,  previously  to  proceeding  to 

the  numerical  applications,  to  treat  of  the  figure  of  the  heavenly 
bodies,  of  which  the  investigation  is  equally  interesting,  on  its  own 
account,  as  that  of  their  motions. 

END  OF  THE  SECOND  BOOK. 












